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A N E W PERIODIC MULTIRATE MODEL R E F E R E N C E 
ADAPTIVE CONTROLLER FOR POSSIBLY 
NON STABLY INVERTIBLE PLANTS 

KOSTAS G. ARVANITIS AND G R I G O R I S KALOGEROPOULOS 

An indirect adaptive algorithm is derived for model reference control of linear continuous-
time systems with unknown parameters. The control structure proposed relies on a periodic 
controller, which suitably modulates the sampled output and discrete reference signals by a 
multirate periodically time-varying function. Such a control strategy, allows us to assign an 
arbitrary discrete-time transfer function for the sampled closed-loop system and does not 
make assumptions on the plant other than controllability, observability and known order. 
On the basis of the proposed adaptive algorithm, the model reference adaptive control prob
lem is reduced to the solution of a non-homogeneous algebraic matrix equation. Known 
indirect model reference adaptive control techniques usually resort to the direct compu
tation of dynamic controllers, through the solution of polynomial Diophantine equations. 
Moreover persistency of exitation of the continuous-time plant under control, is ensured 
without making any special richness assumption on the reference signal. 

1. INTRODUCTION 

In the last 20 years, much research has been reported, which is intended to the use 
of periodically t ime-varying and/or multirate digital compensators in controlling 
continuous-time linear systems. Several digital control schemes were proposed in 
the literature, among them periodically varying gain controllers [7,8,12], mul t i ra te -
input controllers [1], intersample-data controllers [13], mul t i ra te-output controllers 
[9], generalized sampled-da ta hold functions (GSHF) [11], multirate GSHF [2], etc. 
These classes of digital controllers have been applied successfully in solving many 
important control problems, providing various advantages over ordinary digital feed
back control schemes, such as classical state feedback, dynamic compensation or 
state observers (see [3,4, 6,14], for an extensive overview of the applications and the 
advantages of periodic and /or multirate controllers). 

In a recent paper [5] a digital mult i rate- input controller (MRIC) for continuous-
time systems is explored, which suitably modulates the sampled output and discrete 
reference signals by a multirate periodically time-varying function. This approach 
is considered as an alternative to standard dynamic compensation. Under certain 
conditions, the modulating functions can be tailored to a given system in such a way 
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that for the sampled closed-loop system a discrete-time transfer function matr ix can 
arbitrarily be assigned. A main feature of the approach reported in [5], is tha t the 
model matching is obtained without the requirement of pole-zero cancellation. 

The purpose of the present paper is to explore the possibility cf extending the 
MRIC based approach presented in [5] to the control of linear time-invariant plants 
with unknown parameters. In particular, we use the certainty equivalence principle 
to combine a MRIC based model matching structure, which could be used to meet 
the control objective in the case of plants with known parameters, with an on 
line identification procedure. The motivation for studying an adaptive version of 
the particular controller structure given in [5], is manifold. Foremostly, since it 
does not rely on pole-zero cancellation, it may be readily applicable for solving the 
model reference adaptive control problem for nonstably invertible plants and with 
reference models having arbitrary poles and zeros and relative degree. Furthermore, 
the degrees of freedom in the choice of the modulating function provide a solution to 
the problem of assuring persistency of excitation of the continuous-time plant under 
control, without imposing any special assumption on the reference signals (except 
boundedness), as in known model reference adaptive control schemes, and without 
declining the achievment of discrete-time asymptotic model following. Finally, on 
the basis of the approach reported in [5], the solution of the model matching problem 
is reduced to the solution of a simple non-homogeneous algebraic matr ix equation, 
rather than a complicated polynomial Diophantine equation as is needed in s tandard 
indirect model reference adaptive technique. In this paper, we address all these 
problems and, as a result, we present a globally stable indirect periodic multirate 
model reference adaptive controller for possibly nonstably invertible plants that does 
not rely on pole-zero cancellations or on richness assumptions on the reference signal. 
The only a priori knowledge needed to implement the proposed model reference 
adaptive controller is controllability and observability of the continuous and sampled 
system and known order. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

Consider the continuous-time, linear time-invariant single-input, single-output 
(SISO) system having the following state-space representation 

x(t) = Ax(t) + bu(t) , y(t) = cTx(t) (2.1) 

where x(t) £ W1, u(t) £ IK. and y(t) £ M, are the state vector, control and output 
signals, respectively, and A,b,cT are real matrices having appropriate dimensions. 
With regard to system (2.1) we make the following two assumptions: 

A s s u m p t i o n 2 . 1 . System (2.1) is controllable and observable and of known or
der n. 

