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N E W BOUNDS FOR ROBUST STABILITY 
OF CONTINUOUS AND D I S C R E T F - T I M E SYSTEMS 
U N D E R P A R A M E T R I C UNCERTAINTY 

IOANNIS K. KONSTANTOPOULOS AND PANOS J . A N T S A K L I S 

New conditions for robust stability in linear continuous and discrete-time systems are 
derived, when all matrices of the state-space model are perturbed by uncertain parameters 
and static output feedback is applied. Also, new conditions for robust stability in linear 
discrete-time systems with both unstructured and structured perturbations in the system 
matrix A are derived. The analysis is based on the direct method of Lyapunov and several 
examples are used to illustrate the results. 

1. INTRODUCTION 

The problem of robust stability of linear state-space models has been an active area 
of research for quite some time; see [1], [4], [18] for extensive discussion and references. 
For the cases of both structured and unstructured parametric uncertainty involv
ing state-space models, results exist for both continuous ([2], [6], [9], [14], [15], [17], 
[22], [23], [24]) and discrete-time systems ([6], [7], [10], [16], [20], [21]). In all the above 
papers, the uncertain parameters describe the perturbation in either the open-loop 
system matr ix A or the closed-loop system matrix Ac, when state (A + BK) or 
output feedback (A + BKC) is applied. The uncertainty matr ix AA for either A or 
Ae is assumed to be of the form A A = Yli=i Ki-^ii where /c,-, i = 1 , . . . , m denote 
the uncertain parameters and A{, i = 1 , . . . , m are known constant matrices. Note 
that the uncertain parameters enter the uncertainty matr ix linearly. 

When all matrices of a state-space model, that is the system matr ix A, the input 
matr ix B, and the output matr ix C are perturbed and output feedback is applied, 
then the above literature methods can not be applied directly, because the sys
tem matr ix of the closed-loop system now contains product-terms of the uncertain 
parameters. However, this case of structured uncertainties in all state-space matri
ces, namely (A,B,C), has been investigated in [8] for discrete-time systems, under 
certain restrictions imposed on the uncertain parameters. Although sufficient con
ditions for stability are provided, no explicit analytic way is presented to derive the 
stability bounds for the general case, when no restrictions are imposed on the un
certain parameters. In [19], the same problem has been studied for both continuous 
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and discrete-time systems. 

Here, we present a new approach which is based on the selection of a positive 
definite matr ix and a positive number. In Section 2, we study linear continuous 
systems with the state-space description of (1) below, where all state-space matrices 
are perturbed by uncertain parameters, as indicated in (2). The proposed approach 
gives results at least as good as the ones derived by the method of [19]. In Section 3, 
we present theorems, stemming from the direct method of Lyapunov, that provide 
sufficient conditions for the robust stability of linear discrete-time systems. First, we 
study the case of unstructured perturbations in the system matrix A and then the 
case of structured perturbations, (35) below. In both cases, the present approach im
proves previous results obtained via Lyapunov techniques in [10]. Finally, we study 
the discrete-time systems of (40) below, where again all state-space matrices are per
turbed by uncertain parameters, as indicated in (2) and obtain results comparable 
to the ones provided by the method of [19]. In Section 4, illustrative examples for 
all the cases mentioned above are presented and in Section 5, concluding remarks 
are briefly discussed. 

It should be mentioned that although the present paper presents analysis results, 
the theorems established for the discrete-time cases have already been used success
fully for synthesis studies in [13]. Finally note that although only the static output 
feedback case is studied in both Sections 2 and 3, the results apply to the dynamic 
output feedback case as well. This is because a dynamic output feedback controller 
of order r applied to a system of order n is equivalent to a static output feedback 
controller applied to an augmented system of order n + r; see for example [9], [19]. 

