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GLOBAL CONTROL OF FLEXURAL 
AND TORSIONAL DEFORMATIONS 
OF ONE-LINK MECHANICAL SYSTEM 

M I C H E L C O T S A F T I S 

Usual way in controlling infinite dimensional dynamical systems such as deformable 
mechanical one is to project onto a finite dimensional manifold (Ai) and apply previous, 
mainly PD-type, controllers, plus conditions for non-spillover. This approximate method 
rests upon representing needed system information for controller onto (Nf), with associated 
difficulties unsolvable in case of mixed flexural and torsional origin. To avoid them, another 
procedure is proposed here, which uses directly measurable and collocated bending moment 
at link origin representing global force due to deformations onto link rigid motion, into the 
feedback loop for controlling deformations by stiffening selectively the system to all these 
mcJes. The corresponding global control accounts for all deformation modes, flexural and 
torsional, so no projection is needed as usual, and is easily implementable and efficient. 

1. INTRODUCTION 

1.1 — Improvement of mechanical systems performances is now hitting a break
point where internal material structure cannot be neglected, due to excitation of 
deformation modes impairing their behavior [33]. "Simple" passive approach may 
be first proposed by upgrading material qualities [17], but this way is expensive and 
not always adapted [6]. Next methods of control are "active" [3], and use adequate 
power dumping into the system. But to be applicable, they correspondingly require 
accurate enough models for faithful system representation [24, 32]. 

Interactions of both rigid body and deformations dynamics result in intriquate 
highly nonlinear system of ODE and PDE [5,7,16,22,30,36]. Usual a t tempts to 
simplify total system reduce PDE's to ODE's by projection methods to select a 
finite number of modes [2, 14, 18, 25]. But even if mode selection can be justified 
by adapted convergence results, a difficulty still remains in adequate observation of 
these modes for reinjection into system feedback loops, and also because power flow 
extends over a frequency band larger than controlled actuator 's one. 

1.2 — More fundamentally, the system exhibits specific structure of "complex 
system" [10] with torques applied to generalized (rigid) variables, in other words, 
without direct action on deformation modes. So a mismatch between internal natural 
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power cascade and outer power cascade imposed by added feedback loops is always 

possible, see Figure 1, especially when the two power flows are of similar amplitude. 

Arrow 1 is the source effect from rigid onto deformation modes, and arrow 2 is the 

drift effect from feedback interaction of deformation modes onto rigid dynamics. It 

is important for avoiding spillover effects to account for both effects, as all power 

inside the system circulates along this exchange structure. 
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Fig. 1. Complex system structure of deformable N-link mechanical system. 

To avoid this difficulty, the way to deal with such system is to exactly project 

complete system dynamics onto rigid dynamics driving system behavior [11], which 

gives a modified rigid "core dynamics". The operation can be explicitely analyzed 

for rigid displacement dynamics characteristic t ime Tq and deformation dynamics 

characteristic time r^ such that r^ ~ eTq, and deformation amplitudes small com

pared 

to displacement amplitudes, i.e. AP ~ i]\OP\, for any point P of the body by 

asymptotic expansion in e small enough compared to 1 [4, 27]. 

1.3 — This approach leads to another type of control, recognizing that , under 

deformation effects, exact trajectory knowledge is no longer accessible as long as 

trajectories become more and more complicated, and at the same time less and 
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less information is related to a single trajectory as it cannot be distinguished from 
neighbouring ones. In this case only global structure parameters, which are now 
the natural invariants instead of trajectory initial values as before, have a physical 
meaning. So rather than the precise actual trajectory, the natural setting becomes 
a class of trajectories belonging to a well defined function space, and control now 
expresses this belonging by a fixed point property in this space, hence the name 
"functional" control given to the new control. 

The simple, robust and very global "functional" control is not as directive as usual 
PD tracking control, because acting only on rigid variables, and provides asymptotic, 
but not always exponential, stability. It is however interesting to look for this global 
control. General results [12] will be illustrated here by application on the simple 
example of a one-link mechanical 

system with flexion and torsion deformations, the equations of which are given 
in next paragraph within Euler-Bernoulli approximation. Comparison will be 

next made between classical control approach developed in third paragraph and 
present functional control discussed in the fourth paragraph. 