A s s u m p t i o n 2 .2 . There is a sampling period To £ M+ , such as the discretized 

system (exp(ATb), f0 °exp[A(T 0 — X)]bdX, c T ) is controllable and observable. 
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Except for this prior information, the matr ix triplet (A,b,cT) is arbitrary and 
unknown. In particular, no assumption is made here, on the relative degree of the 
plant or its stable invertibility. 

Now, consider applying to system (2.1) the multirate control strategy depicted in 
Figure 1. With regard to the sampling mechanism, we assume that all samplers start 
simultaneously at t = 0. The sampling period T* has rational ratio, i.e. T* = TQ/N, 
where To is the frame period and N E 2£+ is the input multiplicity of the sampling. 
The hold circuits H^r and Ho are the zeroth order holds with holding times T* 
and To, respectively. Finally, the compensator f(t) is a periodically time-varying 
controller with period TQ. Tha t is 

f(t + T0) = f(t). (2.2) 

±Ч> н„ f(t) 
r(t) 

f('+To)=f(t) 

Hy 
u(t) 

PLANT 
y(t) y(Ш 

CONTROLLER BLOCK 

Fig. 1. Control strategy in the nonadaptive case. 

The resulting c osed-loop system is described by the following state space equations 

i[(k+l)To] = [^-kcT]^(kTo) + kw(kTo)) 1(kTQ) = cTi(kTo), k>0 

where £(fcTo) E Mn and j(kTo) E 11 are discrete measurement quantities obtained 
by sampling x(t) and y(t), respectively, with sampling period To and the matrices 
$ and k are defined as 

Ф = exp(ATo), k = f ° exp[A(T0 - Л)] bf(X) dЛ 
10 

(2.3) 

The model reference adaptive control problem treated in the paper is as follows: 
Given a discrete-time linear reference model M of the form 

Z {j*(kTo)} = Hm(z)Z {w(kTo)} 

with 

Hm(z) = 
b(z) Ъn-\zn-1 + . . . + òiz + ŕ>c 

(2.4a) 

(2.4b) 
a(z) zn + a\zn~1 + . . . + a\z + ao 

where, a(z) is strictly stable, Z{} denotes the usual Z-transform, y* (kTo) is the 
output of the reference model and w(kTo) G 1 is an arbitrary uniformly bounded 
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reference sequence, find a periodic controller f(t), which when applied to system 

(2.1), in the sense of Figure 1, achieves discrete-time asymptotic model following, 

i.e. 

1. lim [7(kTo)-^(kTo)] = 0. 
A;—>oo 

2. All signals in the control loop are bounded. 

With regard to the reference model M, it is emphasized that , no assumptions are 

made here on its poles and zeros or its relative degree. 

To solve the above problem, an indirect adaptive control scheme is exhibited in 

the sequel. In particular, we first solve the model matching problem, namely, the 

exact matching of system (2.1) to the model (2.4). This is done in Section 3. Next, 

using these results, the exact model matching problem is solved for the configuration 

given in Figure 2, wherein the periodic controller f(t) is with prespecified periodic 

behaviour and a persistent excitation signal is introduced in the control loop for 

future identification purposes. This is done in Section 4. It is remarked that the 

motivation for modifying the control strategy as in Figure 2, is tha t it facilitates 

the derivation of the indirect adaptive control scheme sought. The derivation of the 

adaptive scheme is presented in Section 5, where the global stability of the proposed 

scheme is also studied. 

Fig. 2. The structure of the adaptive control system. 

