
K Y B E R N E T I K A — VOLUME 32 (1996) , NUMBER 3, P A G E S 251 - 2 6 0 

PARALLEL ALGORITHMS FOR INITIAL 
AND BOUNDARY VALUE PROBLEMS 
FOR LINEAR ORDINARY DIFFERENTIAL 
EQUATIONS AND THEIR SYSTEMS 

I G O R P O D L U B N Y 

New parallel algorithms for solving initial and boundary value problems for linear ODEs 
and their systems on large parallel MIMD computers are proposed. 

The proposed algorithms are based on dividing a problem in similar so-called local 
problems, which can be solved independently and in parallel using any known (sequential 
or parallel) method. The solution is then built as a linear combination of the local solutions. 

The recurrence relationships (for the case of non-homogeneous equations) and explicit 
expressions (for the case of homogeneous equations) for the coefficients of that linear com
bination are obtained. 

Three elementary examples, illustrating the idea of the proposed approach, are given. 

1. INTRODUCTION 

The majority of parallel algorithms were developed for solving algebraic problems 
and boundary value problems for partial differential equations (PDEs). With the 
exception of the parallelization of methods of the Runge-Kut ta type and their modi
fications, almost no attention was paid to the development of parallel algorithms 
for ordinary differential equations (ODEs), and the available literature reflects this 
state [ l ] - [5 ] . However, not every parallel algorithm for solving PDEs is applicable 
for solving ODEs. 

Some new parallel algorithms for solving initial and boundary value problems for 
linear ODEs and their systems are described and illustrated in this paper. 

The proposed approach is based on two main ideas. 

1. The first idea is tha t , in fact, we always deal with finite intervals when we look 
for the numerical solution of any initial value problem. Even when the given interval 
(in the formulation of a problem) is infinite, we can obtain the numerical solution of 
a problem only for the finite subinterval of the given original infinite interval. So it 
seems to be natural to apply numerical methods directly to the finite (sub)interval 
of the researcher's interest. 
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Briefly: the first important idea is the finiteness of the considered interval for the 
numerical solution. 

2. When one reads or hears the words "the initial value problem", only the 
sequentiality of the numerical procedure is automatically assumed. One starts at 
the beginning (say, at x = 0) and then goes step by step to the "future" (x runs to the 
end of the considered interval). It seems to be impossible to calculate something of 
the solution in "the far future" without a set of all those previous steps — the solution 
seems to be strongly dependent on its "past". Probably because of such traditional 
understanding, all known parallel methods for ODEs solve the common problem: 
how to make those sequential steps faster (but steps are still made sequentially). 

However, for linear ODEs the rejection of such traditional understanding opens 
new ways. Instead of making sequential steps, we look for something like building 
elements (from the beginning of the considered interval to the end), and construct 
the solution using these building elements. It is very important that the building 
elements, corresponding to subintervals of the considered interval, can be found 
absolutely independently and in parallel. 

Briefly: the second idea is to prepare (in parallel) a set of building elements for 
the whole considered interval and to use them for constructing the solution. 

In this paper we introduce the parallel algorithms for linear ODEs and their 
systems. The proposed approach is illustrated with the help of three elementary 
examples. One of them (see Section 4.2) shows that such an approach can be used 
also for solving boundary value problems for LODEs. 

Implementation, speed-up and related problems do not belong to the scope of 
this paper and will be discussed separately. 

2. CAUCHY'S PROBLEM FOR NON-HOMOGENEOUS LINEAR ODE 

Let us consider the following Cauchy problem: 

Lm[y] = f(x), xe[a,b] (1) 

y^-l\a) = yj-l, (j = l,...,m), (2) 

where Lm[y] = YlT^oP^^y (x)'i Pk(x) (k = 0 , . . . ,m) and f(x) are continuous 
in the closed interval [a,b]. We look for the solution of the problem ( l ) - (2 ) in the 
interval [a,b]. 