2. DYNAMICAL EQUATIONS OF ONE-LINK DEFORMABLE SYSTEM 

Dynamical equations follow from application of elementary Newton's lav/, but La
grange formalism [15, 34] simply gives complete equations of one-link deformable 
mechanical system in the following form 
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with 9, 6m, u(t,x), j(t,x) respectively the articular and actuator variables, and the 
deformation, flexion and torsion, variables, (//, lt) the coordinates of the tip mass m 
with respect to the end of the link, see Figure 2, and the various other coefficients 
characterizing the beam as usual within Euler-Bernoulli approximation [8]. Note 
immediatly that on actuator eqn (7), are acting both applied input torque r and 
bending moment Ma = EI(d2u(t,0)/dx2), which is the only term through which 
deformations are seen by rigid part of the system. 
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Boundary Conditions are given by eqns (3,4,5) which are simply expressing the 
equality between generalized force vector 

' - <-««'^).é(«^).-«-(^ 
and inertial force produced by the motion of mass m in absolute frame IR(o) derived 
from kinetic potential 

Fig. 2. Mass representation and associated frame. 
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3. CLASSICAL CONTROL OF COMPLIANT DEFORMABLE ONE LINK 
SYSTEM 

3.1 — It is first convenient to restate eqns (1,2,3,4,5) into functional evolution 
equation in normalized form. Consider Hilbert space Ji = £2(0,1) X £2(0,1) x IR3 
with inner product 

[(«i,«2, u3, u4, u5)
T,(vi,v2, v3, v4, v5)]n 

, 1 5 

l [ifi(x)i>i(x) + u2(x) v2(x)] dx + y ^ UjVj 
J° j=3 

(10) 

Define ui(t,x) = u(t,x), u2(t,x) = j(t,x), u3(t) = u(t, 1), u4(t) = du(t,L)/dx 
u5(t) = f(t, 1) and subspace V C 7i by 
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wiin 7tm(0,1) the Sobolev space of order m [1] and <A = EI/pAL4, u>2 = GJ/pK2L2 

the two natural flexion and torsion system frequencies. In V inner product is 
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J j =3 

Define operator n by 

Uu = col(ui,u2,p,(u3 + XfU4 + Xtu5),fiXf(u3 + XfU4 + Xtu5) + JfU4, 

fiXt(u3 +XfU4 +Xtu5)) (13) 

of the form n = diag(l, 1, M) with symmetric positive definite 

M = 

p, pXf pXt 

pXf Jf + pX2 pXfXt 

pXt pXf Jt + pX\ 
(14) 

with p = m/Mo, Xf = If /L, Xt — U/L, and Mo the mass of the link. 

3.2 — Because n is positive definite, one can construct from H another Hilbert 
space 7i* with inner product 

, 1 5 

[u,v]H* = [Uu,v]H = / [ux(x)vx(x) + u2(x)v2(x) + SjT/UjMvj (15) 
J° j=3 
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and same topology (any ball of each space can be embedded into balls of the other 
one). 

Now define the operator K and its domain by 
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with 

D(K) = {u\ u € V, ^ ^ € H2(0„ 1), 9-^- G 7ťi(0,1) \ . (17) 

Let the 5-vector 0 with remaining terms in 9,u(t,x),u(t,L) from eqn (1). Then 
finally eqns (1,2,3,4,5) take the simple operational differential form 

*± + n- 1 ^^ + n-1 K« = n^e . (is) 
d/2 dt y ' 

in Hilbert space 7i* which can be studied in this framework [31]. So initial sys
tem transforms into "canonical" normalized form above with "enlarged" vector u 
containing all informations on it. 

3.3 — Most properties of eqn (18) are now relying upon operator $ = n _ 1 A ' . 
Now selfadjointness and positive definiteness are physically related to nonexistence 
of potential instability occuring in deformation system from direct calculation of 
inner product in H* with previous definitions. Though M is manifestly symmetric, 
independently of K characterizing stiffness (or compliance) of deformable segment 
bearing linkage, [Fu, V]H* is not generally coercive, unless K = oo (infinitely stiff 
bearing), because of the non passivity of compliant system. 

However [Fu, V]H* is extendable by addition of a term k(u, v) to a coercive form, 
allowing analysis of existence and uniqueness of solution of eqn (18) in weak sense 
[21]. But further conditions are required for selfadjointness of M [13]. In this case, 
simple eigenfunction study can be developed for M in H from eqn (18) with u given 
by a sum of sin, cos, cosh and sinh functions, and using boundary conditions to 
eliminate the coefficients. Then as for classical case, eqn (18) is finally obtained in 
projected form, out of which control analysis can be developed and its coefficients 
be designed [28]. 

