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AN EXTENSION OF T H E ROOT PERTURBATION 
M - D I M E N S I O N A L POLYNOMIAL FACTORIZATION 
M E T H O D 

N I K O S E . M A S T O R A K I S 

In this paper, an extension of an m-D (multidimensional or multivariable) polynomial 
factorization method is investigated. The method is the "root perturbation method" which 
is recently proposed by the author. According to this method, one sets to zero all complex 
variables, except one variable, and factorizes the 1-D polynomial. Furthermore, the values 
of these variables vary properly. In this way, one can "built" the m-dimensional polynomial 
in its factorized form. However, in the "root perturbation method", an assumption is that 
the 1-D polynomial must have discrete roots. In this paper, a solution is given in the 
case that the 1-D polynomial may have multiple roots. This is achieved by a proper 
transformation of the complex variables. The present method is summarized by way of 
algorithm. A numerical (3-D) example is presented. 

1. INTRODUCTION 

Multidimensional (m-D) Systems and Multidimensional Signal Processing is an im
portant new discipline in mathematics (systems theory) and in computer science. 
m-D systems theory are receiving continuous attention in recent years by many 
mathematicians, while many computer engineers and practitioners are usually in
terested in the relevant applications like remote sensing, digital filtering, comput
erized tomography, sonar devices, artificial vision etc, [9], [23]. A serious difficulty 
in the development of the m-D systems is the non-factorizability of the m-D poly
nomials, where by the term factorizability it is meant the possibility that a given 
m-D polynomial can be split into factors of other multidimensional polynomials 
of appropriate dimensions. Polynomial theory and the relevant algorithms is in 
general an important modern topic in mathematics, (algebra and system theory), 
electrical engineering (control systems, circuits and communication) and computer 
science (algorithms, multidimensional signal processing, information theory, codifi
cation techniques) [8], [10]. 

The study of m-D polynomials and particularly their factorization into simpler 
factors is of fundamental importance, since such polynomials appear to be charac
teristic polynomials of m-D transfer functions, and the m-D stability criteria can 
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be applied more easily to these factors. On the other hand, the transfer function 
factorization that is numerator and denominator factorization enable us a cascade 
realization of the system. The m-D polynomial factorization is also a question of 
a great importance in the study of distributed parameter systems (DPS) which are 
described by Partial Differential Equations, since each Partial Differential Equation 
corresponds one-to-one and onto an m-D polynomial. Finally, there is an obvious 
importance of the m-D factorization subject from a pure mathematical point of view. 

So far, several different meaning of the term "m-D polynomial factorization" have 
been discussed [1] - [7], [20], [21], [24]. In [22], the factorization in factors of one vari
able i. e. f(z\,..., zm) = fi(zi) • • • fm(zm), or in factors with no common variables 
i.e. f(zi,..., zm) = fi(zi) • • • fk(zk) where z\,... ,z,k are mutually disjoint groups of 
independent variables has been presented. In [11], [14], the factorization is succeeded 
by considering the given polynomial as 1-D polynomial with respect to Zj and apply
ing the well known formulas from 1-D algebra. In [11], [15], the factorization of the 
state-space model is investigated. In [11], [13], the factorization of an m-D polyno
mial using appropriate linear operators is considered. In [11], [16], the factorization 
of an m-D polynomial / = f(zx ,...,zm) = £ ^ _ o • • • EilT-o a(1'- > • • •> zm) z[l ...zfc 
in linear factors f(zx,..., zm) = Yli^o^i + ai,2z2 + • • • + aiimZm + c;) has been 
examined, while in [11] and [17] the more general type of factorization is studied. 
The method of reduction in lower-order polynomial factors is presented in [11] and 
[18]. In [11] and [19], an m-D polynomial factorization method based on a proper 
perturbation of the discrete roots of one 1-D polynomial is developed. However, in 
the case in which this 1-D polynomial has multiple roots the method fails. In the 
present paper, an attempt is made to face this difficult case of the multiple roots. 
In particular, a proper transformation of the variables is proposed under which the 
roots of this 1-D polynomial become discrete again. All the methods from [11] to 
[19] have been proposed by the author for first time in the international literature. 
See a brief description of them in [12]. 

