ON A CLASS OF PERIMETER-TYPE DISTANCES OF PROBABILITY DISTRIBUTIONS

FERDINAND ÖSTERREICHER

The class I_p, $p \in (1, \infty)$, of f-divergences investigated in this paper generalizes an f-divergence introduced by the author in [9] and applied there and by Reschenhofer and Bomze [11] in different areas of hypotheses testing. The main result of the present paper ensures that, for every $p \in (1, \infty)$, the square root of the corresponding divergence defines a distance on the set of probability distributions. Thus it generalizes the respecting statement for $p = 2$ made in connection with Example 4 by Kafka, Österreicher and Vincze in [6].

From the former literature on the subject the maximal powers of f-divergences defining a distance are known for the subsequent classes. For the class of Hellinger-divergences given in terms of $f_s^\alpha(u) = 1 + u - (u^s + u^{1-s})$, $s \in (0,1)$, already Csiszar and Fischer [3] have shown that the maximal power is $\min(s, 1 - s)$. For the following two classes the maximal power coincides with their parameter. The class given in terms of $f_{\alpha}(u) = |1 - u|^{\frac{1}{\alpha}}$, $\alpha \in (0,1]$, was investigated by Boekee [2]. The previous class and this one have the special case $s = \alpha = \frac{1}{2}$ in common. This famous case is attributed to Matusita [8]. The class given by $\varphi_\alpha(u) = |1 - u|^{\frac{1}{\alpha}}(1 + u)^{1 - \frac{1}{\alpha}}$, $\alpha \in (0,1]$, and investigated in [6], Example 3, contains the well-known special case $\alpha = \frac{1}{2}$ introduced by Vincze [13].

1. INTRODUCTION

Let (Ω, \mathcal{A}) be a nondegenerate measurable space (i.e. $|\mathcal{A}| > 2$ and hence $|\Omega| > 1$) and let $\mathcal{M}_1(\Omega, \mathcal{A})$ be the set of probability distributions on (Ω, \mathcal{A}). Furthermore let \mathcal{F} be the set of convex functions $f : \mathbb{R}_+ \to \mathbb{R}$ which are continuous at 0. And let the function $f^* \in \mathcal{F}$ be defined by

$$f^*(u) = u \cdot f\left(\frac{1}{u}\right) \quad \text{for } u \in (0, \infty).$$

Remark 1. Owing to the continuity of f and f^* at 0 and by setting $0 \cdot f\left(\frac{0}{0}\right) = 0$ for all $f \in \mathcal{F}$ it holds

$$x \cdot f^*\left(\frac{y}{x}\right) = y \cdot f\left(\frac{x}{y}\right) \quad \text{for all } x, y \in \mathbb{R}_+.$$
Definition (cf. Csiszár [4] and Ali and Silvey [1]). Let $Q_0, Q_1 \in \mathcal{M}_1(\Omega, \mathcal{A})$. Then

$$I_f(Q_1, Q_0) = \int f\left(\frac{q_1}{q_0} \right) \cdot q_0 \, d\mu$$

is called f–divergence of Q_0 and Q_1. (As usual, q_1 and q_0 denote the Radon–Nikodym–derivatives of Q_1 and Q_0 with respect to a dominating σ–finite measure μ.)

In the sequel we briefly restate those results from [6] which are basic for the statement and proof of the main result of this paper. For further informations on f–divergences we refer to the monograph [7] by Liese and Vajda and the paper [12] of Vajda and Österreicher.

Provided

(f1) $f(1) = 0$ and f is strictly convex at 1 and

(f2) $f^*(u) \equiv f(u)$

it holds

(M1) $I_f(Q_1, Q_0) \geq 0$ with equality iff $Q_0 = Q_1$, $\forall Q_0, Q_1 \in \mathcal{M}_1(\Omega, \mathcal{A})$,

(M2) $I_f(Q_1, Q_0) = I_f(Q_0, Q_1)$ $\forall Q_0, Q_1 \in \mathcal{M}_1(\Omega, \mathcal{A})$

respectively. If, in addition to (f1) and (f2), there exists an $\alpha \in (0, 1]$, such that