Let us divide this interval in n subintervals: 

a = XQ < xi < xi < ... < xn-\ < xn = b 

and look for the solution of the problem ( l ) - (2 ) in the form: 

{ J2k
n
z=1aikuik(x) + Vi(x), xeli, 

(3) 
h = [".--I, x,-], (i=l,...,n). 
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The function Uik(x) is equal to 0 outside L and it is equal to the solution of the 
problem 

Lm[щк] = 0, x Є ІІ 

uil~ (xi-i) = őj-i,k-i, І = l , . . . , r o 3 (к = l,...,m) 
(4) 

when x £ 1% (Sj,k is Kroneker's delta). 
Similarly, f,(.r) is equal to 0 outside /,• and it is equal to the solution of the 

problem 
f Lm[vi] = f(x), x e Ii 

(5) 
,0-1) (.rг_i) = 0, j = l,...,m, 

when x _ Ii. 
The constant a,* must be determined by satisfying the initial conditions (2) and 

the condition of continuity of y^'-i)(x), (j = 1,.. ., m) in [a,b]. The second condition 
leads to satisfying continuity of yV\x) at the points x = Xi, (i = 1,... ,n — 1). 

The above considerations along with the use of Picard's theorem lead to the 
following result: 

T h e o r e m 1. If pv(x),(u = 0, . . . , m) and f(x) are continuous in [a,b], then the 
solution of the Cauchy problem ( l ) - ( 2 ) for the interval [a, b] can be obtained in the 
form (3), where functions Uik(x) and Vi(x) are defined above and the coefficients aik 
are given by the recurrence relations: 

a-ik = yk-i, 

aik = ai-.1>kUi_1)k(xi-1)-T-v(-_~1\xi-1), (i = 2,...,n; k=l,...,m). (6) 

3. CAUCHY'S PROBLEM FOR A SYSTEM OF NON-HOMOGENEOUS 
LINEAR ODES 

As will be shown below, the use of the appropriate notation makes obtaining similar 
results for systems of linear ODEs possible. Since the problem for a system of linear 
ODE's of order higher than one can easily be reduced to a problem for systems 
of linear ODE's of the first order, we can consider only systems of the first-order 
equations without loss of generality. 

Let us consider the following Cauchy problem: 

У'(x) = C(x)У(x) + F(x) 

У(a) = У0, 

(7) 

(8) 

where 

У(x) = 

í yi(x) \ 
V2(x) 

\ ym(x) ) 

F(x) = 

( fi(x) \ 
h(x) 

\ fm(x) ) 
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C(x) = 

l Cц(í5) 
c2\(x) 

C\m(x) \ 

C2m(x) 

\ Cmi(x) ••• cmm(;r) / 

and y(x), F(x) and c(;r) are continuous in the closed interval [a, b]. We will look 
for the solution of problem (9)-(10) in the interval [a, b]. 

First, let us introduce the following notation: 

/ vi,i(x) \ 
Vi,2(x) 

Vi(x) = Uik(x) = 

l Uik,\(x) \ 
Uik,2(x) 

\ Uik,m(x) / 

ЛІ = 

( a»',i \ 
ai,2 

\ vÍ!m(x) / \ &i,m / 

Ф 
Єfc = 

(*) 
Ui(x) = (Uц(x), Ui2(x), ..., Uim(x)) 

\°J 
Uik(x) and Vi(x) are column vector functions, Ai is a constant column vector, Ui(x) 
is a matrix consisting of the column vector functions Un(x), Ui2(x), ..., Uim(x)-

Let us divide [a, b] in n subintervals: 

a = xo < Xi < x2 < ... < xn-\ < xn = b 

and look for the solution of the problem (9) - (10) for the interval [a, b] in the following 
form: 

f Ui(x)Ai + Vi(x), x e Ii 
y(x) = \ W (9) 

[ i = l,...,n, 

where Uik(x) ( the columns of Ui(x) ) and Vi(x) are the solutions of the following 
problems: 

f U'ik(x) = C(x)Uik(x), xek 

\ Uik(xi-i) = ek (k = l,...,m) 

(П) 
J V((x) = C(x)Vi + F(x), xek 

\ Vi(xi-1) = 0. 

Uik(x) and Vi(x) are equal to the zero vector outside their subintervals. We call 
Uik(x) and Vi(x) the "local solutions". 

The constant vector A{ must be determined by satisfying the initial condition 
(10) and the condition of continuity of y(x) in [a, b]. The last condition reduces to 
satisfy continuity of y(x) for x = Xi , (i = 1,..., n — I). 