So in principle the control problem reduces to a classical PD-type form within 
the context of the defined function spaces. However, it is important to realize that 
there is a defect in the method, in that system output is given by bending moment 
Ma, which is directly measurable by strain gage cemented at link origin for instance, 
whereas here this quantity has to be projected on base functions, and necessarily 
only a finite number of them is kept. When eigenvalues decay fast enough with their 
rank, complete initial system may be expected to "almost" reduce to the retained 
finite dimensional subset. Discussion of this "almost" characterizes equations which 
are homeomorphic to finite dimensional systems. 
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For regular enough boundaries, nonlinearity in system equations can be shown 
to be controlled by a finite dimensional control constructed on this subset, by using 
extension of Popov's theorem [26, 20, 9]. For linear system, the control is obtainable 
by Hoo optimization method [23], but it is easily understandable that the solution 
along this approach is always suffering from antagonistic requirements of both re
stricting reasonnably the base subset and forcing the system to exhibit a preassigned 
time dependent behavior. 

4. GLOBAL CONTROL OF DEFORMABLE COMPLIANT ONE LINK 
SYSTEM 

4.1 — Though appealing, the previous result is nevertheless impaired by the 
difficulty of constructing actual control law requiring higher order, generally unac-
cessible deformation modes. On the other hand, unless specifically required, there 
is no real need to determine deformation and error parameters as long as system 
behavior follows prescribed trajectory. More importantly, observable bending mo
ment is not directly used, but has to be processed in classical PD control approach 
where all knowledge about system dynamics is going through mode representation, 
of course poorly suited for this situation. 

So one should step back from this approach, and take more advantage of the 
very specific structure of complete (rigid + deformable) system, in order to follow 
a more global approach where the objective of trajectory behavior control is more 
directly reached without diverting, as above, into (side) problem of deformations 
determination and associated representation. It is already clear from eqn (8) that 
deformation effects summarize to simple mass motion located off link tip at end 
of vector (//,/«), suggesting that few global informations are really necessary for 
controlling the svstem, i.e. that its motion can be restrained to smaller subspace. 

To show that system motion can be constrained, consider simple linearized form 
of eqns (6,7) 

Ja~w~ + F a ^ r + K(Ad ~ Mm) ~Ma + 6a^ 
J m ^ ^ + Fm^- + r2K(A6m -A9) = U (19) 

rejecting in the term 6a(t) the effect of external perturbations and 
of nonlinear (small) terms, with A6 = 9 — 9d(t), A9m = 9m — 9d(t), and define 

around desired trajectory 9(t) = 9d(t) the discontinuity surface S = 0 [35] by 

S = b1^- + b2^^- + b3A9 + bAA9m+b5 l A9dt 
dt dt f 

Jo •ť pt 

+ b6 I A9mdt + b7 / Madt. (20) 

To show that system trajectory goes to S = 0 and stays on it, let Lyapunov function " 
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V = S2/2, and take its derivative along system trajectory. One gets 

- ^ = S^J-'U + (b1Ja~
1 +b7)Ma + b1Ja~

16a(t) (21) 

+ ei — + c2 —^ + c3A6 + c4A6m 1 (22) 
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ci = 6 5 + b2J~1r2K- 61 J-1 K, c2 = b3-b1J-1Ba, c3 = b4 - b2J~1Bm 

c4 = 66 - b2J~1r2K + b1J~1K. 

Defining the control 

U = k1—- + k2—-^- + k3A9 + k4A9m + kmMa +DsgnS (23) 
di dt 

with D > ||^a(0lk«> + Vi V > 0 small, coefficients kj can be determined so that 

V'(t) < b2J-lr,\S\ < 0 (24) 

showing the property that system trajectory is forced to remain on S = 0 once 
reached with the only assumption of boundedness of perturbation term. 

4.2 — Now with previous result expressing the layered structure of system motion 
organized along the "sheets" 5 = 0, asymptotic tracking stability for initial system 
will follow. Considering weak enough compliance case for simplicity, eqns (6,7) 
reduce to only one equation by addition with 9m ~ 9 = q, and their shift, because 
K is finite very large but not strictly infinite, can be included in the bounded term 
6a(t). 