(f3, α) the function

$$h(u) = \frac{(1 - u^\alpha)^{\frac{1}{\alpha}}}{f(u)}, \quad u \in [0, 1),$$

is (not necessarily strictly) decreasing,

then, according to [6], Theorems 1 and 2, the power

$$\rho_\alpha(Q_0, Q_1) = [I_f(Q_1, Q_0)]^\alpha$$

of the f–divergence satisfies the triangle inequality

(M3) $\rho_\alpha(Q_0, Q_1) \leq \rho_\alpha(Q_0, Q_2) + \rho_\alpha(Q_2, Q_1)$ $\forall Q_0, Q_1, Q_2 \in \mathcal{M}_1(\Omega, \mathcal{A})$.

Remark 2. Note that by virtue of Jensen’s inequality

$$\frac{f(u) + f^*(u)}{1 + u} = \frac{1}{1 + u} \cdot f(u) + \frac{u}{1 + u} \cdot f\left(\frac{1}{u} \right) \geq f(1).$$

Therefore (f1) and (f2) imply $f(u) > 0$ for all $u \in \mathbb{R}_+ \setminus \{1\}$ and hence $f(0) \in (0, \infty)$. Moreover, it can be easily seen that, provided (f3, β) is satisfied for $\beta = \alpha \in (0, 1]$, it is also satisfied for every $\beta \in (0, 1]$.

The following Remark is a consequence of [6], Propositions 5 and 6.
Remark 3. Let (f1) and (f2) hold true and let \(\alpha_0 \in (0, 1] \) be the maximal \(\alpha \) for which \((f3, \alpha)\) is satisfied. Then the following statement concerning \(\alpha_0 \) can be made. Let \(k_0, k_1, c_0, c_1 \in (0, \infty) \) be such that
\[
\frac{f(0) \cdot (1 + u) - f(u)}{c_0 \cdot u^{k_0}} \sim u \quad \text{for} \quad u \downarrow 0 \quad \text{and} \quad f(u) \sim c_1 \cdot |u - 1|^{k_1} \quad \text{for} \quad u \uparrow 1
\]
then \(k_0 \leq 1, \ k_1 \geq 1 \) and \(\alpha_0 \leq \min \left(\frac{k_0}{k_1}, 1 \right) \leq 1. \)

2. THE MAIN RESULT

First we are going to show that \(f \)-divergences can be defined in terms of the following class of functions

\[
f_p(u) = \begin{cases}
(1 + u^p)^{\frac{1}{p} - 2^{\frac{1}{p} - 1}} \cdot (1 + u) & \text{for } p \in (1, \infty) \\
\frac{|u - 1|}{2} & \text{for } p = \infty, \ u \in \mathbb{R}_+
\end{cases}
\]

which satisfies \(\lim_{p \to \infty} f_p(u) = f_\infty(u) \).

Lemma 1. \(f_p \in \mathcal{F} \) and satisfies (f1) and (f2) for all \(p \in (1, \infty) \).

Proof. Since this assertion is obvious for the case \(p = \infty \), let us assume \(p \in (1, \infty) \) from now on. For this case
\[
\lim_{u \to 0} f_p(u) = f_p(0) = 1 - 2^\frac{1}{p - 1} \in (0, \infty), \quad f_p(1) = 0,
\]

(1) \(f'_p(u) = (1 + u^p)^{\frac{1}{p} - 2^{\frac{1}{p} - 1}} \cdot u^{p-1} - 2^\frac{1}{p - 1} \) and hence
\[
f'_p(1) = 0 \quad \text{and} \quad f''_p(u) = (p - 1) \cdot (1 + u^p)^{\frac{1}{p} - 2} \cdot u^{p-2} > 0 \quad \forall \ u \in (0, \infty) \quad \text{and hence}
\]
\[
f''_p(1) = (p - 1) \cdot 2^\frac{1}{p - 2}.
\]

Therefore \(f_p \) is an element of \(\mathcal{F} \) satisfying (f1). The validity of \(f''_p(u) \equiv f_p(u) \) is obvious. \(\square \)

Remark 3 provides an upper bound for the subset of those \(\alpha \in (0, 1] \), for which \((f3, \alpha)\) may hold.