The present paper is organised as follows: In Section 2, the steps of the "root 
perturbation method" ([11] and [19]) are briefly presented. In Section 3, the exten
sion of the method, in the case of multiple roots, is given. The proposed algorithm 
is stated in Section 4, while, in Section 5, the applicability of the present technique 
is illustrated by an example. The author has already verified the validity, the power 
and the applicability of the algorithm by a computer program. 

2. THE ROOT PERTURBATION METHOD 

The considered problem is the factorization of the m-D polynomial f(z\,... ,zm) 
given by (1) 

At! Nm 

f(zi,..., zm) = ^2 ... ] P a(h,.... im) z[x ... zl™ (I) 
il=0 im=0 

where 3 j such that a(0,.. ., 0, Nj, 0 , . . . , 0) -£ 0 and a ( n , . . . , ij_i, Nj, ij + i,.. . im) = 
= 0 when i"i + . . . + t;-_i + t;-+i + . . . + im > 0 . Then, without loss of generality, we 
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can set 

a(0,...,0,Nj,0,...,0) = l. (2) 

We exam the possibility of the given polynomial to be written as 

f(z1,...,zm) = H(zj-pk(z)) (3) 

fcs-l 

with Pk(z) polynomial in z (z=[z1,..., _/_i, -j*+i, • • •, zm]T). Therefore 

Mi Mj_! Mj+i Mm 

Pk(z) = _C • • • _L _C • • • _C -fa' • • •' *i-i»*i+ii • • • > **») 
.'_=0 J > ' - 1 = ° i _ + i = 0 . ' m = 0 

»»l _ * i - i * i + i 
-1 • ••zj-1

 zj + 1 
m" (4) 

with Mk < Nk, k = l,...,j - l , i + l , . . . , m and _.(«_,.. . ,«; .-i , t/+i > . . . .,«„») to 
be real numbers. Since the exact values of Mk (k = 1 , . . . , j — 1, jf + 1 , . . . , m) are 
unknown, we write 

7V_ Nj-i iVj+i /vm 

P*(5) = _C • • • _L _L • • • _C ? ( 2 1 ' • • •' '**--» *i+-> • • • > *"») 
i__:0 j - l = ° .'j+l=0 i m = 0 

„•1 - ' J - 1 . +1 
'1 •••г/-lгjf+l 

Z/+'l • • • T̂TT (5) 

considering 5(1*1,..., ij-i, ij+i, • • •, im) — 0 for the remaining terms. 

The polynomial Pk(z) can be found by knowing its values at 

(Ni + 1 ) . . . ( N j - i + 1) (N7+1 + 1) (Nm + 1) different points and more particularly 
a t (*i,,. • • • 1 -V-i.-j.__' ^ ' + 1 - . + i ' • • •' ^ m ' m ) w h e r e 

0 < - i < N i , . . - , 0 < ^ - _ i < N i _ i , 0 < v + i < N j + i , . . . , 0 < i m < N m 

So, if we set these (Ni + 1 ) . . . ( N ) _ i + 1) (N)+i + 1) (Nm + 1) different values 

to z, we shall find the roots of /(__, • • •, 2 m ) , which is now considered as an 1-D 

polynomial with respect to Zj (we note f(zj; Z\,..., _j_i, _ j + i , . . . , . - , ) ) . As these 

roots are also the values of the supposed polynomials Pk(z), finally we can find the 

polynomials Pk(z). One can easily seen that Pk(z) can be found by the m-D Lagrange 

interpolation formula, [11] and [19]. 

However, the difficulty in finding Pk(z) is that we don't know exactly which 

root of the 1-D polynomial f(zj; „ _ , . . . , ~j-i, ~y+i, • • •, zm) corresponds to a par

ticular Pk(z). For this reason, we set z\,. .., ~ j _ _ , ~ j + i , . . . ,zm at "small" values 

(absolutely). So, Pk(z), as it is proved, is now "very close" to p„(0) = c/,., where 

Cj_ (Ar = 1 , . . . , N,) are the roots of f(0, • •., 0, Zj, 0 , . . . , 0) which are assumed to be 

discrete, i .e. Ck 7- c\ for every k,l,(k,l = 1 , . . . , Nj). Therefore p„(_ :)'s which are 

now very close to the discrete p„(0) = c* can be separated. Unfortunately, in this 

way, the case of multiple roots of f(0,. • • ,0, Zj,0,... ,0) i.e. the case where we have 

some k, I such t h a t ck = c\, (k, I = 1 , . . . , Nj) can not be faced. 