Consider now Lyapunov function 
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manifestly positive definite for positive pj. 
Taking into account boundary conditions from eqns (3,4,5), its derivative along 

solution of eqn (18) can, after some algebraic manipulations, be cast in the form 

dW dAq , 

-dT = -dTPlJ< 
u + мa + бa-вt

 dAq 

dt 
+ p2Aq + p3Ma (26) 

with Qa = 0 and Ma = u>2Ad2u1/dx2(Qi)). It is first possible to choose gain coeffi
cients r*j in extended PD control form 

U = r1Aq + r2—- + r3Ma + r46a (27) 
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so that dW/dt is negative definite. But using control expression which makes V = 0, 
i.e. ;S" = 0 in eqn (21), one even gets 

W<_p(dAq\ 
dt V dt J <-p{*w) ™ 

with P positive definite. The invariant set of dWj/dt is thus dAq/dt ~ 0, at closed 
loop system equilibrium all other higher order derivatives are also 0. On the other 
hand, from eqns (1,2) second order space derivatives of d2y(x,t)/dx2 and f(x,t) 
are 0 at equilibrium, implying when solving for x-dependence and accounting for 
boundary conditions that d2u(0,t)/dx2 = 0 as well, and, from actuator and control 
eqns (6,7), it follows in turn that Aq = 0 and U = 0. Hence the largest invariant set 
of dWj/dt is the null solution of the system. So with extended PD type control in 
the form of eqn (26), the system asymptotically tracks a prescribed trajectory with 
at the same time asymptotic decay of deformations because here u(x,t) and u'(x,t) 
are both going to 0 by LaSalle theorem [19]. The result is not modified by existence 
of external perturbations, and exact knowledge of system parameters is not even 
required because of the flexibility of possible choice of gain parameters. 

So the present result is a robust one. On the other hand, because Ma is directly 
measurable by strain gages at link origin, control implementation, of global nature, is 
evidently much simpler than classical PD one requiring deformation modes analysis, 
projection onto these modes, and signals reconstitution through observer. This is 
confirmed by elementary analysis of one-link flexible system with steplike input, see 
Figure 3. 

5. DISCUSSION AND CONCLUSION 

Complicated gereral N-link mechanical systems, with appropriate generalized co
ordinates, can be cast in the form of conventional operational differential equation 
in adapted functional space, on which classical PD control analysis directly applies. 
But this approach relies upon state space representation requiring development of 
modes analysis for projection of observables on representation frame. As usual, this 
implies solving approximation problem, with consequences on power flow accuracy 
of resulting model. More fundamentally, system observables are forcedly represent
ed by their projection and are painfully reconstituted afterward by theory, generally 
limited to linear case. 

From observation that bending force acting onto each link is directly measurable, 
another approach is proposed here, which uses this information as a whole without 
any representation filtering. A motivation is in the remark that system dynamics are 
not completely free, but organized in layered structure with well defined represen
tation. Then explicit conditions for asymptotic trajectory tracking on this layered 
surface are expressed in terms of only addition of bending force acting on the link 
on top of classical rigid variables PD terms, giving an extended hybrid PDF form. 

Though algebraically involved to obtained, the meaning of actual result is ele
mentarily understood by noting that for any system, the variation of its energy is 
equal to the work done by applied exterior forces. This is exactly observed here, 
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where for a link, on top of actuators and exterior applied forces, deformations are 

acting only through bending moment at link origin. So only these intrinsic elements 

are really needed for system dynamics control, thus called a "global" control. On the 

other hand, the role of the bending moment part added to the classical P D feedback 

is, similar to usual force feedback, to physically change inertia-damping-stiffness pa

rameters in the system for this exterior force, and so, to selectively change system 

response to these effects. 

0 Л 

ţ Г = Ыft 

Fig. 3. Typical response of a flexible link with tip mass to step input. 

It is thus important to properly design actuators response to deformation frequen

cies, with an advantage to micro-Macro structure [29] splitting apart in a natural 

way large amplitude-low frequency and small amplitude-high frequency responses re

quired here. Finally, note that the present result is easily generalizable to nonlinear 

dynamical case as well, because it is never needed more than lagrangian structure 

of the equations and their associated "natural" boundary conditions [12]. Present 

results may even be improved by using additional asymptotic robust controller to 

drive faster error to zero. 

(Received February 14, 1996. 
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