It should also be noted that synthesis results for the cases of structured pertur
bations in all system matrices based on HQQ techniques have also appeared in the 
literature, [3], [5], [25]. Note however that in [3], [5] no specific information about the 
uncertainty bounds that describe the uncertainty matrices is provided, and in [25] 
no explicit way is presented to compute the uncertainty bounds, which are decided 
experimentally via the ellipsoidal method. Here, as mentioned before, we present an 
analysis technique for state-space models without exogenous disturbances, and for 
a given controller we present simple ways to compute the stability bounds for the 
uncertain parameters tha t describe the uncertainty matrices. 

2. CONTINUOUS SYSTEMS 

We consider the linear continuous system with the state space description 

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1) 

where x £ 3£n is the state vector, u £ SRr is the input vector and y £ Sft9 is the output 
vector. The state-space matrices are described by 

m m m 

A = Ao + Y,0iAi, fl = Bo + V6»lBf3 C = Co + X^.c . , (2) 
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where 6{, i = l , . . . , r a denote the real, uncertain parameters which describe the 
perturbat ions in A, B, C respectively. We consider the output feedback law 

u(t) = Ky(t), (3) 

where K is a stabilizing ouput feedback matr ix for the nominal system (AQ, BQ, CO). 
Then, the closed loop system is described by 

x(t) = [A + BKC ) x(t) 

m 

A0 + J2 9i (Ai + E? + ^C) + £ °* e>Ei 

i-l 
<*), (4) 

where 

Ao = A0 + B0KC0, EB = BiKC0, E? = B0KCi, Eij=BiKCj. (5) 

The problem can now be formulated as follows: 

"If K is a stabilizing output feedback matrix for the nominal continuous system 
described by (AQ, Ho, Co), that is AQ stable, find the conditions that have to be 
satisfied by the uncertain parameters 0,-, i = 1 , . . . , m, so that the closed loop system 
of (4) remains asymptotically stable" 

Note that the approach presented here is intended to deal with the problem 
of product terms of the uncertain parameters. A second approach based on the 
methodology of Section 3.3 can be found in [11], [12]. When only the system matrix 
A is perturbed, or A together with either H or C, then no such product terms exist. 
In these cases, the present techniques can definitely be applied as well. Note however 
that this is a problem for which numerous approaches and useful results can be found 
in the literature, as indicated in the introduction above. 

We now proceed with the solution of the problem stated above. Since K is a 
stabilizing gain matr ix for the nominal system, there exists a symmetric positive 
definite matr ix P, which is the unique solution of the Lyapunov equation 

PA0 + ATP + 2In = 0. (6) 

Note tha t we have chosen Q = 2 / n as the positive definite matr ix needed in the 
Lyapunov equation above. This choice was made because it facilitates our compu
tations below. This is not the case, however, in Section 3, where we study discrete-
time systems and consider any positive definite matrix in the discrete-time Lyapunov 
equation of (22). The optimal choice of Q is not an issue of interest here. Note, 
however, tha t there exist optimization procedures for systematically choosing the 
Lyapunov matr ix Q, as in [14]. 

We define 

Pi = PAi+AjP, Pв=PEв + (EffP (7) 
f = PEf + (E?)TP, PЦzzPEц+ІEцfP (8) 
Þ=[Pľ P2--Pmf, ÞB = [PB PB--PB]T (9) 

: = [P? P2
C---PCf, n* = Þ + Þв + Þc (10) 
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/ P l l Pl2 • • Pim\ 

n = I ; ; I (n ) 
\ -lml rm2 ' " ' Pmm ' 

e = [0i e2 •••em]T, (12) 

where Pu PB,PC, Pij G 3£nXn, P, PB,Pc, n* € sftmnXn, n G ̂ m n X m n , and 0 G T . 

Theorem 2.1. When the output feedback law (3) is applied to the linear continu
ous system of (1) with structured uncertainties of (2), then the closed loop system (4) 
remains asymptotically stable, when the uncertain parameters satisfy the relation 

( f>?) Amax(|zr + n)<2-Amax^(n*)TzT-1n*y (13) 

where II* and II are defined in (10) and (11) respectively, Z can be any positive 
definite matrix G $ftmnXmn, a can be any positive number, and Amax(.4.) denotes the 
maximum eigenvalue of the matrix A. 