3. SOLUTION O F T H E EXACT MODEL MATCHING P R O B L E M 

F O R KNOWN SYSTEMS 

In this section, our purpose is to present a new technique for the solution of the exact 

model matching problem via the control strategy of Figure 1, in the case where the 

system under control has known parameters. This technique is as follows: 

System (2.1) can match system (2.2) using a periodic mult irate sampled-data 
controller of the form (2.2), iff 

Hc(z) \zl — $ + ke к = Hm(z). (3.1) 
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Expand both sides of (3.1) in series of negative powers of z to yield 

J2z-jcт [Ф-kcт]3 k = J2z~jL3 

i-i i-i 
(3.2) 

where Lj, Vî > 1 are the coefficients of the expansion of Hm(z) in formal Laurent 
series. Equating coefficients of like powers of z~l in (3.2) we get 

c т [Ф-kcт}3 lk = Lj, V j > l (з.з) 

In (3.3) it is sufficient to keep only the first 2n + l equations (see [10] for the details). 
Then, relation (3.3) reduces to 

c T [<$>-kcTy 1 k = Lj, for; = 1,2,..., 2 n + 1. 

Next, define the scalars Mj , for j = 1,2,.. .,2n + 1, as follows 

Mi = Li 
j 

Af._. = Lj+1 + Y ] L i M i _ i + i , Vj = l ,2 , . . . ,2n. - j + i 

(3-4) 

(3.5) 

г' = l 

Manipulating appropriately (3.4) on the basis of (3.5), the system of equations (3.4) 
can be transformed to the following equivalent system of equations 

cT^j~1k = Mj, for j = l , 2 , . . . , 2 n + l . 

Relation (3.6), can be written in a compact matrix form as follows 

Uk = h 

where, the matrix II and the vector h have the following forms 

(3.6) 

(3-7) 

П 

c ' 
c т Ф 

c T ф 2 n 

h = 

Mi 

м2 

м 2 n +1 

Relation (3.7), is a linear nonhomogeneous algebraic system of equations. The ma
trix n G M ( 2 n + 1 ) X n and the vector h £ B>(2n+1) are known and depend upon the 
matrices cT and $ and upon the Markov parameters Mj, for j = 1, 2 , . . . , 2n + 1, of 
the desired model, respectively. Clearly, the solution of the exact model matching 
problem (3.1) is now reduced to that of solving (3.7). With regard to the solution 
of (3..7), we remark that since the pair (exp(ATo), cT) is observable, the matrix 
II has full column rank equal to n. The above remark leads to the conclusion that 
(3.7) has a solution iff 

rank [II: h] = n. (3.8) 
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Furthermore, using the Cauley-Hamilton theorem and taking into account (3.8), we 
can easily conclude that a solution of (3.7) has the form 

(3.9) 

R = 

k = R~ lh* 

- cт - ' Åřî 
cтФ 

i h* = 
м 2 

c T ф n - l ^ . м n 

(3.10) 

Using the vector k as specified by (3.9), we can determine the modulating function 
f(t), by solving (2.3) (for a detailed analysis of this issue, see [11], [5]). 

4. SOLUTION OF THE MODEL MATCHING PROBLEM APPROPRIATE 
FOR THE ADAPTIVE CASE 

To obtain a solution of the exact model matching problem which will be more appro
priate for application in the case of systems with unknown parameters, we slightly 
modify in the sequel the control strategy of Figure 1 as it is shown in Figure 2. 
In particular, we focus our attention on the special class of the time-varying To-
periodic modulating functions f(t), which are piecewise constant over intervals of 
length T*, i.e. 

f(t) = U, vte [f,T*,(fi + i)T*), /z = o , i , . . . , N - i . 

The persistent excitation signal v(t) is defined as 

v(t) = gT(t)v, gT(t) = [g0(t),...,gN-1(t)} 

Here, g(t) is the T*-periodic vector function with elements having the form 

gq(t) = gqili, forte [}JT* , (n + 1) T * ) . ? = 0 , 1 , . . . , N - 1, /i = 0,l, 

where g9tfl is constant taking the following values 

[ 1, for \i = q 

0, for /J ^ q 

(4.1) 

9q,џ = 

N- 1. 