More specifically, in the case of "simple" ("discrete") roots of f(0,.. . , 0 , Zj,Q,.... 

. . . 0) the following Theorem is proved, [11] and [19]. 
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T h e o r e m 1 . If 

, . 1 . 1 i i - i , l 
\z\\ < - , . - . , - j - l < - , Ki+i <-,•••, \zm \< -

_ s _ s 

where the positive real number s is calculated by 

2(,4 + 1 + max f c |cj.|) 
_ = : : r-

mmk,i kjti \ck - c\\ 

k, I — I,..., Nj and A = max Aij (ij = 0 , 1 , . . . , Nj — 1) where 

Ni iVy-i iVj+i i v m 

A i , = ___.••• ___. ___. •••____ l f l (« l»-" .» i- l .» i .» i+l»- . . ,«m) | 
l !_:0 i j _ i = 0 t j + 1 = 0 » m - 0 

(6) 

(7) 

then 

ІPfc(ѓ) - c„| < - m i n | c f c - c/| (8) 

k, I = 1 , . . . , Nj where k ^ I. 

So, if we put appropriate values for Z\,..., Zj-\,Zj+\, ...,zm, (\zi\ < j , . . . , \ZJ-I\ 
< j , l-j+il < J- , . . . , |_m| < 7, where s is given by equation (7)), we know exactly 
which root of the 1-D polynomial f(zj; zx, . . ., ZJ-I, zj + i,. .., Zm) is the value of the 
particular Pk(z). A geometrical interpretation is given in Figure 1. 

Pj(z) 

'2 

CPo(Ž) 

Fig. 1. In the case of discrete roots c*, c; of / ( ~ j ; ,. . . , 0), the values of pk(z) can be 
separated. 

Furthermore, the polynomial Pk(z) can be found using the m-D Lagrange inter
polation formula. At this point, we recall, tha t if we know the values of an m-D 
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polynomial p(z\,..., zm) for Ni + 1 values of z\, ..., Nm + 1 values of zm, then this 
polynomial can be found by the m-D Lagrange interpolation formula. 

Ni Nm 

p(z\,...,Zm) = X_ ••• ___ lii,-,im(zly^zm) • g(z\ti,...,Zmtm) (9) 
i 1 = 0 i m = 0 

where the g(z\t ,..., zmi )'s are the polynomial values of p(z\,.. ., zm) at the con
sidered points (0 < i\ < Ni,..., 0 < im < Nm) and: 

/ ( \ — j__j~_. k&^Zl ~ Zlk)'' -life=o, k^im(zm — zmk) 

nik=0, k^ii(ZUi ~ z u ) • • njb=0, k^im(zmtm — zmk)-

In the case of Pk(z), we have the variables Z\,..., 2j_i, ^j+i, • • •, <zm in (9) and (10). 

Suppose now that a polynomial pk(z) has been constructed by the Lagrange 
interpolation formula. Then, the m-D polynomial Zj — Pk(z) is tested as a factor of 
f(z\,..., zm) by applying the following theorem. Its proof can be found in [11], [12] 
and [18]. 

Theo rem 2. Suppose that we have found Pk(z) from (9). Then a possible m-D: 
polynomial factor of f(z\,... ,zm) is the polynomial Zj — Pk(z). This is an m-D 
polynomial factor of f(z\,..., zm) if and only if 

f(z\,...,zj^i,pk(z),zj+\,...,zm) = 0. (10) 

Now, if we find one factor Zj —pk(z), we carry out the 1-D algorithmic division 
f(z\,..., zm) : (ZJ — Pk(z)) — q(z\,. .., zm). The procedure of the m-D polynomial 
factorization might progress if the polynomial q(z\,..., zm) could be factorized by 
applying the same or some other method [11]-[19], [22]. 

