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ON A CLASS OF PERIMETER-TYPE DISTANCES
OF PROBABILITY DISTRIBUTIONS

FERDINAND OSTERREICHER

The class Iy, , p € (1,00], of f-divergences investigated in this paper generalizes an
f-divergence introduced by the author in [9] and applied there and by Reschenhofer and
Bomze [11] in different areas of hypotheses testing. The main result of the present paper
ensures that, for every p € (1, 00), the square root of the corresponding divergence defines a
distance on the set of probability distributions. Thus it generalizes the respecting statement
for p = 2 made in connection with Example 4 by Kafka, Osterreicher and Vincze in {6].

From the former literature on the subject the maximal powers of f-divergences defining a
distance are known for the subsequent classes. For the class of Hellinger-divergences given in
terms of f(s)(u) =14+u—(u*+u'"%), s € (0,1), already Csiszdr and Fischer [3] have shown
that the maximal power is min(s,1 — s). For the following two classes the maximal power
coincides with their parameter. The class given in terms of fiq)(u) = |1 - u"‘|é , a €(0,1],
was investigated by Boeckee [2]. The previous class and this one have the special case
s=a = % in common. This famous case is attributed to Matusita {8]. The class given by
walu) =11 - u[i(l + u)l—é , @ € (0,1], and investigated in [6], Example 3, contains the
wellknown special case a = % introduced by Vincze [13].

1. INTRODUCTION

Let (€2, A) be a nondegenerate measurable space (i.e. |A| > 2 and hence Q]| > 1)
and let M;(Q,.A) be the set of probability distributions on (€2, A) . Furthermore let
F be the set of convex functions f : IRy — IR which are continuous at 0. And let
the function f* € F be defined by

f”‘(u):wf(%) for u € (0,09).

Remark 1. Owing to the continuity of f and f* at 0 and by setting 0- f (%) =0
for all f € F it holds

Zr

z f* (g):yf(§> forallz,y € R, .
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Definition (cf. Csiszar [4] and Ali and Silvey [1]). Let Qo, Q1 € M1(2,A) . Then

If(Ql,Qo):/f@i) ~qodp

is called f-divergence of Qo and @;. (As usual, ¢; and gy denote the Radon-
Nikodym-—derivatives of 7 and Qo with respect to a dominating oc—finite measure

1)

In the sequel we briefly restate those results from [6] which are basic for the
statement and proof of the main result of this paper. For further informations on
f-divergences we refer to the monograph [7] by Liese and Vajda and the paper [12]
of Vajda and Osterreicher.

Provided
(f1) f(1)=0 and f is strictly convex at 1 and

(f2) f"(w) = f(u)

it holds
(M1)  I;(Q1,Qo0) > 0 with equality iff Qo = Q1 V Qo, Q1 € M1(Q, 4),
(M2) If(Ql)QU) = If(QO!Ql) VQU’Ql GM}(Q,A)
respectively. If, in addition to (f1) and (f2), there exists an a € (0, 1], such that
. (1- u"‘)é
(f3,) the function h(u) = ~———, u € [0,1),
f(u)

1s (not neccessarily strictly) decreasing,

then, according to [6], Theorems 1 and 2, the power

pa(Qo, Q1) = [11(Q1, Qo))
of the f-divergence satisfies the triangle inequality

(M3) pa(QOa Ql) < PG(QO,Q2) + Pa(QZ,Ql) VQo,Q1,Q2 € MI(Q>-A) -b

Remark 2. Note that by virtue of Jensen’s inequality

f(u)'*'f*(u)_ 1 u 1
= w7 (5) 2o

Therefore (f1) and (£2) imply f(u) > 0 forall u € R4\ {1} and hence f(0) € (0,0).
Moreover, it can be easily seen that, provided (f3,5) is satisfied for f = « € 0,1],
it is also satisfied for every g € (0, 1].