(4.2) 

(4.3) 

and where v is as yet unknown. We remark that the additive term v(t) = gT(t)v, 
in the input of the continuous-time system, is used only for identification purposes 
and as it will be shown later, it is selected such as it will not influence the exact 
model matching problem. Furthermore, define 

Â = exp(ÆГ*), Ъ= / exp(AЛ)òdЛ. 
Jo 

We are now able to establish the following theorems. 
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T h e o r e m 4.1. For a modulating function of the form (4.1), the resulting closed 
loop system takes on the form 

ţ[(k + l)T0} = Ф-Bfc Z(kTo) + Bfw(kTo) + B*v, 1(kTo) = cTi(kT0), k>0 

(4.4) 
where B is the n x N matrix having the form 

B ř «. s . . « ЛГ-lî 

b Ab:...:A b 

f is the N-dimensional vector of the form 

/ JV-I 

/o 

and B* is the n x N matrix having the form 

(4.5) 

B* A b:...:Ab:b 

Proof . To show that the closed-loop system can be written in the form (4.4), 
we start by discretizing system (2.1) with sampling period T0,t0 yield 

r(k + l)T0 

£[(k + 1) To] = ^(ArTo) + / exp{A[(k +l)T0- \}}bu(\) d\. (4.6) 
JkTn 

By observing that u(t) = ri(t) + gT(t)v and taking into account the structure of 
the control scheme of Figure 2, we obtain 

u(t) = f(t) e(kTQ) + gT(t)v, for t G [fiT*, (/i + 1) T*) (4.7) 

where 
e(kTo) = w(kT0) - 7(kT0) = w(kT0) - cTZ(kT0) (4.8) 

Combining relations (4.6)-(4.8), we obtain the following relationship 

([(I + 1) To] = [# - kcT} Z(kTo) + kw(kTo) + Tv (4.9) 

where . (jfe+i)T0 

T= f ° exp{A[(k + l)T0-\]}bgT(\)d\. 
JkT0 

Now, partition T as follows 

Г = { Г i : Г a : . . . : Г N ] . 
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Then, the (q-\-l)th column of the matrix T, denoted by Tq+\, for q = 0 , 1 , . . . , N— 1, 
can be expresses as 

Ф 

q+i= í ° exp [A(TQ - X)] bgq(X) dЛ, foг q = 0 , 1 , . . . , N - 1. (4.10) 
Jo '0 

Introducing (4.2) in (4.10), yields 

tv-i ,(/.+i)T* 
r ? + ! = J2 / exp[A(T0 - A)] bqqili dA, for q = 0 , 1 , . . . , N - 1. (4.11) 

/.=(> J»T* 

Relation (4.11) may further be written as 

N-l „T* 

r í + 1 = V ) flf?i/x exp {A(N - 1 - //) T*} / exp [A(T* - A)] 6, 
, , - n JO ^ = o 

лt 

By making use of relation (4.3), we arrive at the following relationship 

r,+1 = /-'-'i 
Clearly T = B*. Application of the above algorithm to the first two terms of (4.9) 
gives Bf = k (see [1] for details). This completes the proof of the theorem. • 

Theorem 4.2. If N is chosen such that N > n, the matrix B has full row rank, 
for almost every To. 

P r o o f . The proof of the theorem is given in the Appendix. • 

Thus far, we have established that the exact model matching controller vector k 
is related to the vector / via relation k = Bf. It remains to determine / . To this 
end, let S be the following n x n matrix 

b.Áb. ...'.A1 lb (4.12) 

On the basis of the results presented in the Appendix, the matrix S is nonsingular 
for almost every To. Let also E be the N x N nonsingular permutation matrix with 
the property E~ = E and having the form 

E = [E\ : E2] 

where 

-Si = [Si '.£2 '• • • • .£».], -5^2 = [€n + l '-£n + 2 '• • • • • ^N} 
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where in general Sj £ R is the column vector whose elements are zeros except to a 
unity appearing in the jth position. Also, let 

B = BE • 1 _ S.Q 

where the matrix Q has the form 

Q 
« n s • « n + 1« 

A 6:A 6 
. Л f - l -

A ò 

Also let A be the N x N nonsingular permutation matrix with the property A - 1 

A T and having the form 

л = [ л 1 : л 2 ; л з ] т 

where 

A i = [SN-n + l '•£N-n + 2 '• • • • '-£n]i A 2 = £ y v _ n , A 3 = [Bl . £2 . . • . . ^ J V - n - l j . 

