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SINGULAR FINITE EIORIZON FULL INFORMATION H°° 
CONTROL VIA REDUCED ORDER RICCATI EQUATIONS 

F R A N C E S C O A M A T O AND A L F R E D O P I R O N T I 

In this paper we consider the standard finite horizon, full information H°° control prob
lem when the direct feedthrough matrix, which links the control input to the controlled 
output, is not full column rank. Using a differential game approach, we show that, in this 
case, the solution of the problem can be obtained solving a reduced order Riccati differential 
equation. 

1. INTRODUCTION 

i a this paper we consider the finite horizon, full information H°° control problem 
for linear time-varying systems. Full information means that , as often it happens in 
practical situations (see for example [4]) the exogenus inputs, including command 
signals and disturbances, are available for the feedback (for the definition of full 
information problem see [5]). 

This problem has been solved in the nonsingular case (in other words when the 
direct feedthrough matrix D between the control input and the controlled output is 
full column rank), see for example [5], [6] and [9]. 

Our goal is to discuss the H00 problem when the above-mentioned D matr ix is 
net full column rank, the so-called singular problem. Our main result consists in 
proving tha t , in this case, the original H°° problem is equivalent to another ri°° 
problem related to a reduced order system. 

The machinery uses a dynamic games approach ([1],[2]) leading to a singular 
minmax problem. Using a suitable decomposition of the state space introduced in 
the literature by Butman [3] (see also [7]) and considering the class of solutions of 
full information type, we will show that this game is equivalent to another game 
acting on a reduced order state equation. 

This work is a first a t tempt of generalization to the time-varying setting of the 
results contained in the paper by Stoorvogel [8], where the singular H°° control prob
lem for time-invariant systems has been solved by means of an elegant decomposition 
of the state space involving the concept of strongly controllable subspace. 

The paper is organized as follows. In Section 2 we state precisely the problem we 
deal with, showing the connections with the differential game theory. In Section 3 a 



G02 F. AMATO AND A. PIRONTI 

theorem concerning the equivalence between the original singular minmax problem 
and a certain reduced order minmax problem is proved when D = 0. In Section 4 
we come back to the H°° setting and state our main result when D = 0, while 
in Section 5 the case D ^ 0 is discussed, showing that it can be solved using the 
same machinery. Finally in Section 6 some concluding remarks and plans for future 
research are given. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

Let Q := [t0,tj] any compact interval on the real line. We denote by £2(Q) the 
space of the real vector-valued functions which are square integrable on Q. The 
usual norm in £2(Q) is denoted by ||-||2- Given a linear time-varying system 

= A(t) x(t) + B(t) u(t), x(t0) = 0 
t £ Q (1) 

= C(t)x(t) + D(t)u(t) 

it uniquely defines a linear operator from £2(Q) to £2(Q) denoted by G. \\G\\ denotes 
the operator norm induced by the norm in £2(Q). Given any matrix F £ IRnXm 

(with n > m), F^ denotes the left pseudoinverse of F. 
We consider the finite horizon full information H°° control problem for the linear 

time-varying system 

f x(t) = A(t)x(t) + B(t)u(t) + H(t)w(t), x(t0) = 0 
{ t£Q, (2) 
[ z(t) = C(t)x(t) + D(t)u(t) 

where x(t) £ IRn is the state, u(t) £ IRm is the control input, w(t) £ IR is the 
exogenus input, and z(t) £ IRP is the controlled output. We shall assume that all 
the involved matrices are continuously differentiable and, without loss of generality, 
that the matrices B and C are full column and row rank respectively. 

Since all matrices and vectors in the paper are time-varying, to avoid cumbersome 
notation, we will omit the time argument, if this is not cause of ambiguity. 

The problem we shall consider in this paper is precisely defined as follows. 

P rob lem 1. Given a positive real number 7, find, if existing, a causal linear control 
K : £2(Q) x £2(Q) —> £2(Q), (x,w) —• u, such that \\TZW\\ < 7, where Tzw denotes 
the closed loop operator mapping w to z. 

Problem 1 has been solved for the full column rank D case in [5] using a dynamic 
games approach. The following lemma connects the 7i°° theory with the dynamic 
games theory. 

Lemma 1. ([9, 5]) Let 

J(u, w) = j2\\w\\2 - \\z\\l = I (j2wTw - zTz) dt. 
Ju 
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Then, for a given control law u, ||-Titi>|| < 7 if and only if for some /J > 0 

J(u,w)> i^\\w\\l, \/weC2(Q). (3) 

By virtue of Lemma 1 the solution of the H°° problem requires the study of the 
dynamic game 1 

rainmaxjfu, to) 
w u 

x = Ax + Bu + Hw, x(io) = xo [ ' 
z = Cx + Du. 

