ON A CLASS OF PERIMETER-TYPE DISTANCES OF PROBABILITY DISTRIBUTIONS

Ferdinand Österreicher

The class $I_{f_{p}}, p \in(1, \infty]$, of f-divergences investigated in this paper generalizes an f-divergence introduced by the author in [9] and applied there and by Reschenhofer and Bomze [11] in different areas of hypotheses testing. The main result of the present paper ensures that, for every $p \in(1, \infty)$, the square root of the corresponding divergence defines a distance on the set of probability distributions. Thus it generalizes the respecting statement for $p=2$ made in connection with Example 4 by Kafka, Österreicher and Vincze in [6].

From the former literature on the subject the maximal powers of f-divergences defining a distance are known for the subsequent classes. For the class of Hellinger-divergences given in terms of $f^{(s)}(u)=1+u-\left(u^{s}+u^{1-s}\right), s \in(0,1)$, already Csiszár and Fischer [3] have shown that the maximal power is $\min (s, 1-s)$. For the following two classes the maximal power coincides with their parameter. The class given in terms of $f_{(\alpha)}(u)=\left|1-u^{\alpha}\right|^{\frac{1}{\alpha}}, \alpha \in(0,1]$, was investigated by Boekee [2]. The previous class and this one have the special case $s=\alpha=\frac{1}{2}$ in common. This famous case is attributed to Matusita [8]. The class given by $\varphi_{\alpha}(u)=|1-u|^{\frac{1}{\alpha}}(1+u)^{1-\frac{1}{\alpha}}, \alpha \in(0,1]$, and investigated in [6], Example 3, contains the wellknown special case $\alpha=\frac{1}{2}$ introduced by Vincze [13].

1. INTRODUCTION

Let (Ω, \mathcal{A}) be a nondegenerate measurable space (i.e. $|\mathcal{A}|>2$ and hence $|\Omega|>1$) and let $\mathcal{M}_{1}(\Omega, \mathcal{A})$ be the set of probability distributions on (Ω, \mathcal{A}). Furthermore let \mathcal{F} be the set of convex functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which are continuous at 0 . And let the function $f^{*} \in \mathcal{F}$ be defined by

$$
f^{*}(u)=u \cdot f\left(\frac{1}{u}\right) \quad \text { for } u \in(0, \infty)
$$

Remark 1. Owing to the continuity of f and f^{*} at 0 and by setting $0 \cdot f\left(\frac{0}{0}\right)=0$ for all $f \in \mathcal{F}$ it holds

$$
x \cdot f^{*}\left(\frac{y}{x}\right)=y \cdot f\left(\frac{x}{y}\right) \quad \text { for all } x, y \in \mathbb{R}_{+} .
$$

Definition (cf. Csiszár [4] and Ali and Silvey [1]). Let $Q_{0}, Q_{1} \in \mathcal{M}_{1}(\Omega, \mathcal{A})$. Then

$$
I_{f}\left(Q_{1}, Q_{0}\right)=\int f\left(\frac{q_{1}}{q_{0}}\right) \cdot q_{0} \mathrm{~d} \mu
$$

is called f-divergence of Q_{0} and Q_{1}. (As usual, q_{1} and q_{0} denote the Radon-Nikodym-derivatives of Q_{1} and Q_{0} with respect to a dominating σ-finite measure μ.

In the sequel we briefly restate those results from [6] which are basic for the statement and proof of the main result of this paper. For further informations on f-divergences we refer to the monograph [7] by Liese and Vajda and the paper [12] of Vajda and Österreicher.