Furthermore, let 

Š * _ J B * A - 1 _ 

whe 

« n —1 - • - n - 2 . » 

A Ò:A Ь Q = 

« * • ~ n - • « * 

5 :A ò :Q 

« N-1- • - AT-2- • • - n + 1 -

A fc A 6 : . . . : A 6 (4.13) 

Using the above definitions, one may determine f by inspection, to have the form 

f = Eт 

- І L * 5 Д _ 1 fe 

0 

(4.14) 

It only remains to determine the appropriate vector v which does not influence 
the exact model matching problem. In other words v E Ker B*, or B*v = 0. An 
obvious selection of such v obtained also by inspection is the following 

v = Aт 

~_ * — 1 " П ; -| 

S A b 

0 ( Л t - n - l ) x l J 

(4.15) 

It is noted that the N-dimensional vector v, eventhough does not affect the discrete 
model matching problem, it provides persistent excitation useful for the identification 
of the system, as it will be shown in the following section. 

Clearly, the modulating function f(t) in the configuration dipicted in Figure 2 
has the form 

f(t) = eN.J, vte[/*r\0- + i ) r ) (4.16) 
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for fj, = 0 , 1 , . . . , N — 1, where e^-y. is the N-dimensional row vector defined as 
ejv-/. = eN-u- Note that , the above periodic function is largely affected upon 
the multirate mechanism, while the modulating function f(t) of Figure 1, is not. 
Furthermore, the introduction of the excitation signal v(t) in the control loop, greatly 
facilitates the estimation of the plant parameters in the case of unknown systems. 
For these reasons, the control strategy of Figure 2 is more appropriate than the 
control strategy of Figure 1 for the development of the indirect adaptive control 
scheme that follows. 

5. CONTROL S T R A T E G Y F O R T H E ADAPTIVE CASE 

The control scheme presented above has a corresponding scheme in the case where 
the system is unknown. For the case of unknown systems, the control strategy relies 
on the computation of the vector / and the vector v from suitable estimates of the 
parameters of the plant with updating taking place every kTo, k > 0, and results to 
a globally stable closed loop system whose output assymptotically follows the output 
of the desired model. 

5 .1 . I d e n t i f i c a t i o n of t h e s y s t e m 

System (2.1), when descretized with sampling period r = T * / ( 2 n + 1), takes on the 
form 

ţ[(v + l ) r ] = Фтţ(vт) + bтu(vт), y(vт) = cтÇ(vт), v = 0 , 1 . 

where 

ф т = e x p ( A r ) , b7 e x p [ A ( r - Л ) ] ò d Л . 

(5.1) 

(5.2) 

Iterating equation (5.1), 2 n + 1 times and observing that U(VT) is constant for VT 6 

[mT*, (m + l ) T * ) , m = 0 , l , . . . , yields 

£ [ ( m + 1)T*] = A£(mT*) + bu(mT*), y(mT*) = cT Z(mT*), m = 0 , l , . . . 

where 
2n 

A = $ T " + 1 and 6 = ] T $ T 6 7 

P-0 

We also note that matr ix <£ is given by 

Лt 
Ф = Â = ф ( 2 r г + 1 ) J V , 

(5.3) 

(5.4) 

From the above analysis, it is clear that the matrices $ , b and A (which are the 

only matrices involved in computing the vectors k and v), can be computed on the 

basis of the pair ( $ T , bT). Moreover, fixing the coordinate system such that 

Фr = 

0 0 . . . 0 -an 

1 0 . . . 0 - a n _ i 

0 1 . . . 0 - a n _ 2 

0 0 1 —ai 

' ßn 

ßn-1 

, ь = ßn-2 

. Â 

c т = [0 0 . . . 0 1 ] (5.5) 
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only ai and fc, i = l,2,...,n are considered as unknown parameters. Note that 
relations (5.1) and (5.5), are equivalent to the following difference equation 

n n 

y(vr) + yj otjy(vT -fir) = y] /3JU(VT - fir), v = 0,l,... (5.6) 
P = I P=i 

Relation (5.6), can now be used for the identification of the parameters of the un
known system. To this end, relation (5.6) can be written in the following linear 
regression form 

y(vr) = <j) (VT) 9 

where 

and 

Define 

(J)(VT) = [—y(vT), . . ., —y(uT — TIT), U(VT — r),. . . , U(VT — nr)] 

9 = [ « i , . . . , a n , A , . . . , A . ] -

Y(kTo) = [y(kTo),y(kT0-T),...,y[(k-l)T0]] 

Z(kT0) = [4>(kT0),<l>(kTo-T),...,<l>[(k-l)To]] 

and 

(5.7) 

9(kT0) = [ai(kTo),..., an(kTQ), 0i(kTo),..., (3n(kT0)]. 