3. THE CASE OF MULTIPLE ROOTS 

In this paragraph, we exam the interesting case in which f (0 , . . . , 0, Zj, 0 , . . . , 0) has 
multiple roots. First some useful preliminary results are presented: Let the 1-D 
polynomials 

N N 

f(Z) = j2^\ *w = X>*'- (ii) 
is-0 »'-0 

If they are different polynomials, (we denote f(z) ^ g(z)), i.e. at- ^ 6,- at least for 
one i, then, except of N values of z, we have f(z) / g(z). Therefore, one can write: 

f(z)^g(z) VzeC-{w\,...,wN} (12) 

where w\,. .. ,wN are the roots of the polynomial f(z) - g(z) and C is the set of the 
complex numbers. 
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Suppose now t h a t we have n different 1-D, N degree, polynomials. Then, except 

0 f —•(,"- ) n values oF z, they all have different values. 

In 2-D polynomials, we have the following. Suppose t h a t the polynomials 

iVi лt2 Ati лt2 

я~) "= £ £ -«м.-íi42, э{z) = £ £ ^..^i1* 
1^=0 г 2 =0 » І = 0 г2—0 

are different from each other. We denote f(z) _̂ ^(2). T h a t is to say a t l j l-2 / 6Zl ,:2 

at least for one pair (i\,i2). These polynomials can be written as 

Ni I N2 \ 

f(z1,z2)=YJ £ -n , . 3 4 3 41 (13) 
i j=0 \ i 2 =o / 
Nx / N2 \ 

ff(~i.-2) = £ X X . , 4 2 U 1 - (14) 
»1=0 \ i 2 =0 / 

Since at'l)t;3 ^ &»lt»a for at least one pair (11,12), at least one pair of 1-D polynomials: 

At2 At2 

/ j a»"i,»2Z2 > £_j " . i , i2Z2 (15) 
ѓ 2 = 0 

are different from each other. Then, except of N2 values of z2, these two polynomials 

have different values. So, for z2 = w2 £ C — {w2<1,... ,w2tN2} we obtain tha t 
f(z\,w2) 5J: g(z\,w2). These are 1-D polynomials with respect to z\, so, for z\ = 

w\ EC - {w\t\(w2), . .., w1:Nl (w2)} we have that f(w\, w2) ^ g(w\, w2). 

The conclusion is that : f(z\ ,z2)^ g(z\ ,z2) V (w\, w2) with w2 £ C — {^2,1, • • • 
. ..._>2,iV3} and w\ e C - {w1A(w2),... ,wljNl(w2)}. 

Suppose now, that we have n different 2-D, N\, N2-degree, polynomials. Then, 
they are unequal (they have different values) for each (w\, w2) with 

W2 EC - {w2>\, . .., W2tN2-(n-l)n/2} 

tin (J <v f / \ / \ "l 
U>1 G C - {w1>\(w2), ..., W1>Nl.(n-i)n/2{.W2)}. 

Now, generalizing the above results, if we have n different ra-D, N\, . .., Nm-degree 
polynomials, they are unequal (they have different values) for all (w\, . . ., wm) with 

Wm e C - {lWm,l, •• -,^m,iVm-(n-l)n/2} 

W\ EC - { ^ , 1 ( ^ 2 , . . . , Wm), •••, W>l.JV1.(n-l)n/2(«>2, • • • , Wm)}. 

Henceforth, the following notation is introduced 

Cm — {wm,\, • • • , ^m,JV m - (n - l )n /2} 

CT\ - {w\t\(w2,..., Wm), . .., W\)Nl.(n_\)n/2(w2, . . ., Wm)}. 
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With the above preparations, we are ready to present the extension of the root 
perturbation method in the case in which / ( 0 , . . . , 0, Zj, 0 , . . . , 0) has multiple roots, 
i.e. if _ ki,k2, (with ki, k2 = 1 , . . . , Nj) such that pfcl(0) = Pit2(0). 