The following Remark is a consequence of [6], Propositions 5 and 6.
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Remark 3. Let (f1) and (f2) hold true and let g € (0, 1] be the maximal « for
which (f3,«) is satisfied. Then the following statement concerning ag can be made.
Let ko, k1, co, ¢1 € (0,00) be such that

f0)-(14u)— f(u) ~ co-uke forul0 and
flu) ~ ¢y |u—-1% forufl

then ko <1, k1 > 1 and g < min (ko, ﬁ) <1

2. THE MAIN RESULT

First we are going to show that f-divergences can be defined in terms of the following
class of functions

(14w =251 (14w for pe(l,00)
fp(u)

— s u€]R+
v — 1] for p=o0

2
which satisfies limy_, o0 fp(u) = foo(u).

Lemma 1. f, € F and satisfies (f1) and (f2) for all p € (1, 00].

Proof. Since this assertion is obvious for the case p = oo, let us assume p €
(1,00) from now on. For this case

hmf,,(u) H(0)=1-25"1€(0,00), fo(1)=0,

(1) fp(u) =(1+ u”)%"1 uwP=1~ 251 and hence
- f,(1) =0 and
(2) Y(uw)=(—-1)- (1+u”) 2. 4P~2>0 Yue€(0,00) and hence

) =(p-1)-227%

Therefore f, is an element of F satisfying (f1). The validity of fj(u) = fp(u) is
obvious. : A a

Remark 3 provides an upper bound for the subset of those o € (0, 1], for which
(f3,a) may hold.

Remark 4. Owing to
£0)-(14+u)— fr(u) = 14u—(1+uw)¥ ~u forul0,
flw) ~ (p=1)-2" (u—=1)2 forutl,

(the latter being a consequence of (1) and (2)), the maximal « € (0, 1] satisfying
(f3,@) — if there is any — must be ag < % .
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Interpretation of the f—divergences under consideration. Let

R(QO, Ql) = CO{(QO(A)) QI(AC))7 A€ 'A}

be the risk set of the testing problem (Qo, Q1) € M1(R, A)? (whereby “co” means
“the convex hull of”). Then the corresponding f-divergence

g7 + qoP)7 dp — 27 for pe (1,00
If,,(Q1,Q0)={ {( i : e
5[ 1a — qol dp for p=oo

can be interpreted as the difference or the arc lengths of the lower boundary of the
risk set and the diagonal

D={(wel N zty=1},

both measured in terms of the [, —norm in IR? . We denote the arc length in question
by I, —arc length since it coincides for p = 2 with the ordinary arc length. For further

reading on the geometric point of view we refer to Feldman and Osterreicher [5] and
the entry [10] of the author.

For the limiting case p = oo the corresponding f-divergence I5_(Q1, Qo) is half
of the well-known variation distance. For p = 2 it has been shown in [6] that the
square root of the corresponding f-divergence If,(Q1, Qo) is also a distance. In the
sequel we are going to show the following generalization of the latter which may be
conjectured from Remark 4.

Theorem. For every p € (1,00) the square root of the f-divergence Ir,(Q1, Qo)
defines a distance on M1(Q, A).

By virtue of Lemma 1 and [6], Theorems 1 and 2, the proof is reduced to that of
the following Lemma.

Lemma 2. Let p € (1,00). Then the function

(V- 1)

hp(u) = 7, () )

€ [0, 1) ,
is (strictly) decreasing.
Proof. Because of
Hy(u) ( =) g e
=|—=- u
=\E Y e
with

ép(u)

- )+ (Vi—u) - ()]
= 277 (1) - (L) (14w
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it suffices to show ¢p(u) < 0 for all u € (0,1). Owing to ?SP(l) = 0 it suffices to show
that the functions ¥, defined by t,(u) = /u - ¢, (u) satisfy

14 u?P

5 >0

Yp(w) = 2572 = (L4 w?)F 7wt | (p— 1) - (1= V) +
for all u € (0,1). Because of ¥,(1) = 0 this, however, follows from
do(u)=—(p—1)-(p—3) (L+u?)r 2 w2 (1- V) (1-vP) <0,

which 1s obvious. 0

(Received July 18, 1995.)
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