Lemma 2 . ([2, 5]) The zero-sum dynamic game (4) with D full column rank 
admits a unique feedback saddle point solution if and only if there exists a positive 
semidefinite matrix P which satisfies the Riccati differential equation 

-P = PA + ATP+\pHHTP + CTC-(PB + CTD)(DTD)-1(BTP + DTC), 

P(- / ) = 0. (5) 

In this case the solution is given by 

u* = - (p]C + BT(DTD)-1 P\ x (6a) 

w* = ±HTPx. (6b) 

For arbitrary u, w £ C2(Q), let 

no = D(U+(D^C+ BT(DTD)~lP)x\ 

r T 1 ... 
WQ = w -H Px 

T 
then 

J(u, W) = XTP(t0) XQ + 72||™0||2 ~ HUo||2) 

where J(u,w) is the same as in Lemma 1. 

Now assume there exists a positive semidefinite P satisfying (5). In this case 
from Lemma 2 we have that the feedback control law u* defined in (6a) is such 
that tto = 0; consequently, letting â o = 0, the corresponding optimal cost becomes 
J(u*,w) = 72[|ifo||2- Now it is possible to prove (see for example [5] and [9]) the 
existence of a positive scalar k such that, for all t E £1, ||xt>o||| ^ ^ll*0,!!- From this 
follows that 

J(u*,w)>y2k\\w\\2, \/weC2(Q), (7) 

and, according to Lemma 1, this means that the control law (6a) solves the H°° 
Problem 1. 

a The dynamic game requires nonzero initial condition to avoid the trivial solution U = W = 0. 
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In this paper we consider the more general situation in which D is not full column 
rank, i. e. rank(L)) = mi < m. When this happens the minmax problem (4) becomes 
singular and Lemma 2 does not hold. 

We will show that when D is not full column rank and we are under Assumption 1, 
solving Problem 1 is equivalent to solve another 7i°° control problem related to a 
reduced order state equation. 

3. A REDUCED ORDER DIFFERENTIAL GAME 

Throughout this and the next section we shall assume that D = 0; this greatly 
simplifies the machinery. How to deal with the more general nonzero D case will be 
detailed in Section 5. When D = 0, if the number of inputs m equals the number 
of states n, the solution of Problem 1 is trivial, that is u = —B~lHw, therefore we 
shall assume that n > m. 

Our goal in this section is to prove that , when D = 0 and we consider solutions of 
full information type, problem (4) is equivalent to another minmax problem acting 
on a reduced order s tate equation. 

We use a procedure introduced, in the optimal control setting, by Butman [3]. 
Let E a time-varying continuously differentiable matrix, E(t.) 6 I R n x ' n _ m l , such 
that for all t E Q 

ETB = 0, ETE = I. (8) 

Note that the existence of E is guaranteed from the fact that n > m and that B is 
full column rank. 

Now consider the following decomposition of the state space 

x = Ey + Bv . (9) 

Observe that , by virtue of (8) and (9), we can write 

y = ETx (10a) 

v = B]x. (10b) 

Differentiating (10a) we obtain 

y = Ay + Bv + Hw, (10) 

where 

A = ETE + ETAE (12a) 

B = ETB + ETAB (12b) 

H = ETH (12c) 

Differentiating (9) we have 

x = Ey + Ey + Bv + Bv. (13) 
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Equaling the expression for x in (2) and (13) and premultiplying both sides by 
J3' we obtain 

B^AEy + B^ABv + B]Hw + u = v + B1 Ey + B]Bv, (14) 

where we have used the fact that B*E = 0. From (14) it follows 

u = v + J31 (B - AB) v + B\E- AE) y - B^Hw . (15) 

Replacing in the output equation of system (2) (with D = 0) equality (9), we 
obtain 

z = Cy + Dv, (16) 

where 
C = CE (17a) 

D = CB (17b) 

Now let us consider the following two systems 

x = Ax + Bu + Hw, x(to) = XQ 

v = J5'ж, 
(18) 

[ y = Ay + Bv + Hw, y(t0) = ETx0 

f : = < . . (19) 
[ u = B^(E-AE)y + B1(B-AB)v-B^Hw + v 

System (18) defines an operator G : (u,w) —> v, while system (19) defines an 
operator F : (v,w) —• u. It is simple to show that, for fixed tu's, F is the inverse of 
G and viceversa, that is G(F(v,w), w) = v and F(G(u,w), w) = u. 

We can redefine the cost function in the following way 

J(v,w) := J(F(v, w), w) = J(u, w), (20) 

and consider the new dynamic game acting on a reduced order state equation (be
cause y(t) G K n ~ m ) 

minmax J(v, w) 
w v ^ ' 

y = Ay + Bv + Hw, y(to) = ETx0 (21) 

z = Cy + Dv. 

