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ROBUST CONTROL OF 
A CLASS OF NONLINEAR SYSTEMS 

V O J T E C H V E S E L Ý 

In this paper we deal with robust control of a class of nonlinear systems with partially 
known uncertainties. A new class of adaptive continuous algorithm is proposed to guarantee 
stability of uncertain nonlinear and linear systems without matching conditions. 

1. INTRODUCTION 

Dynamic systems with bounded uncertainties have been widely used to model physi
cal systems. During the last two decades, numerous papers dealing with design of 
rooust control schemes to stabilize such systems have been published. For overviews 
we refer the reader to Corless [2], Leitmann [8], [9], Zhihua Qu [11] and the numerous 
references therein. Various approaches have been studied for nonlinear systems, the 
Lyapunov function method being of central importance. This paper focuses on the 
problem of robust design by the Lyapunov direct method. 

The robust controller studies have been generally based on three main assump
tions [1] 

- the system state variable is available for measurement, 

the so-called matching conditions are verified, and 

- the uncertain part of the system are assumed to belong to a known compact 
set. 

Under these assumptions, it is shown that there exists a class of controllers that en
sure the stability of uncertain systems. Recently, several authors have proposed new 
control laws which partially allow relaxation of the above assumptions [1], [6], [10], 
[11], [13]. 

In this paper we pursue the idea of Corless and Leitmann [3] and Brogliato and 
Neto [1]. We assume tha t the system is described by a generalized dynamical model 
[7] without matching conditions, where the input uncertainties upper bounds are 
known and system uncertainties upper bounds are partially known, i.e. they are 
linear in some unknown parameters. The above unknown parameters are updated 
by a special adaptive algorithm. Further, the proposed design procedure guaran
tees the stability of uncertain nonlinear or linear systems with any value of system 
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uncertainties. To overcome the unstability of the controlled system which would be 
due to the adaptive control [14] a special approach has been proposed which ensures 
a finite operator gain of adaptive algorithm. 

The paper is organized as follows. In Section 2 the mathematical model of in
vestigated uncertain systems with deterministic uncertainties is given. Main results 
are in Section 3. In Section 4, a simple pendulum has been used as an example to 
prove the theoretical results and, finally, conclusion is given in Section 5. 

2. MATHEMATICAL MODEL OF UNCERTAIN SYSTEMS 

The following generalized uncertain dynamic systems will be considered in this pa
per: 

x = f(x,t) + 6f(x,t) + (B(x,t) + 6B(x,t))u (1) 

where t £ R is t ime, u £ Rm is the control, x £ Rn is the available state vector, and 
the origin is an equilibrium point. 6f(x,t), f(x, t) : Rn x R —-> Rn, 6B(x, t), B(x, t) : 
Rn x R —> Rnxm are Caratheodory functions in all their arguments [4]. 

The corresponding system without uncertainty, called the nominal model, is de
scribed by 

x = f(x,t) + B(x,t)u (2) 

where f(x,t) and B(x,t) are supposed to be known. 

The following definitions form the necessary foundation for the analysis presented 
in this paper (cf. [12], [13]). 

De f in i t i on 1. A solution of (1), x(-) : [to, ti] —> Rn,x(to) = x0, is said to be 
uniformly bounded if there is a positive constant h(x0) < oo, possibly dependent on 
XQ but not on to, such that 

\\x(t)\\ < h(x0) V i £ [t0iti]. 

Denote a set Rp as 

Rp = {x Є Rn : |Jx|| < p) p>0. 

D e f i n i t i o n 2. A solution of (1), x(-) : [to,t!] —* Rn,x(to) = XQ, is said to be 
uniformly ultimately bounded with respect to a set Rp if there is a non-negative 
constant T(XQ, RP) < oo, possibly dependent on xo and Rp but not on to, such t h a t 
x(t) £ Rp for all t>t0+ T(x0,Rp). 

It is assumed that the reader is familiar with the basic concepts of the stability 
of dynamic systems, and with definitions of stability, uniform stability, asymptotic 
stability, uniformly bounded stability, and uniformly ultimately bounded stability. 
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Definition 3. The system (1) is P-stabilizable if there exist in the set Rp both the 
Lyapunov function Vb(x,t) : Rn x R —> R+ and the continuous control algorithm 
u = qi(x,t) : Rn x R —* Rm such that on the neighbourhood of the origin the 
following condition holds: 

IF = ^ + V * ^ / ( M ) + WM) + ( 5 ( x , t ) + **(*»*))«] < o (3) 

/here 

V т Vь = 
<9Vь ĆЖ 

Let us introduce the following assumptions: 

Al. There exist both a known parameter d and an unknown matrix F(x,t) E i J m X m 

such that for all x E Rn and t E R we have 

6B(x,t) = B(x,t)F(x,t) (A) 

!IT0M)ll < t ? < i . 