P r o o f . We consider the Lyapunov function V(x) = xTPx, where P is the unique 
positive definite matrix of (6). The derivative of this function is 

V(x) = x »т PÄo + ÄTP + J2 0г [ PAІ +ATP + PEf + (EffP 

+ PEC + (EC)TP ] + J2 Mj ( PEij + 4 P ) 

= xT [ -2/„ + (0 ® L0T IT* + (0 ® In)
T H (0 8 In)} x, (14) 

where the Lyapunov equation (6) and definitions (7)-(12) have been used and <g) 
denotes the Kronecker product. For any two suitably dimensioned matrices X, ^, 
and any positive scalar a, the following matrix inequalities hold 

0 < (aXZ* -VZ-?\ (aXZ* -yZ~^ 

XqT + VXT < aXZXT + -^Z~l^!T, (15) 
a 

where Z can be any positive definite matrix of appropriate dimensions. 
Since ( 0 ® /n)

TLT* is a symmetric matrix, the previous inequality gives 

2( ® / n ) т П * = (0 0 / n ) T П * + ( П * ) т ( ® / n ) 

< a ( 0 (8) / n ) т Z ( <8> /„) + - ( П * ) т Z~l П*. (16) 
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Hence, (14) can be rewritten as follows 

V(x) < xT 

•2in + - 1 (n*)T z-1 n* + Amax (%z + n) (QTe) in 

za \ I / 

2In + - 1 ( П * ) т Z-1 П* + ( (g> 7 n ) т ( | _ + П) ( <g) In) 

< xJ 

Amax(f ^ + n) ÍE^ 2 ) -2 
2a 

= x Фx. (17) 

To maintain V"(„) < 0, it suffices to have A m a x ( $ ) < 0. For any matrix A G 9£ n x n 

and any real number /?, we have A,(/_In + _1) = /? + A; (/I), i = 1 , . . . , m, where 
\i(A) denotes the i th eigenvalue of the matrix A. Hence, V(x) < 0 if 

Amax (~ (n*)T z-1 n*j + Amax ( | z + n) (JTdf J - 2 < 0. (is) 

Now (13) follows easily. • 

It has been stated that Z can be any positive definite matrix. Note that the 
optimal selection of Z is not discussed here and remains an issue of future research. 
In the same respect, the positive number a that maximizes the stability bounds 
above can be selected experimentally, that is by testing several positive values of 
a and choosing the one tha t maximizes the stability region. Note that the above 
remarks for Z and a also hold for the discrete-time cases that are studied in Section 3 
that follows. 

For the cases, where Z = I gives the largest bounds for the uncertain parameters, 
the following lemma can easily be proven; details in [11]. First, we define 

e = Amax ( ( п * ) т n*) £ = А т а х ( П ) . (19) 

L e m m a 2.2. (a) If £ < 0 and |£| > -g-, then the closed loop system (4) remains 
asymptotically stable in the whole parameter space __". 

(b) If £ < 0 and a is selected so that a < min ( £ - , 2 |£ | ) , then the whole _t*m 

outside the hypersphere with radius 

2 - - - -
p2 _ f 2a 
R-jn 

(20) 

belongs to the solution space. 

(c) If £ > 0 and a is selected so that a > V , then the hypersphere with R in 
(20) above belongs to the solution space. 
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3. DISCRETE-TIME SYSTEMS 

3.1. Unstructured perturbations in A 

We consider the linear discete-time system with the state-space description 

x(k + l)=Ax(k), (21) 

where x £ 3£n is the state vector and A an asymptotically stable matrix. Then, 
for every symmetric positive definite matrix Q, we can find a symmetric positive 
definite matrix P, which is the unique solution of the Lyapunov equation 

ATPA- P + Q = 0. (22) 

When A is perturbed by the matrix AA, then for the perturbed system 

y(k + l) = (A + AA)y(k) (23) 

the following theorem holds. First define 

tli = ATPZ~lPA. (24) 