Provided
(f1) $\quad f(1)=0 \quad$ and f is strictly convex at 1 and
(f2) $\quad f^{*}(u) \equiv f(u)$
it holds
(M1) $I_{f}\left(Q_{1}, Q_{0}\right) \geq 0$ with equality iff $Q_{0}=Q_{1} \forall Q_{0}, Q_{1} \in \mathcal{M}_{1}(\Omega, \mathcal{A})$,
$(\mathrm{M} 2) \quad I_{f}\left(Q_{1}, Q_{0}\right)=I_{f}\left(Q_{0}, Q_{1}\right)$

$$
\forall Q_{0}, Q_{1} \in \mathcal{M}_{1}(\Omega, \mathcal{A})
$$

respectively. If, in addition to (f1) and (f2), there exists an $\alpha \in(0,1]$, such that
(f3, α) the function $h(u)=\frac{\left(1-u^{\alpha}\right)^{\frac{1}{\alpha}}}{f(u)}, u \in[0,1)$,
is (not neccessarily strictly) decreasing,
then, according to [6], Theorems 1 and 2, the power

$$
\rho_{\alpha}\left(Q_{0}, Q_{1}\right)=\left[I_{f}\left(Q_{1}, Q_{0}\right)\right]^{\alpha}
$$

of the f-divergence satisfies the triangle inequality

$$
\begin{equation*}
\rho_{\alpha}\left(Q_{0}, Q_{1}\right) \leq \rho_{\alpha}\left(Q_{0}, Q_{2}\right)+\rho_{\alpha}\left(Q_{2}, Q_{1}\right) \quad \forall Q_{0}, Q_{1}, Q_{2} \in \mathcal{M}_{1}(\Omega, \mathcal{A}) \tag{M3}
\end{equation*}
$$

Remark 2. Note that by virtue of Jensen's inequality

$$
\frac{f(u)+f^{*}(u)}{1+u}=\frac{1}{1+u} \cdot f(u)+\frac{u}{1+u} \cdot f\left(\frac{1}{u}\right) \geq f(1)
$$

Therefore (f1) and (f2) imply $f(u)>0$ for all $u \in \mathbb{R}_{+} \backslash\{1\}$ and hence $f(0) \in(0, \infty)$. Moreover, it can be easily seen that, provided ($\mathrm{f} 3, \beta$) is satisfied for $\beta=\alpha \in(0,1]$, it is also satisfied for every $\beta \in(0,1]$.

The following Remark is a consequence of [6], Propositions 5 and 6.

Remark 3. Let (f1) and (f2) hold true and let $\alpha_{0} \in(0,1]$ be the maximal α for which ($\mathrm{f} 3, \alpha$) is satisfied. Then the following statement concerning α_{0} can be made. Let $k_{0}, k_{1}, c_{0}, c_{1} \in(0, \infty)$ be such that

$$
\begin{aligned}
f(0) \cdot(1+u)-f(u) & \sim c_{0} \cdot u^{k_{0}} & & \text { for } u \downarrow 0 \quad \text { and } \\
f(u) & \sim c_{1} \cdot|u-1|^{k_{1}} & & \text { for } u \uparrow 1
\end{aligned}
$$

then $k_{0} \leq 1, k_{1} \geq 1$ and $\alpha_{0} \leq \min \left(k_{0}, \frac{1}{k_{1}}\right) \leq 1$.

2. THE MAIN RESULT

First we are going to show that f-divergences can be defined in terms of the following class of functions

$$
f_{p}(u)=\left\{\begin{array}{ll}
\left(1+u^{p}\right)^{\frac{1}{p}}-2^{\frac{1}{p}-1} \cdot(1+u) & \text { for } p \in(1, \infty) \\
\frac{|u-1|}{2} & \text { for } p=\infty
\end{array}, u \in \mathbb{R}_{+}\right.
$$

which satisfies $\lim _{p \rightarrow \infty} f_{p}(u)=f_{\infty}(u)$.
Lemma 1. $\quad f_{p} \in \mathcal{F}$ and satisfies (f 1) and (f2) for all $p \in(1, \infty]$.
Proof. Since this assertion is obvious for the case $p=\infty$, let us assume $p \in$ $(1, \infty)$ from now on. For this case

$$
\lim _{u \downarrow 0} f_{p}(u)=f_{p}(0)=1-2^{\frac{1}{p}-1} \in(0, \infty), \quad f_{p}(1)=0
$$