A2. There exist both a known vector function <p(x) : Rn —>• Rp and unknown vector 
of parameters 9 E Rp such that for all x E Rn and t E R the following inequality 
holds 

||«5/(*,0II<«K*)T* - (5) 
with (pi > 0 for all x and t such that x --. 0, t = 1,2,.. . ,p. 

A3. There exists in the neighbourhood of the origin, i.e. in the set Rp, a function 
V(x,t) : Rn xR —> R+ as a candidate Lyapunov function of the uncontrolled nominal 
model 

x = f(x,t) (6) 

with 

7l(IMI) < ^ ( M ) < 7>(IMI) (7) 
where 7,-() : R+ —» H+, i = 1,2, 7,'(0) = 0 is strictly increasing. 

Remark. In opposite of [8], [9], [12], [13] we do not suppose that the uncontrolled 
nominal model (6) is stable. 

A4. The system (1) is P-stabilizable. 

The control problem is to design the control algorithm 

u = q(x,9,t) (8) 

and the adaptive control law 

e = g(x,9,t) (9) 
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which practically stabilize [9] the following closed-loop uncertain system 

x = f(x,t) + 6f(x, t) + (B(x, t) + 6B(x,t)) q(x, 9, t) (10) 

9 = g(x,9,t) 

where for 6B(x,t) and 6f(x,t) the inequalities (4) and (5) are met. Ideally, we wish 
to choose the functions q : Rn x RP x R -> Rm and g : Rn x RP X R -> W so 
that the system (10) has the property of global uniform asymptotic stability for all 
uncertainties. Practically, we relax the problem to that of obtaining a family of 
controllers which guarantee that the behaviour of (10) can be made arbitrarily close 
to above mentioned stability. Such a family of controllers are called a practically 
stabilizing family [9]. 

3. ROBUST CONTROL OF UNCERTAIN DYNAMIC SYSTEMS 

Let us choose in the set Rp the function V(x,t) : Rn x R —> H+ as a candidate 
Lyapunov function of the uncontrolled nominal dynamic system (6). The candidate 
Lyapunov function of the system (10) is given as follows 

Va = V+.b(9-9*)TZ(9-9*) (11) 

where Z = ZT > 0,9 £ Rp is the vector of robust controller parameter which will 
be adapted, and 

9* = lim 9 £ Rs 
t—*oo 

where 
Rs = {9 £ Rp '. system (10) is stable in Lyapunov sense}. 

Hence, by assumptions Al and A2 for the time derivative of the Lyapunov func
tion (11) one can get 

Va < VT
xVf(x, t) + IIV.VH vT(x) 9 + V T VB(x, t) u (12) 

+| |VTVH(:M)| | ||F(*,<)II Ml + % + &TZ(9 - 9*) 

Let the robust control law be given by 

u = Ui + M2 (13) 

where 
T IIV-VN T , x 

m = -BTWXV " x " ipT9a V(x,t)(£N 

T HVrVlj T 
u2 = -BTVXV - x " <pT9a \f(x,t)eN 

e 
a > 0 is a positive constant, the set N be defined by 

N = {(x,t) :/!<£} e>0 (14) 
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£ is chosen to be small, and 

fi = VT
XVBBTVXV. (15) 

The proposed algorithm (13) belongs to the class of functions with a finite number 
of discontinuity points. The control algorithm is well defined at all points in the 
set N and the complement set of N. A lower bound for e > 0 can be obtained by 
determining a maximum value of the control input. The proposed control algorithm 
guarantees the existence of a unique solution for the system (1) with (13), as required 
in [4]. By substituting (13) into (12), we then have 

va < vT
xvf(x,t) + - ^ -| |v.v| |vTe(-i + a(\-d)) + eTz(e-e*) v(x,t) $ N, 

(16) 
and 

va < vTvf(xtt)+^-\\vxv\\ vTe (-i + a£(i - d))+eTz(9-e*) v(x,t) e N. 
(17) 

From the conditions for the change of the Va as a function of controller parameter 
8, see [5], [15] one can determine the adaptive control algorithm as follows 

6 = Z-l<p(x) | |V .V | | ( - 1 + a(l - $)) (18) 

e(to) = eQ. 