Theorem 3 .1 .1 . Consider the linear discrete-time system (21), where A is an 
asymptotically stable matrix that satisfies (22). Suppose that A —> A + A A, then 
the perturbed system of (23) remains asymptotically stable, if 

(AA)T (aZ + P) (AA) + - Ql < Q (25) 
a 

f\A\ / jamm(Q) ~ 0"max(^ S-l) ( . 
amax(AA) < d , (26 

V (rm.AX(aZ + P) 
where P, Q are defined in (22), U\ in (24), Z can be any positive definite matrix 
G 9£nXn, and a is any positive number that satisfies 

^ m a x ( ^ l ) ft)-. 
a > ~Z—77)V- ^27^ 

P r o o f . We rewrite (22) as follows 

(A + AA)TP(A + AA) -P + Q- (AA)TP(AA) - ATP(AA) - (AA)TPA = 0. (28) 

Using the direct method of Lyapunov, we see that (A + AA) remains an asymp
totically stable matrix, if 

Q = Q-(AA)TP(AA)-ATP(AA)-(AA)TPA > 0. (29) 
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In view of (15) for X = (AA)T, tf = (PA)T and (24), we have 

(AA)TPA + ATP(AA) < a(AA)TZ(AA) + -Ql (30) 
a 

Q - (AA)T(aZ + P)(AA) - - Slx < Q. (31) 
a 

A sufficient condition for Q to be positive definite is that the LHS of (31) is 
positive definite for some a, from which (25) follows easily. Note that a can be 
chosen as any positive number that satisfies (25). Next a sufficient lower bound for 
a is derived. For any positive definite matrices A, B 

A < B & amax(A) < amm(B). (32) 

Defining Si = (AA)T (aZ + P) (AA) + J Qu we have 

ffmax(Si) < <rmax ((AA)T (aZ + P) (AA)) + <xmax (- QA 

< a'2max(AA)amax(aZ + P) + amax (~ fiij . (33) 

In view of (32), (33), a sufficient condition for (25) to hold is 

<7max(A,4) amax(aZ + P) + amax (~^l) < < W Q ) (34) 

from which (26) follows easily. Note that a has to satisfy (27), in order to maintain 
the RIIS of (26) positive. • 

3.2. Structured perturbations in A 

We consider the case where the asymptotically stable matrix A is perturbed by 

m 

AA = ] T OiAi = (0 ® 7n)T A, (35) 
i = l 

where /c;, i = 1,... ,m denote real, uncertain parameters and A{, % = 1 , . . . . m are 
constant, known matrices, and the following definition has been used 

A = [Al Al ••• AlY. (36) 

Theorem 3.2.1. The linear discrete-time system (23) with structured perturba
tions of the form of (35) remains asymptotically stable, when the uncertain par
ameters satisfy 

V ^ O1 «? (Tmxn\^' ~ ^ r n a x j - " l ) , , 

ti l alax(A) amax(aZ + Py 
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where ill, A are defined in (24), (36) respectively, Z can be any positive definite 
matr ix G ^ n x n and a is any positive number that satisfies (27). 

P r o o f . It can easily be shown that 

m 

^Lx(e®/n) = e T e = X>2- (38) 
»=i 

In view of (35), we easily get 

<r2
max(AA) < f f > ? J a2

max(A). (39) 

Therefore, (37) follows easily as a sufficient condition for (26), under the condition 
that a satisfies (27). • 

3 .3 . P e r t u r b a t i o n s i n al l s y s t e m m a t r i c e s 

We consider the linear discrete-time system with the state space description 

x(k + l)=Ax(k) + Bu(k), y(k) = Cx(k), (40) 

where x £ 3£n is the state vector, u G 3£r is the input vector and y G 3£? is the output 
vector and, as in Section 2, the state-space matrices above are described by (2). We 
consider the output feedback law 

u(k) = Ky(k), (41) 

where K is a stabilizing ouput feedback matrix for the nominal discrete-time system 
(AQ, HO) Co)- Then, similarly to (4), the closed loop system is 

x(k + 1) = •(*)• (42) A0 + Y, $i (A* + E* + E?) + E °i0jEa 
i - l i,j 

The problem can now be formulated as follows: 

"If K is a stabilizing output feedback matrix for the nominal discrete-time system 
(AQ, Ho, Co), that is AQ stable, find the conditions that have to be satisfied by the 
uncertain parameters 0{, i = 1, . .. ,m, so that the closed loop system (42) remains 
asymptotically stable." 