$$
\begin{align*}
& f_{p}^{\prime}(u)=\left(1+u^{p}\right)^{\frac{1}{p}-1} \cdot u^{p-1}-2^{\frac{1}{p}-1} \quad \text { and hence } \tag{1}\\
& f_{p}^{\prime}(1)=0 \text { and }
\end{align*}
$$

$$
\begin{align*}
& f_{p}^{\prime \prime}(u)=(p-1) \cdot\left(1+u^{p}\right)^{\frac{1}{p}-2} \cdot u^{p-2}>0 \quad \forall u \in(0, \infty) \quad \text { and hence } \tag{2}\\
& f_{p}^{\prime \prime}(1)=(p-1) \cdot 2^{\frac{1}{p}-2}
\end{align*}
$$

Therefore f_{p} is an element of \mathcal{F} satisfying (f1). The validity of $f_{p}^{*}(u) \equiv f_{p}(u)$ is obvious.

Remark 3 provides an upper bound for the subset of those $\alpha \in(0,1]$, for which (f3, α) may hold.

Remark 4. Owing to

$$
\begin{aligned}
f_{p}(0) \cdot(1+u)-f_{p}(u) & =1+u-\left(1+u^{p}\right)^{\frac{1}{p}} \sim u & & \text { for } u \downarrow 0 \\
f_{p}(u) & \sim(p-1) \cdot 2^{\frac{1}{p}-3} \cdot(u-1)^{2} & & \text { for } u \uparrow 1
\end{aligned}
$$

(the latter being a consequence of (1) and (2)), the maximal $\alpha \in(0,1]$ satisfying ($\mathrm{f} 3, \alpha$) - if there is any - must be $\alpha_{0} \leq \frac{1}{2}$.

Interpretation of the f-divergences under consideration. Let

$$
R\left(Q_{0}, Q_{1}\right)=\operatorname{co}\left\{\left(Q_{0}(A), Q_{1}\left(A^{c}\right)\right), A \in \mathcal{A}\right\}
$$

be the risk set of the testing problem $\left(Q_{0}, Q_{1}\right) \in \mathcal{M}_{1}(\Omega, \mathcal{A})^{2}$ (whereby "co" means "the convex hull of"). Then the corresponding f-divergence

$$
I_{f_{p}}\left(Q_{1}, Q_{0}\right)= \begin{cases}\int\left(q_{1}^{p}+q_{0}^{p}\right)^{\frac{1}{p}} \mathrm{~d} \mu-2^{\frac{1}{p}} & \text { for } p \in(1, \infty) \\ \frac{1}{2} \int\left|q_{1}-q_{0}\right| \mathrm{d} \mu & \text { for } p=\infty\end{cases}
$$

can be interpreted as the difference or the arc lengths of the lower boundary of the risk set and the diagonal

$$
D=\left\{(x, y) \in[0,1]^{2}: x+y=1\right\}
$$

both measured in terms of the l_{p}-norm in \mathbb{R}^{2}. We denote the arc length in question by $l_{p}-$ arc length since it coincides for $p=2$ with the ordinary arc length. For further reading on the geometric point of view we refer to Feldman and Österreicher [5] and the entry [10] of the author.

For the limiting case $p=\infty$ the corresponding f-divergence $I_{f_{\infty}}\left(Q_{1}, Q_{0}\right)$ is half of the well-known variation distance. For $p=2$ it has been shown in [6] that the square root of the corresponding f-divergence $I_{f_{2}}\left(Q_{1}, Q_{0}\right)$ is also a distance. In the sequel we are going to show the following generalization of the latter which may be conjectured from Remark 4.

Theorem. For every $p \in(1, \infty)$ the square root of the f-divergence $I_{f_{p}}\left(Q_{1}, Q_{0}\right)$ defines a distance on $\mathcal{M}_{1}(\Omega, \mathcal{A})$.

By virtue of Lemma 1 and [6], Theorems 1 and 2, the proof is reduced to that of the following Lemma.