The above considerations along with the use of Picard's theorem complete the 
proof of the following theorem: 
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Theorem 2 . If C(x) and F(x) are continuous in [a,b] , then the solution of the 
Cauchy problem (9) — (10) for the interval [a, b] can be obtained in the form (11), 
where Ui(x) and Vi(x) are defined above and coefficients A,- are given by the recur
rence relations: 

Ai=y0; Ai=Ui-i(xi-i)Ai-i + Vi-i(xi-i), (i = 2,...,n). (12) 

In the case of a homogeneous system (F(x) = 0 ) the explicit formula for Ai can 
be obtained instead of the recurrence relations: 

Ai = Ui-i(xi-i)Ui-2(xi-2) • • Mi(xi)y0 (13) 

and the solution can be expressed explicitly with the help of the local solutions: 

Theorem 3 . If C(x) is continuous in [a, b] , then the solution of Cauchy's problem 
(9)-(10) for F(x) = 0 can be obtained in the form: 

[ Ui(xi)Ui-i(xi-i)Ui-2(xi-2) • • Mi(xi)y0, x G k 
y(x) ~\ 

I i = l , . . . , n . 

4. EXAMPLES 

To illustrate the proposed approach, we will consider three elementary examples, 
where local problems can be solved analytically as well as main problems. Moreover, 
for simplicity the division of a main interval into only two subintervals is used. 

4 .1. An initial value problem for a non-homogeneous equation 

Let us consider the problem: 

f y'(x)-y(x) = x 
{ (14) 
1 y(0) = i 

(which has the obvious solution y(x) = 2exp(„) — x — 1), to find its solution for the 
interval [0,2] by the proposed method. 

First, we divide this interval into two smaller ones: [0,1] and [1,2]. Then we 
introduce functions ui(x), U2(x), vi(x) and V2(x), which are equal to the solutions 
of the independent local problems when x belongs to the corresponding subinterval 
and which are equal to 0 outside these subintervals. The local problems and the 
local solutions are listed below: 

a) for the interval [0,1]: 

f u\(x) — ui(x) = 0; ui(x) = exp(x) i 

1 tti(0) = l 
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( v[(x) — Vi(x) = x; vi(x) = exp(x) — x — 1 

1 «i(0) = 0. 

b) for the interval [1,2]: 

{ u'2(x) - u2(x) = 0; u2(x) = exp(x - 1) 

«2(1) = 1 

{ v'2(x) — v2(x) = x; v2(x) = 2exp(.r — 1) — x — 1 

v2(l) = 0. 

Then we look for the solution in the form: 

(16) 

(17) 

(18) 

f aiU^ + v^x), x£ [0,1] \ 
y(x) = < (19) 

[ a2u2(x)-{-v2(x), x e [1,2] 

(which is the particular case of (3)). 
Satisfying the initial condition (y(0) = 1), we obtain a\ = 1. The continuity of 

y(.c) gives a2 = 2(e — 1). Therefore, 

f «!(«?) + «!(*), a? 6 [0,1] 
t/(x) = -̂  (20) 

[ 2(e-l)u2(x) + v2(x), ze [1,2]. 

It is easy to check that the derivative y'(x) is continuous too, and that expression 
(22) gives for x € [0,2] exactly 2exp(x) — x — 1, which is the classical form of the 
solution of problem (16). 

4 .2 . A boundary value problem for the ODE of the second order 

The proposed approach can also be used for solving boundary value problems for 
ODEs. 

Let us consider the following problem: 

y"(x) - y(x) = 0 

y(0) = i (21) 

y(2) = exp(2) 

which has the obvious solution y(x) = exp(x). To use the proposed method, we 
divide the interval [0, 2] into two subintervals and introduce, as above, the local 
solutions, which are equal to the solutions of the independent local problems when 
x belongs to the corresponding subinterval and which are equal to 0 outside these 
subintervals. The local problems and the corresponding local solutions are listed 
below: 
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a) for the interval [0,1]: 

u'{0(x) - uio(x) = 0; 

< uio(0) = l 

k u'10(0) = 0 

-*ii(-0 - w n ( x ) = 0; 

i un(0) = 0 

. «ii(0) = i. 

b) for the interval [1,2]: 

f u'io(x) - "20(x) = 0; 

u2o(2) = 1 

uю(x) = cosh(ж) 

uц(x) = sinh(ar) 

U2o(x) = cosh(.c — 2) 

{ u2o(2) = 0 

u'2\(x) — u2i(.c) = 0; u 2i(x) = sinh(x — 2) 

i u 2i(2) = 0 

> u'21(2) = 1. 