First, suppose that pk(z) _̂ pi(z) Vk, I (k, I = 1 , . . . , Nj) i.e. Pk(z) are different 
from each other. In this case, based on the previous preliminary results, there exists a 
point (u>i,..., Wj-i, WJ+I, ..., wm) for which these polynomials take different values, 
i.e. the values Pk(wi, • • • ,Wj-i,Wj+i, • • -wm) are different from each other. So, 
if one finds such a point (wi,..., u»y_i, Wj+i,..., wm), then one can consider the 
transformation 

Zl — • Z\ + W\ 

Zj-i > Zj-i + Wj-\ 

Zj + i > Zj + i + Wj + i 

+ wr 

under which the polynomial 

f(zi, . . . , Zj-i,Zj, Zj + i, ..., zm) 

= f(z1+w1,...,zj-i + wj-i,zj,zj+1+wj+1,...,zm+wm) (16) 

results. Obviously f(z\,..., Zj-i, Zj, Zj+i,... ,zm) is a factorizable polynomial if and 
only if / ( _ i , . . . , Zj-i, Zj, Zj+i,..., zm) is factorizable. It is easy to verify that the 
roots o f / ( 0 , . . . , 0, Zj, 0,. . . , 0), which are symbolized as di, &repk(wi,..., Wj-i, WJ+I, 

..., wm). However, Pk(w\,..., Wj-i, Wj+i,... wm) are different from each other. In 
other words, the roots of the new polynomial / ( 0 , . . . , 0, Zj, 0 , . . . , 0) are now simple 
(discrete). Thus, the root perturbation method can be applied. 

Furthermore, the factorization of / ( _ i , . . . , zm) results from the factorization of 
/ ( _ i , . . . , Zj-i, Zj, Zj+i,..., zm) after the inverse transformation: 

_1 —> zi — wi 

Zj-i >• Zj-i — Wj-i 

Zj+i • Zj+l - Wj + i 

Secondly, in the very special case where some of Pk(z) are identically equal, it 
is not possible to succeed to transform all the roots of f(zj; 0 , . . . , 0) into simple 
ones. However, in this case, the problem of separation of roots does not actually 
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exist, since equal roots of the 1-D polynomial f(zj ; z1,..., Zj-1, Zj+1,..., zm) corre
spond to identically equal Pk(z). Therefore the root perturbation method, Section 2, 
[11], [12] and [19] can be applied. 

4. T H E P R O P O S E D ALGORITHM 

Arranging the above ideas in a logical order, the following algorithm can be con
structed. 

Step 1: Find the roots of f(0,.. ., 0, Zj, 0,..., 0). If they are discrete (simple), then 
apply the root perturbat ion method —> END. If there exist multiple roots, then 
follow the next steps. 

Step 2: Set arbitrary values to Z\,..., Zj-.\, Zj+1,.. ,zm, say w1,..., tty_i, Wj+1,... 
..., wm and find the roots of / ( t t > i , . . . , _»j_i, Zj, Wj+1,..., wm). 

If some of them continue to be multiple, then vary z1 where 

Z1 = U/1,1, • . -,W1^1+Nj(NJ-l)/2)N1-
If, after all, the multiplicity of roots remains, we conclude tha t some of tt_,i» • • • 
. . . , tt>j_i,tt»j+i,..., wmil belong to C 2 , • • • i C J - i , C j + 1 , . . . , Cm. In this case, vary 
Z2- Proceeding this procedure, finally, one can find a point such that : 

(Wl,.. .,wj-liWj+1, ...wm)e (c-c[)x.. . x f c - q . j x j c - q + j x . . .x(c-cr
m) 

for which f(w1,..., _»/_i, Zj, Wj+1,.. .wm) has simple roots. If this is not possible, 
go to Step 4. 

Step 3: Find the polynomial 

J\Zi, • • •, -y—1, Zj, Zj+1, ..., zm) 

= f(z1 +tt>l,- . . , - y - l +Wj-1,Zj,Zj + 1 +Wj + 1, .. .,zm +wm) 

Find the roots of f(0,..., 0, Zj, 0, . . . , 0) (equivalently the roots of f(zj ; W\,..., Wj-1, 
Wj+1,... ,wm)). These will be simple. Afterwards, apply the root per turbat ion 
method. 
If f(z1,..., Zj-i, Zj, Zj+1,..., zm) is factorized, then f(z1,..., zm) is factorized too. 
The second can be found in its factorized form since: 
f(z1,. ..,Zm) = f(zX -W1,...,Zj_1 - Wj-1,Zj,Zj + 1 - wj + 1,...,zm - wm) 
— > E N D . 