Remark 4. Owing to
\[
f_p(0) \cdot (1 + u) - f_p(u) = 1 + u - (1 + u^p)^{\frac{1}{p}} \sim u \quad \text{for} \quad u \downarrow 0,
\]
\[
f_p(u) \sim (p - 1) \cdot 2^\frac{1}{p - 3} \cdot (u - 1)^2 \quad \text{for} \quad u \uparrow 1,
\]
(the latter being a consequence of (1) and (2)), the maximal \(\alpha \in (0, 1] \) satisfying \((f3, \alpha)\) – if there is any – must be \(\alpha_0 \leq \frac{1}{2} \).
Interpretation of the f–divergences under consideration. Let

$$R(Q_0, Q_1) = \co\{(Q_0(A), Q_1(A^c)), A \in \mathcal{A}\}$$

be the risk set of the testing problem $(Q_0, Q_1) \in \mathcal{M}_1(\Omega, A)^2$ (whereby “co” means “the convex hull of”). Then the corresponding f–divergence

$$I_{f_p}(Q_1, Q_0) = \begin{cases} \int (q_1^p + q_0^p)^{\frac{1}{p}} \, d\mu - 2^{\frac{1}{p}} & \text{for } p \in (1, \infty) \\ \frac{1}{2} \int |q_1 - q_0| \, d\mu & \text{for } p = \infty \end{cases}$$

can be interpreted as the difference or the arc lengths of the lower boundary of the risk set and the diagonal

$$D = \{(x, y) \in [0, 1]^2 : x + y = 1\},$$

both measured in terms of the l_p–norm in \mathbb{R}^2. We denote the arc length in question by l_p–arc length since it coincides for $p = 2$ with the ordinary arc length. For further reading on the geometric point of view we refer to Feldman and Österreicher [5] and the entry [10] of the author.

For the limiting case $p = \infty$ the corresponding f–divergence $I_{f_\infty}(Q_1, Q_0)$ is half of the well-known variation distance. For $p = 2$ it has been shown in [6] that the square root of the corresponding f–divergence $I_{f_2}(Q_1, Q_0)$ is also a distance. In the sequel we are going to show the following generalization of the latter which may be conjectured from Remark 4.

Theorem. For every $p \in (1, \infty)$ the square root of the f–divergence $I_{f_p}(Q_1, Q_0)$ defines a distance on $\mathcal{M}_1(\Omega, A)$.

By virtue of Lemma 1 and [6], Theorems 1 and 2, the proof is reduced to that of the following Lemma.

Lemma 2. Let $p \in (1, \infty)$. Then the function

$$h_p(u) = \frac{(\sqrt{u} - 1)^2}{f_p(u)}, \quad u \in [0, 1),$$

is (strictly) decreasing.

Proof. Because of

$$h'_p(u) = \left(\frac{1}{\sqrt{u}} - 1\right) \cdot \frac{1}{f_p^2(u)} \cdot \phi_p(u)$$

with

$$\phi_p(u) = - [f_p(u) + (\sqrt{u} - u) \cdot f'_p(u)]$$

$$= 2^{\frac{1}{p} - 1}(1 + u^\frac{1}{2}) - (1 + u^p)^{\frac{1}{p} - 1} \cdot (1 + u^{p - \frac{1}{2}})$$
it suffices to show $\phi_p(u) < 0$ for all $u \in (0,1)$. Owing to $\phi_p(1) = 0$ it suffices to show that the functions ψ_p defined by $\psi_p(u) = \sqrt{u} \cdot \phi_p'(u)$ satisfy

$$\psi_p(u) = 2 \frac{1}{p-2} - (1 + u^p) \frac{1}{p-2} \cdot u^{p-1} \cdot \left[(p-1) \cdot (1 - \sqrt{u}) + \frac{1 + u^p}{2} \right] > 0$$

for all $u \in (0,1)$. Because of $\psi_p(1) = 0$ this, however, follows from

$$\psi_p'(u) = -(p-1) \cdot \left(p - \frac{1}{2} \right) \cdot (1 + u^p) \frac{1}{p-3} \cdot u^{p-2} \cdot (1 - \sqrt{u}) \cdot (1 - u^p) < 0,$$

which is obvious.

\[\square \]

REFERENCES