In the next theorem we will show that problem (21) is equivalent to the original 
problem (4). 
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T h e o r e m 1. (u*,w*) is a feedback solution of problem (4) with D = 0 if and 
only if(v*,w*) is a feedback solution of problem (21), where 

v* =v*(w) = G(u*,w) (22a) 

u* =zu*(w) = F(v*,w). (22b) 

P r o o f . If (v*, w*) is solution of (21), we have that 

J(v,w*)<J(v*,w*)<J(v*,w), y(v^v)e£2(Q)x£2(n). (23) 

In order to prove tha t (u*,w*), with ^l* satisfying (22b), is solution of (4), we 
have to show that 

J(u,w*)< J(u*(w*),w*)<J(u*(w),w), V(u,w)e£2(£l)x£2(tt). (24) 

By contradiction suppose there exists a feedback solution u(w) / u*(w) such 
that 

J(u(w*), w*) > J(u*(w*), w*) (25) 

and let 
v(w) = G(u^v),w). (26) 

We obtain 

J(v(w*), w*) = J{u(w*)} w*) > J(u*(w*), w*) = J(v*,w*) (27) 

which contradicts (23); therefore the left inequality in (24) is proven. The proof of 
the right inequality follows the same guidelines. 

The proof tha t if (u*,w*) is a solution of (4) then (v*,w*) is a solution of (21) 
is analogous. • 

From equations (22) follows that the solutions considered in Theorem 1 are of full 
information type, that is the player V have to know the move of the player "v" 
and viceversa; therefore Theorem 1 establishes a one-to-one correspondence between 
the full information solutions of the game (4) and the full information solutions of 
the game (21). There is no full state feedback counterpart of Theorem 1; this is 
the reason for which we cannot extend the technique developed in this paper to full 
state feedback H°° control problems. 

4. MAIN RESULT 

In this section we come back to the H°° problem; using Theorem 1 we will show the 
equivalence between the original Problem 1 and a reduced order H°° problem. 

Let us consider the time-varying system 

(y = Ay + Bv + Hw, y(t0) = 0 
< ~ ten. (28) 
{ z = Cy + Dv 
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Prob lem 2 . Given a positive real number 7, find, if existing, a causal linear control 
K : C2(Q) x C2(Q) —> C2(Q), (y,w) —> u, such that |JTjto|| < 7, where Tzw denotes 
the closed loop operator mapping w to z. 

Theorem 2 . Assume D = 0. Then 

i) Problem 1 admits a solution if and only if Problem 2 admits a solution. 

ii) If Problem 2 is regular, that is D is full column rank, it admits a solution if 
and only if there exists a unique positive semidefinite solution P of the reduced 
order Riccati equation 

-P = PA + ATP+\pHHTp + CTC-(PB + CTb)(bTb)\BTP + bTC), 

P(tf) = 0; (29) 

in this case the control law 

u = Kxx + K2w (30) 

with 

Kx = K1E
T + K1 (A + BK1)E

T+B^(B-AB)K1E
T+Bt(E-AE)ET(3U) 

K2=K1H -B^H (31b) 

Kl = -(btC + BT(Drb)-1p) (31c) 

is optimal for the original Problem 1, i.e. it is such that ||TzW|| < 7. 

P r o o f . (i) It is a straight consequence of Lemma 1 and of equality (20). 

(ii) If D is full column rank problem (21) is regular and, applying Lemma 2, the 
solution is 

v* = Kiy (32a) 

w* = K2y, (32b) 

where K\ has the expression (31c) and 

K* = ^RTp- (33) 

Substituting equations (32) into system (19), it is readily seen that the solution 
of the original problem (4), by virtue of Theorem 1, is given by 

xi* (t) = F(v*,w)(t) 

= K1{t)x{t) + K2(t)w{t) + A6{t-tG)l (34) 
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where K\ and K2 have the expressions (31a) and (31b), 6(t) is the delta function 
centered at 0, and 

x = Ey + Bv* (35a) 

a = (v*(t+)-v*(tG:)). (35b) 

Now, elaborating with some algebra the equations in (18) and (19), it is possible 
to show that the control law (30) assures that v = K\y. Let 

v0 = v — K\y (36a) 

w0 =w - K2y. (36b) 

From Lemma 2 with x(t0) = 0 

J(v,w) = ^\\w0f2-\\vo\\l (37) 

hence, since v0 = 0, we have that 

J(v,w)=1
2\\wof2. (38) 

Under the control law (30), w and wQ are the input and the output respectively 
of the system 

{ x = (A + BK\) x + (BK2 + H)w, x(t0) = 0 

1 " T (39) 

^ u>o = —K2Ex + w. 