The proposed adaptive control algorithm (18) ensures that the time derivative of 
Lyapunov function (16), (17) will decrease in the time if 9 is not identically equal 
to zero. If the system (1) is P-stabilizable with the proposed controller, there exists 
such value of 6*, tha t the solution of the system (10) will be uniformly ultimately 
bounded. The sufficient stability conditions of the investigated system are given by 
the following theorem. 

T h e o r e m 1. The solution x(t) : [to,^i] —> Rn,x(to) = xo of the system (1) with 
controller (13) and (18) is locally uniformly ultimately bounded on the set Rp, if the 
following sufficient conditions hold. 

- The assumptions A 1 - A 4 hold. 

- The following inequality holds for the constant a in (13) 

->rb- (19) 

P r o o f . By substituting (18) into (16) and (17) for the time derivative of the 
Lyapunov function Va one can get 

Va<VrVf+-^-(-l + a(l-$))\\VxV\\pT6* V(x,t)(£N (20) 
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and 

Va<VTVf+^-\\VxV\\ipT{9*(-l+a(l-ti))-8a(l-#)(l-^} \/(x,y)eN. 

(21) 
Because of conditions of Theorem 1 and because ||V;-V|| is a positive definite function 
and (19), one can conclude that there exists a vector 0* with positive entries such 
that for (20) and (21) the following inequality holds 

Va <-73( | |* | | ) V ( x , f ) g N (22) 

Va <-la(\\x\\) + <Kx) V(x,0G-V (23) 

where 73(||x||) : R+ —* R+ is strictly increasing with 73(0) = 0 and 

VxVf + W " ( _ 1 + a ( 1" WF'V^** <- -»(IWI) 

| | V , V | | ^ T 0 a ( l - t f ) ( l - ^ ) <4(x). 

Note that the Lyapunov function Va is monotonous with respect to ||.c||. This means 
that \\x\\ keeps decreasing as long as Va < 0. Thus, choosing a corresponding e it 
is possible to make the region of stability or complement set of N as large as it is 
necessary. There are different categories of stability that one can obtain. Let us 
suppose that one of the following is true [13]: 

-• T3(||*||) > <f>{x) for V(x,t) £ N, then the system (1) with (13) and (18) in the 
region Rp is asymptotically stable with respect to x. 

2. 
l i m m f T 3 ( N I ) > 1 ( 2 4 ) 

||s||->oo <f>(x) -

for V (x, t) G N. The investigated system is in the region Rp globally uniformly 
ultimately bounded and 

3. 
7.*(||*||) > Hx) (25) 

with 
m < 11*11 < V2, v(x,t)eN 

where 
m > 7i_1 ° 72(7/1) and r?2 > 7i_1 ° T2(||*o||) 

the investigated system is locally uniformly ultimately bounded. 

This completes the proof. • 

It should be stressed that the proposed adaptive control algorithm (18), in real 
time operation of a system, can keep the entries value of vector 9 very large. The 
algorithm (18) ensures that entries of 6 will increase in the time if* ^ is not identically 
eaual to zero. 
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The operator gain G[d(i)] under the input d(/) is defined as follows [14] 

llrMOMII \\G[d(t)}\\l2 f0R, 
| |G[d(0l | |= sup „ . ^ „ T (26) 

where 

Hence, owing to (26) the operator gain of (18) is infinite, i.e. 

| |G[d(f)] | | -oo 

and therefore in practical operation of the system the "Rohrs phenomenon" may 
occur, and the proposed adaptive system may not be suitable for practical applica
tions. To overcome these difficulties, instead of the adaptive algorithm (18) one can 
use the following one 

9a = Z-^(x) \\VXV\\ ( -1 + a ( l - *)) - 79a (27) 

where j > 0 is a rather small positive number. 
The entries of vector 9 are given as follows 

vj — "aj ) l- "aj > "amj 

' amj > if 6aj < 6amj (28) 

where 9am is the vector whose entries are the maximum achieved values of 9a]-, j = 
1,2,... ,p, under the practical operation of the system. 