Define 

EB = [(Ef)T (EBf • • • (E*)Tf, EC = [(E?f (E9;)T . . • (Egff (43) 

Z* = A + EB+Ec, Q2 = ATPZ-lPA0 (44) 

( En E12 ... Ei, 

•• •• • = 

Emi Em2 . . . ET 

where EB, Ec, E* G ftmn*n, and S G ^ " X m n 

(45) 

Jmm 
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Theorem 3 .3 .1 . When the output feedback law (41) is applied to the linear 
discrete-time system (40) with structured uncertainties of (2), then the closed loop 
system (42) remains asymptotically stable, when the uncertainty parameters satisfy 
the relation 

(I^HfcS^ (46) 

^o-max(aZ+ P) <rmax(S*) + 2 <rmax(azT + P) <rmax(S) [ <Tmin(Q)-<rmax(l jjjjj ] 

2<rmax(aZ + P)<rmax(E) ' + 
where E* and Q2 are defined in (44), E in (45), Z can be any positive definite matrix 
£ 3?n x n , and a can be any positive number that satisfies 

a > Ssga. (47) 

P r o o f . Using (43)-(45), we can rewrite (42) as follows 

x(k + l) = (A0 + AA)x(k), (48) 

where 
AA = ( 9 <g> In)

T E* + (0 <g> In)
T E (6 ® Jn). (49) 

From Theorem 3.1.1, we have the following sufficient condition for (48) to remain 
asymptotically stable 

(AA)T (aZ + P) (AA) + - Q2 < Q, (50) 
a 

where P, Q, and A0 satisfy the Lyapunov equation (22), that is 

ATPAO-P + Q = 0. (51) 

We define 

Tx = (6 <g) 7n)T E*, r 2 = (6 <g) J„)T E (9 <g> Jn) (52) 

$l = (aZ + P)3Tu $2 = (aZ + P)* T2. (53) 

With definitions (52) and (53), we have 

(AAf (aZ + P) (AA) = TT (aZ + P) Tx + TT (aZ + P) T2 

+ $ T $ 2 + $ T $ ! (54) 
< 2TT (aZ + P)Tx + 2TT (aZ + P)T2, (55) 

where (15) was used in (54) for a = 1 and Z = I. Defining 5 2 = (AA)T (aZ + 
P) (AA)+- Q2, the following sufficient condition for (50) holds 

<rmax[H2] < 2 <rmax ( TT (aZ + P) Tx ) 
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+ 2 fTmax ( Гj (aZ + P) Г2 ) + <гmax í І í-2 J 

< ^a^aZ + P^al^^iQ^e) 

+ 2 <xmax(aZ + P) <rmax(E) ( T )2 + <xmax f - ft2 

< Cmin(Q) (56) 

or finally 

[2cr raax(aZ + P)o-max(S)] ПГ<9? + [^ ^,x(aZ + Р) атах(^)} Г£о\ 

Cmax(-- Q2) - <Tmin(Q) < 0. (57) 

Selecting a to satisfy (47), we see that the 2 roots of (57) have opposite sign, and 
therefore the solution is as indicated in (46). • 

4. ILLUSTRATIVE EXAMPLES 

Example 1. Consider the following uncertain continuous system 

A = - 1 - 1 \ , „ / 5 0\ „ / O l 
0 0 + M - 8 3 + " 2 0 1 

в 
0 

-0.7 + -' ů) 
C7 = (0 1 ) + !j!(-3 0 ) + t?2(0.3 2 ) . 