Clearly, we have the relation 

Y(kTo) = ZT(kTo)9(kT0). 

We now choose the recursive algorithm for the estimation of 9k as 

9(kT0+T0) = 9(kTo)-[aI-rZ(kTo)ZT(kT0)y
1 

Z(kTo) \zT(kT0) 9(kT0) - Y(kT0] 

where a > 0 and 9(0) is given. 

5.2. Adaptive controller synthesis algorithm 

On the basis of the estimated parameter vector 9(kT0), obtained from (5.7), as 
well as on the basis of the relations (5.3)-(5.5), one can take the estimates, which 

are needed for the computation of the matrices cT (9(kTo)j, A = A (9(kTo)j, 

$ = $ (§(kTo)j, b = b (§(kT0)), which are involved in the algorithms presented 

in the previous sections. Moreover, since the matrix II can be constructed on the 

basis of the matrices $ (9(kTo)j and c T (9(kT0)j, then provided that the triplet 
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(A (0(kTo)) , b (0(kTo)) , cT (§(kTo))) is controllable and observable and the re

lation (3.8) holds for any possible value of 9(kTo) (whereas no update is taken 

otherwise), we can obtain the following results sought: 

f = f (§(kT0)) , v = v (§(kToj) (5.8) 

Overall, the procedure for the synthesis of a multirate periodic model reference 
adaptive controller of the form (4.1), consists on the main steps given bellow: 

Step 1. Choose the sampling period r such that 
r = To/(2n + l ) N = T * / ( 2 n + l ) . 

Step 2. Update the estimates using (5.7). 

Step 3. Use (5.5) to compute the matrices $r,bT and c T . 

Step 4. Use (5.3) and (5.4) to compute the matrices A, b and <£. 

Step 5. Conpute the vector k using relation (3.9). 

Step 6. Compute the matrices 5" and S using relations (4.12) and (4.13). 

Step 7. Compute the vectors / and v on the basis of relations (4.14) and (4.15). 
Step 8. Implement the periodic multirate modulating function f(t) using (4.16). 

5 .3 . Stabi l i ty analys i s o f t h e adapt ive contro l s c h e m e 

With regard to the stability of the proposed adaptive scheme, we establish the 
following fundamental theorem. 

T h e o r e m 5 . 1 . The regressor sequence 4>(VT) is persistently exciting, i.e. there is 
a 8 > 0, such that 

(2n + l)iV 

Z(kTo)ZT (kTo) = J2 <f>(kT0-vT)<j)T(kT0-vT)>6I. (5.9) 

P r o o f . Let u(t) = gT(t)v and observe that , introducing the pseudovariable 
((VT), equation (5.6) can be decomposed as follows 

n n 

((VT) + / , c*i((vT — IT) = U(VT), y(vr) = j>{3i((vT — IT), V=1,2,... (5.10) 
1=1 i=l 

Defining the following vectors 

<J)(VT) = [U(VT), . . . , U(VT — n r ) , y(vT — T), . . . , y(vT — nr ) ] 

((VT) = [((vT),...,((vT-2nT)]T 

it is easy to see that 

<j>(vr) = P((VT) (5.11) 
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where P is a Sylvester-matrix which is nonsingular due to Assumption 2.2, and has 
the following form 

P = 

1 ďi ď2 í*3 

0 1 « i a2 

0 0 0 0 
oo A /?2 
0 0 0 /?i 

0 0 0 0 

. o „ 0 0 0 . . . 0 

. a n _ i o n 0 0 . . . 0 

0 1 a\ a2 •.. a7 

• Pn-i /?„ 0 0 . . . 0 
. /? n _ 2 /?„_! 0 - 0 . . . 0 

0 øi A Ä ... Äi 

Observe also that the vectors 0 (v r ) and 0(t;r) are inter-related upon the following 
relation 

<J)(VT) = T$(VT) (5.12) 

where T _ ]^2«x(2ri+i) i s the full rank matr ix of the form 

T = 

0 0 0 . . 0 - 1 0 . . 0 
0 0 0 . . 0 0 - 1 . . 0 

0 0 0 . . 0 0 0 . . - 1 
0 1 0 . . 0 0 0 . . 0 
0 0 1 . . 0 0 0 . . 0 

0 0 0 . . . 1 0 0 0 

(5.13) 