Hence, in the adaptive control algorithm (27) and (28) the entries of 9a will 
change in time keeping the equilibrium of equation (27). The operation of system 
can be effective in two ways. First, the system (1) operates with controller (13), (18) 
and sufficient stability conditions are given by Theorem 1. Second, the system (1) 
cooperates with controller (13), (27) and (28) with a constant value of 9*. For the 
above case the time derivative of Lyapunov function on the solution of (1) and (13) 
with A1-A2 is given as follows 

V<-73(||s||) V(z ,E )£N 

V<-ys(\\x\\) + <f>(x) V(x,t)eN. 

The sufficient stability conditions of system (1) with controller (13), (27) and (28) 
with constant value of 9* are the same as given by Theorem 1. 
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4. EXAMPLE 

Consider a single-link manipulator or a simple pendulum. The simple pendulum of 
mass M and length / subjected to a control moment u and an unknown bounded 
disturbance v(t) in the form of horizontal acceleration of its point of support. This 
example was used by Corless [2], Zhihua Qu [11] to illustrate the class of robust 
controllers. Here we use the same example to illustrate the new theoretical results 
of design of the adaptive robust controller. We recall tha t our model (1) need not 
satisfy the matching or generalized matching conditions and the other conditions 
given by Corless [2] (mainly Assumptions 6.1 and 6.2), Zhihua Qu and Dorsey [13] 
(Assumption 3.3 and Condition 4.1) and Leitman [9] (Assumption C. l ) . As shown 
by Corless [2], the dynamics of the pendulum is described by 

x2 

x\ = x2 

-a srn x\ + bu — cos x\ 

(29) 

where 
Ml 

T - 7 
J is the moment of inertia of the link with respect to its axis of rotation. 

Owing to uncertainty v(t), the uncontrolled uncertain system has no known equi
librium point. It has been shown by Corless [2] and Qu [11] that a control law 
guaranteeing uniform and ultimate boundedness can be chosen in the form 

u = U\ + u2 

where u\ is the proportional derivative controller to guarantee the stability of the 
nominal model and u2 is the one which ensures the stability and demanded quality 
of uncertain system (1). In this paper only one controller is designed. The design 
procedure of the adaptive robust controller is given by eqs. (7), (13), (19) and (27). 
Let us choose the Lyapunov candidate function V : R2 —> R+ as follows 

V = x\ + CX\X2 + X (30) 

where 0 < c < 2. 
The (1) is given by 

f(t)T = [x2 - a s i n x i ] 8f(x)J vЏ) 

I 
COS X\ 

BJ 
[0 b] 8BT = [0 8b] = FB1 

where F 6 R is unknown scalar with |F | < t? < 1. 
The control algorithm is given by (13), where 

BTVXV\\VXV\\ = b(cx\ + 2x 2 ) x / ( 2 x 1 + cx2)
2 + (cx\ + 2x2)

2 

li = b2(cx\ + 2x2)
2 

(31) 
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ip(x) = yjx\ + x\ 

and for adaptive control law 

а = p<p(x)ҳ/(2xi + cx2)
2 + (cxi + 2x2)

2 ( - 1 + а(ì - tf)) - j а (32) 

where p = Z~l is a positive constant. 

Simulation results with the parameters a = b = 1, 66 = 0.55, 7 = 0.01, e = 
0.05, p = 15 C = 1.99 a = 3 and initial state [xi x 2] = [1.5 0] are given in Figure 1. 
Within the simulation time t £ (0, 5) sec the value of parameter uncertainty has 
been chosen as v = 1, and for t > 5 sec the value of parameter uncertainty has been 
change drastically, v = 100. Simulation results show that the system in the region 
Rp is uniformly ultimately bounded with respect to state variable x and this verifies 
the proposed theoretical analysis. 
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Fig. 1. Simulation results of pendulum with the proposed adaptive robust controller. 

5. CONCLUSION 

Local stabilization of general uncertain systems with an adaptive robust controller 
without matching conditions is considered. We have assumed that both the input 
uncertainty matr ix is bounded with a known norm of uncertainty and the system 
uncertainty is bounded by a scalar product of a known positive function and an 
unknown constant vector with positive entries. The above vector is updated by 
the proposed adaptive algorithm. To overcome the "Rohrs phenomena" in adaptive 
control a special approach has been proposed which ensures a finite operator gain of 
the adaptive algorithm. Simulation results verify the proposed theoretical analysis, 
although the parameter of system uncertainty changes very drastically. 

(Received August 21, 1995. 
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