Using (13) for a given output feedback gain K — 1, a = 178.14 and 

(58) 

(59) 

(60) 

£ = 

/ 3.9214 0 0.0075 0.0302 \ 
0 3.9655 0 0 

0.0075 0 3.9269 -0.0211 
Vo.0302 0 -0.0211 3.9838 / 

we obtain 
6\ + $1 < (0.0522)2 

which improves the bound derived via the method of [19], which is 

0] + 9\ < (0.0520)2. 

Example 2. Consider the uncertain discrete-time system (23) from [10] for 

0.20 0.30 
A = 0.10 -0.15 

(61) 

(62) 

(63) 

(64) 
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Using (26) of Theorem 3.1.1 for Q = I2, <x = 0.2702 and 

Z 
2.0399 -0.2037\ 

-0.2037 1.4586 ) 

we obtain 
^max(Ayl) < 0.6787 

which compares favorably to the result of [10] 

^max(Ayl) < 0.6373. 

(65) 

(66) 

(67) 

Example 3. Consider the same nominal system as before, but now with structured 
perturbations of the form of (35), with m = 3 and 

10 0.1 
- 1 5 

-0.5 9 
0 - 3 

A1= I - " - I , A2 = ( r " "„ V A 

Using (37) of Theorem 3.2.1 for Q = I2, a = 0.40 and 

Z = 

re obtain 

з — 
1 0.6 
1 0.3 

1.3462 -0.1184 
-0.1184 0.8786 

6\ + 6>2 + Q\ < (0.0606)2 

that is a sphere with radius R = 0.0606, whereas the method of [10] gives 

|0.-| < 0.0348 i= 1,2,3. 

(68) 

(69) 

(70) 

(71) 

As we see in Fig. 1, the cube of (71) is completely included in the sphere of (70), 
which shows that our bound is less conservative than the one of [10]. 

d = cube edge 
2 * 0.0348 

R = sphere rádius = 0.0606 
Re = cube rádius = 0.0603 

Fig. 1. Example 3. 
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E x a m p l e 4 . Consider the following uncertain discrete-time system with indepen
dent uncertain parameters describing the perturbation matrices 

»-fci:&) +*(-•. o).*=(oHC) (72) 

C = (1.2 - 1 . 5 ) + 93(-l 1 ) . (73) 

For a given gain K = 0.80, we use (46) for Q = 2I2, ex = 0.35 and 

/ 0.8160 0.0345 A . . 
^ — n nQ/it; 1 osfit; \ ' 4 J 

to obtain 

0.0345 1.2865/ 

#1 + #2 + #3 < (0.2636)2. (75) 

Note that a and Z in all the examples above have been decided experimentally 
to give the largest radius for the hypersphere within which the uncertain paremeters 
vary. Note also tha t for all the cases that Q had to be selected in the discrete 
Lyapunov equations (Examples 2 - 4 ) , Q = al gave the best results. 

5. CONCLUSIONS 

In this paper, a novel approach for robust stability of linear continuous and discrete-
time systems under parametric uncertainty has been presented. The approach is 
based on Lyapunov techniques and several examples have been used to illustrate the 
results. The main point of this approach is the selection of a positive definite matr ix 
Z and a positive number a that maximize the stability region, within which the 
uncertain parameters vary. Note that the theorems presented here have also been 
used in [13] for the design of output feedback controllers that maintain the robust 
stability and optimal performance of discrete-time systems. 

Issues tha t remain to be addressed include reduction of conservatism, the exten
sion of the present results to the case where the bounds do not have to be necessarily 
symmetric with respect to the origin, and the study of the case where the parameters 
are nonlinear functions of an uncertainty. Another issue that would be of consider
able interest is the development of a systematic way-procedure, possibly based on 
optimization techniques, to obtain the optimal positive matr ix Z needed for our 
theorems above, where with optimal matrix we mean the matr ix that could give the 
best bounds. 

(Received February 24, 1995.) 
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