It is now obvious tha t excitation of ((VT) implies excitation of <£(VT). Therefore, we 

next investigate excitation of C(^ r)- To this end, observe that from relation (5.10), 

we can write 

j T ((VT) = U(VT) 

where j T E M 2 n + 1 is the following vector 

7 T = [1,a.i.a.2, • . . , o n , 0 , . . . , 0 ] . 

Now, let X(VT) G IR 2 n x 2 n be the following symmetric matr ix 

((VT) : ((VT — T) :. . .: ((VT — 2n r ) X(VT) = 

and U(VT) £ M2n be the following vector 

U(VT) = [U(VT), U(VT — T), ..., u(vr — 2 n r ) ] T . 

Combining relations (5 .13)-(5 .15) , we obtain 

7 X(VT) = u (VT). 

(5.14) 

(5.15) 
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Therefore, for every column vector n, with norm equal to unity, we have 

\n U(VT)\ = n X (VT)J = \j X(vT)n\ < \\j\\2 X (vT)n 

Summing over the interval [kTo + (2n + 1) r, kTo + (4n + 1) r] and observing that 

[u(kTo + (In + 1) T),ii(kTo + (In + 2) r ) , . . . , u(kT0 + (4n + 1) r)] 

1 1 . . . 1 
0 1 

0 0 

= Û(kTo) 

obtaii we oDtam 
4n + l 2 4n + l 

JГ | n т û ( В Д + г;r)|2 = | | í / ( Щ ) n | | < | | T | | 2 £ \\xт(vт)n 
v=2n+l t; = 2n + l 

4n + l 

< | | T | | 2 ( 2 n + l ) ^ [C(кT0 + vт)n 
v = l 

Therefore 

4n + l 

^ [ C T ( ^ o + VT) n] 2 > ( | | 7 | | 2 (2n + l ) ) " 1 \\ů(kT0) n 

Since the smallest singular value of U(kTo) is greater than a constant, there is a 
constant 6 > 0, such that 

4n + l 

J2 C(kTo + VT) (T(kT0 + VT)>8 
v = l 

Therefore, the vector ((VT) is persistently exciting. According to (5.11) and (5.12), 
the regressor sequence <J)(VT), is also persistenly exciting. This completes the proof 
of the theorem. • 

Since the regressor sequence is persistently exciting, the difference 9(kTo) — 9, 
where 9 is the true value of the parameters, converges to zero. This guarantees con
vergence of the controller parameter estimates to their true values, uniform bound-
edness of £(kTo), y(kTo), V£ = 0 , 1 , . . . and y(t) and assymptotic discrete model 
following. Moreover, the adaptive scheme ensures exponential convergence of the 
estimated parameters, since 

9(kT0+T0)-9= [l + a~lZ(kTo)ZT(kTo)\ (§(kT0) - &) (5.16) 

Relation (5.16) together with (5.9), ensures that 9(kT0) —* 9 exponentially as k —y oo. 
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6. CONCLUSIONS 

A new periodic multirate sampled-da ta model reference adaptive controller for 
continuous-time linear systems has been exhibited in the present paper. The pro
posed control strategy has several advantages over known indirect model reference 
adaptive control techniques. The main of them are: 

(a) It is readily applicable to nonstably invertible plants and to reference models 
having arbitrary poles and zeros and relative degree. This is due to the fact that 
the approach used to solve the problem does not rely on pole-zero cancellations. 

(b) Following the proposed technique a gain controller is essentially needed to 
be designed as compared to dynamic compensators or state observers needed by 
known indirect adaptive control technique. Consequently, no exogenous dynamics 
are introduced in the control loop by our technique, whereas in many known tech
niques the dynamics introduced are of high order. This improves the computational 
aspect of the problem, since the proposed technique does not require many on-line 
computations and its practical implementation requires computer memory only for 
storing the modulating function / ( ! ) over one period of time. 

(c) It reduces the solution of the problem to that of solving a simple nonhomoge-
neous algebraic system of equations, rather than polynomial Diophantine equations 
as is needed in s tandard indirect adaptive techniques. 

^d) Finally, persistency of excitation of the plant under control and hence pa
rameter convergence, is provided, without making any assumption on the richeness 
of the reference signals (except boundedness), as compared to known indirect model 
reference adaptive control schemes. 