Step 4: Some of Pk(z) are identically equal. Their number has been known from 
Step 2: It is the minimum number of multiple roots that results in the various 
changes ofw\,... ,Wj-1,Wj+1,.. .wm following the procedure of Step 2. Apply the 
root per turbat ion method (since equal Pk(z) correspond to equal Ck)—• END. 

R e m a r k . In Step 2 of the previous algorithm, note that : 

Cm — {wmtl, . • • , tt)m)iVm.n(n-l)/2} 
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Cj + 1 = {wj + \t\(wj+2,. ..,Wm),. . .,Wj + \tN}+1.n(n_\y2(wj + 2, .. .,Wm)} 

GJ_1 = {wj-\!\(wj + \, . . .,Wm),. ..,_»y-i,JV i_ l.n(n-l)/2(t-V+li •• -,wm)} 

C{ = {_»i.i(ti;2, • • .Wj-\,wj+1, ...,wm),..., 

W\tNmn(n-l)/2(w2, . ..Wj-\,Wj + \ . . .,Wm)} 

where n = Nj . 

5. EXAMPLE 

Let the polynomial f(z\, z2, z3) = z\ + 4z\z2 + 3z\ + 2z\z\ + 2z\ + 4z\z3 + 12z2z3+ 
+Sz\z3. 

The above algorithm can be applied as follows. Select Zj = 21 (i.e. j = 1). 
Step 1: First, we find the roots of f(z\,0,0). So, f(z\,0,0) = z\. We obtain the 
double root 0. 

Step 2: Setting z2 = z3 = 1, the polynomial f(z\, 1,1) = z\ + 10z\ + 25 is found 
which also has the double root —5. Setting 22 = 0,23 = 1, the resultant polynomial 
/(21,0,1) = z\ + 4z\ has the discrete roots 0, —4. 

Step 3: Under the transformation 

z2 — • 22 + 0 

z3 — • 23 + I 

the polynomial f(z\, z2, z3) is transformed into f(z\, z2, z3) = f(z\, z2 + 0, z3+ 1) = 
= 4z\ +z\ + 1222 + 42i22 + l l 2 | + 2z\z\ + 2z\ + 42123 + 122223 + 82^23. 
The roots of the polynomial / ( 2 i , 0 , 0 ) are —4,0. Applying the root per turbat ion 
method, one can find: A§ = 45, A\ = 14. Therefore, following Theorem 1 we have 
A=45 and s = 25. Setting (N2 + 1)(N3 + 1) = 4 x 2 = 8 values (22,23) in / ( 2 i ; 2 2 , 2 3 ) 
such tha t 1221 < - , |23j < -, we find the corresponding roots — with respect to 21 — 
of f(z\\z2,z3). For example, for 22 = —0.02 and 23 = —0.02, we find the roots 
0.0592 and —3.9. Finally, using the Lagrange interpolation formula and Theorem 2, 
we find after some manipulat ion 

f(zi , Z2, 23) = (2i + 322 + 222) • (Z\ + 22 + 423 + 4) (17) 

Step 4: Under the inverse transformation 

Z2 • 2 2 - 0 

z3 — • 23 - 1 

(17) yields 

f(z\ , Z2, 23) = (2i + 322 + 222) • (Z\ + 22 + 423) (18) 

since f(z\, z2 — 0, z3 — 1) = f(z\, z2, z3). Thus, the factorization of the given poly
nomial is achieved. 
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6. CONCLUSION 

The factorization algorithm, presented in this paper, can be applied in a wide class 
of m-D polynomials. The method can be applied in such a way that , if the complete 
decomposition into Ni factors Zj — pk(z) is impossible, then, at least the evaluation 
of an eventual factor Zj — Pk(z) to be possible. So — as in the case of the simple 
root per turbat ion method [11], [19] - if one factor of f(z) is found, the polynomial 
f(z)/(zj — pk(z)) may be factorized by some other method of the literature [11], 
[13]-[19], [22]. 

The extension of the root perturbation method to polynomial matrices may be an 
other interesting mathematical extension with many applications in physics (optical 
systems, biophysics), in electrical engineering (multidimensional circuits and sys
tems, automat ic control) as well as in computer science (digital image processing, 
theory of algorithms [8], [10], information theory). However, this is left for future 
research. 

(Received March 13, 1995.) 
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