This system is invertible and the inverse is 

x = (A + BK\+BK2K2E
T + HK2ET)x + (BK2 + H)wo, x(tQ) = 0 

w = K2E
q x + w0. 

(40) 
Since system (40) cannot have finite escape time, we can find [i > 0 such that 

T2 IMI1 >/-IIHIi (4i) 
which implies 

J(u, w) = J(v,w) > fi\\w\\l (42) 

Now from Lemma 1 the statement of the theorem readily follows. • 

Remark 1. Note that v*(t) is discontinuous at the point t —to] indeed the ini
tial condition of the state equation requires that v*(t0) = B^x0, while the optimal 
control law requires that v*(t0) = K\(t0)y0 = K\(to)E (t0)x0. Hence the sol
ution u* of problem (4) contains an impulse at t0; this is not surprising since u is not 
constrained to be bounded. Conversely, due to the zero initial condition in the state
ment of the 7i°° problem, the impulse, appearing in the solution of the associated 
singular dynamic game, is not present in the control law given in Theorem 2. 
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If D is not full column rank, one can either apply again the reduction procedure 
if n — m > m or to replace, as suggested in [9], the output equation in problem (21) 
with / c \ fD 

oj^+Ur' (43) 

where (3 is a sufficiently small positive number. Obviously the same trick could be 
applied directly to the original problem (4). However now the advantage is that, in 
any case, we are dealing with a reduced order state equation. 

5. EXTENSION TO THE NONZERO D CASE 

Now we will show that the case 0 < rank(L>) = mi < m can be treated using 
the same machinery introduced in Section 3. Let us denote by V a continuously 
differentiable matrix, V(t) G IRm x m , such that 

VTV = VVT = 1, DV = (DX 0), (44) 

where D\(t) £ IRp x m i is full column rank. Letting u = Vr, r = (rT rT ) , and 
BV = ( B i B2 ) , with Bi(t) G IRnXmi and B2(t) G JR n x(m"m i) full column rank, 
system (2) can be rewritten as 

(x = Ax + Biri+B2r2 + Hw, x(t0) = 0 
< ten. (45) 
{ z = Cx + Dxri 

L e t x = Ey + B2vu (46) 

where E is continuously differentiable, E(t) G lR" x ("-m+mO ; ETE = j a n d 

ETB2 = 0. Differentiating (46) and following the same guidelines of Section 3, 
we obtain the reduced order system (y(t) G I R n - m + m i ) 

[y = Ay + B1r1+B2vl+Hw, y(t0) = 0 
{ - _• (47) 
[ z = Cy + Dirx+ D2vi, 

where A, H, and C are still given from equations (12a), (12c) and (17a) respectively, 
and 

Hi = ETBi (48a) 

H2 = ETAB2 + ETB2 (48b) 

D2 = CB2. (48c) 
Letting 

v = (rT vTf (49a) 

H = (Hi B2) (49b) 

D = (Dl D2), (49c) 
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system (47) can be rewritten as 

j ij = Ay + Bv + IIw, y(t0) = 0 

[ z = Cy + Dv. 

Using the same machinery of Sections 3 and 4, it is simple to prove Theorem 2 in 
the general case considered in the current section. In particular Problem 1 admits a 
solution if and only if Problem 2, stated for system (50), admits a solution. Moreover, 
if the matrix D defined in (49c) is full column rank, Problem 2 admits a solution if 
and only if the reduced order Riccati equation 

-P = PA + ATP+~PHHTP + CTC-(PB + CTD) (DID)~1(BTP + bTC), 

P(tf) = 0 (51) 

has a unique positive semidefinite solution P. 
Now letting, as in (31c), 

k, = - (b]c + BT(bTbylp) = (fn), (52) 
K2i 

after some algebra it is possible to show that the solution of Problem 1 is given by 

= K\x + K2w 
r2 ) 

= (£)' + U,)-' <53> 
where 

Kn = knE
T (54a) 

K2i = K21E
T+k21(A+BK1) ET+B\(B2-AB2)K21E

T+B\(E-AE) £T(54b) 

K22 = k21II-B\H. (54c) 

In terms of the variable u, the optimal control law (53) is given by 

K21 / V K22 

U = V * - L l ) * + V í w. (55) 

6. CONCLUSIONS 

In this paper the singular finite horizon full information H°° control problem has 
been considered. Using the dynamic games theory and a suitable state space de
composition, we have shown that the original problem is equivalent to a reduced 
order one. If a certain assumption is satisfied, this new problem is regular and can 
be solved via standard methods. Future research will be devoted to investigate two 
open problems: full state feedback and the extension to the output feedback case. 

(Received February 24, 1995.) 
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