The present paper gives some new insights to the model reference adaptive con
trol problem of linear systems. The proposed technique can be extended to solve 
other important problems in the area of adaptive control, such as adaptive pole 
placement problem, adaptive LQG regulation, etc., and for other type of systems, 
such as time-varying periodic and non-periodic linear multivariable systems. Adap
tive control schemes based on alternative parameter-est imation algorithms or on 
alternate multirate controllers are currently under investigation. 

APPENDIX: PROOF OF THEOREM 4.2 

In order to prove Theorem 4.2, it suffices to prove that the matr ix S, given by (4.12), 
is nonsingular for almost every To. To this end, define 

TT(T*) = d e t S . 

Since 7r(T*) is an analytic function of T*, in order to prove that 7r(T*) ^ 0, it suffices 
to prove that 7r^*!(0) ^ 0 holds true for some positive integer k. To this end we work 
as follows: 

First, observe that , by the formula about the differential of a determinant, we 
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obtain 

k\ 
- ( t ) ( П = £ ^ d e t 

(A2) . 
Ь ( Л , ) : ( А Ь ) ^ : . . . ! ( А " - 1 6 ) 

(*•)' 
(A.l) 

where the summation is made for 

Az- > 0, 'sjTxi = k. 

Since 

(*) 

ť = i 

(l-Ч)1 
[ 0 for k = 0 

T*=O | { ^ - ( i - l J - j A * - ^ f o r f c > l 
(A.2) 

we obtain 

jfc! 

П > ! <=' 

Д i - i i ! / i A 2 - I « : A Л l - 1 b : A Л 2 - i ò : . . . : A л " - 1 Ь X n - l ; 

ť = l 

where the summation is made for 
n 

A, > 1, Y,*i = k-
ť = i 

We next focus our attention to the koth derivative where 
n 

' k0 = Y^J = n(n + l)/2. 
i = i 

The determinant in (A.3) does not reduce to zero if the Aj's satisfy 

A; -* Xj (i ^ j) 

and from (A.4) and (A.5) it must be hold 
n 

^VA; = n(n+ l)/2. 
i = l 

From (A.6) and (A.7) we obtain the following set relation 

{Ai,Ai,...,A„} = {1,2, . . . .nh 

(A.З) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

This means that, for k = ko = n(n +1)/2, the summation in (A.3) needs to be made 
for A;, i = 1,2,... ,n, given by (A.8). Next, denote by a the permutation 

1 2 

ч «т(l) <г(2) ... o-(n) 
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and let A; = a(i). Let also § be the symmetric group of permutations a. Then, the 
summation in (A.3), for k = k0 = n(n + l)/2, can be written as 

*{ko)(0) = ^ T T * 1 1 — i R i ^ - a - l ) ^ } 

(A.9) ІSSІ 

det A°W-1ЬÌA°W-1Ы..::A*Ы-1Ь 

Relation (A.9) can be rewritten as 

*o-
ҡ(ko){0) _ J£L \ £Sgn(<г) J J {i°(i) - (i - 1)* (<)} d et 

п ,-! WЄ* 

Observe now that 

where 

n 

J2 sgn(a) Yl {ia(i) - (i ~ l ) a ( 0 } = det 0 
(T6Í 

= 

issl 

l 1 - O 1 

2 1 - ! 1 
l n - 0 n 

2" - l n 

n 1 - ( n - l ) 1 . . . n n - ( n - l ) n 

Introducing (A. 11) in (A. 10), yields 

7r(fc°)(0)= -ћ l-det det 

П 
»ssl 

b: AЬ.. : An~lЬ 

Observe also that 

det = det 

l 1 l 2 

21 22 

,1 „2 

г 
2n 

n n . . . n 

Introducing (A.14) in (A.13), we obtain 

n — 1; b:Ab..:An-íb 

n\ H (?-p) = E[ií-
! < / ? < ? < n i-l 

ҡ^k°Ҳo) = k0\ det Ъ.AЪ...:AП-1Ъ 

Since system (2.1) is assumed to be controllable we finally obtain that 

TT(*O>(0) ± 0. 

This completes the proof of the theorem. 

(A.Ю) 

(A.П) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

D 

(Received October 30, 1995.) 
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