Lemma 2. Let $p \in(1, \infty)$. Then the function

$$
h_{p}(u)=\frac{(\sqrt{u}-1)^{2}}{f_{p}(u)}, \quad u \in[0,1)
$$

is (strictly) decreasing.
Proof. Because of

$$
h_{p}^{\prime}(u)=\left(\frac{1}{\sqrt{u}}-1\right) \cdot \frac{1}{f_{p}^{2}(u)} \cdot \phi_{p}(u)
$$

with

$$
\begin{aligned}
\phi_{p}(u) & =-\left[f_{p}(u)+(\sqrt{u}-u) \cdot f_{p}^{\prime}(u)\right] \\
& =2^{\frac{1}{p}-1}\left(1+u^{\frac{1}{2}}\right)-\left(1+u^{p}\right)^{\frac{1}{p}-1} \cdot\left(1+u^{p-\frac{1}{2}}\right)
\end{aligned}
$$

it suffices to show $\phi_{p}(u)<0$ for all $u \in(0,1)$. Owing to $\phi_{p}(1)=0$ it suffices to show that the functions ψ_{p} defined by $\psi_{p}(u)=\sqrt{u} \cdot \phi_{p}^{\prime}(u)$ satisfy

$$
\psi_{p}(u)=2^{\frac{1}{p}-2}-\left(1+u^{p}\right)^{\frac{1}{p}-2} \cdot u^{p-1} \cdot\left[(p-1) \cdot(1-\sqrt{u})+\frac{1+u^{p}}{2}\right]>0
$$

for all $u \in(0,1)$. Because of $\psi_{p}(1)=0$ this, however, follows from

$$
\psi_{p}^{\prime}(u)=-(p-1) \cdot\left(p-\frac{1}{2}\right) \cdot\left(1+u^{p}\right)^{\frac{1}{p}-3} \cdot u^{p-2} \cdot(1-\sqrt{u}) \cdot\left(1-u^{p}\right)<0
$$

which is obvious.
(Received July 18, 1995.)

REFERENCES

[1] S. M. Ali and S. D. Silvey: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131-142.
[2] D.E. Boekee: A generalization of the Fisher information measure. Delft University Press, Delft 1977.
[3] I. Csiszár and J. Fischer: Informationsentfernungen im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tud. Akad. Mat. Kutató Int. Kösl. 7 (1962), 159-180.
[4] I. Csiszár: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-107.
[5] D. Feldman and F. Österreicher: Divergenzen von Wahrscheinlichkeitsverteilungen integralgeometrisch betrachtet. Acta Math. Acad. Sci. Hungar. 37 (1981), 4, 329-337.
[6] P. Kafka, F. Österreicher and I. Vincze: On powers of f-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415-422.
[7] F. Liese and I. Vajda: Convex Statistical Distances. Teubner-Texte zur Mathematik, Band 95, Leipzig 1987.
[8] K. Matusita: Decision rules based on the distance for problems of fit, two samples and estimation. Ann. Math. Stat. 26 (1955), 631-640.
[9] F. Österreicher: The construction of least favourable distributions is traceable to a minimal perimeter problem. Studia Sci. Math. Hungar. 17 (1982), 341-351.
[10] F. Österreicher: The risk set of a testing problem - A vivid statistical tool. In: Trans. of the Eleventh Prague Conference, Academia, Prague 1992, Vol. A, pp. 175-188.
[11] E. Reschenhofer and I. M. Bomze: Length tests for goodness of fit. Biometrika 78 (1991), 207-216.
[12] I. Vajda and F. Österreicher: Statistical information and discrimination. IEEE Trans. Inform. Theory 39 (1993), 3, 1036-1039.
[13] I. Vincze: On the concept and measure of information contained in an observation. In: Contributions to Probability (J. Gani and V.F. Rohatgi, eds.), Academic Press, New York 1981, pp. 207-214.

[^0]
[^0]: Dr. Ferdinand Österreicher, Institut für Mathematik, Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg. Austria.