Then we look for the solution in the following form: 

aioUio(x) + anUii(x), x G [0,1] 
y(x) = 

а2ou2o(x) + a2iu2i(.c), x Є [1,2]. 

(22) 

(23) 

(24) 

(25) 

(26) 

Satisfying the boundary conditions, we find: aio = 1, a2o = exp(2). The conti
nuity of y(x) and y'(x) gives: a n = 1, a 2 i = exp(2). 

Therefore, 

y(x) = 
uio(^) + Uц(x), Є[0,1] 

exp(2) (u 2 0(x) + u2i(аr)), x Є [1,2]. 
(27) 

It is easy to check that y"(x) is continuous too, and that expression (29) gives for 
x E [0,2] exactly exp(x), which is the classical form of the solution of problem (23). 

4.3. An initial value problem for a system of linear ODEs 

Let us consider the following problem: 

r y'(x) = c(x)y(x) 

I W ) = c2> 
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where 

*•>-($!)*>-(-5) «-(- )-( ! 
This problem has the obvious solution: 

cosh(x) 

To use the proposed method, we divide the interval [0,2] into two subintervals 
and introduce the local solutions, which are equal to the solutions of the independent 
local problems when x belongs to the corresponding subinterval and which are equal 
to 0 outside these subintervals. The local problems and the corresponding local 
solutions are listed below: 

a) for the interval [0,1]: 

( U[1(x) = C(x)Uu(x) ( coshU) \ 

\un(0) = ei

 U^={SmHx)) (30) 

[ U[2(x) = C(x)U12(x) ( s i n h ( a r ) \ 

\u12(0) = e2 ^)=Uosh(,)J- < 3 1 > 

b) for the interval [1,2]: 

| U!2l(x) = C(x)U2l(x) 

l U2i(l) = ei "-W-(SЙ-îí) (32) 

f U^(x) = C(x) U22(x) f s i n h ( x _ i) \ 

\u22(l) = e2
 U^={cosHx-l))- (33> 

Then we look for the solution in the following form: 

f Ui(x)Au xG[0 , l ] 
y(x) = { (34) 

1 U2(x)A2, «e [ i ,2 ] . 

Satisfying the initial condition, we find _4i = I . ). 

The continuity of y(x) leads to the equation ui(l) A\ = u2(l) ^42 from which we 
, . . . ( sinh(l) \ 

°b t a m^2 =
Vcosh(i) y 

Therefore, the solution of problem (30) is: 

f u12(x), x e [o, i] 
• y(x) = < , r (35) 

[ sinh(l)U21(.r) + cosh(l)U22(x), x 6 [1,2], 
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It is easy to see tha t the derivative y'(x) is continuous too, and that expression 

(37) gives for x £ [0,2] exactly ( ,\ I J, which is the classical form of the 

solution of the considered problem (30). 

5. CONCLUDING REMARKS 

The proposed approach can be successfully used for solving initial and boundary 
value problems for linear ordinary differential equations especially on large parallel 
MIMD computers. 

The most natural parallel computer architecture for the proposed method is a 
simple tree structure, where the local problems are solved independently and in 
parallel (using any known sequential or parallel numerical method) at leaves and 
their outputs are after that gathered at the root, where the recurrence relations 
(Theorems 1-4) are realized. 

The accuracy of the main solution is determined by the accuracy of the obtained 
local solutions. 

If every coefficient of the considered equations is given by the same analytical 
expression in the considered main interval, then the proposed approach could be 
easily vectorized. In such a case, number and lengths of steps in all subintervals 
must be the same. Under this condition, all computations necessary for obtaining 
local solutions can be performed simultaneously using vector computing facilities 
provided by hardware (vector processor) or software (such as MATLAB). 

The proposed method requires almost no communication between processors (or 
the local problem solvers). This makes even the use of cheap computer networks 
(with slow da ta transfer) possible instead of expansive parallel computers. 

However, the proposed method in its present form is not applicable for solving 
non-linear problems. 
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