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EXACT D E C O M P O S I T I O N OF LINEAR SINGULARLY 
P E R T U R B E D H°°-OPTIMAL C O N T R O L P R O B L E M 

E M I L I A F R I D M A N 

We consider the singularly perturbed H°°-optimal control problem under perfect state 
measurements, for both finite and infinite horizons. We get the exact decomposition of the 
full-order Riccati equations to the reduced-order pure-slow and pure-fast equations. As a 
result, the H°°-optimum performance and suboptimal controllers can be exactly determined 
from these reduced-order equations. The suggested decomposition allows the development 
of new effective algorithms of high-order accuracy. 

1. I N T R O D U C T I O N 

Consider the linear time-varying singularly perturbed system 

xi = Auxi + Ai2x2 + Biu + Diw, ex2 = A2ixi+A22x2 + B2u +D2w, x(0) = 0 

(1.1) 
and the quadratic functional 

J = x'(tf)Fx(tf)+ / [x'(t)Q(t)x(t) + u'(t)u(t)]dt, (1.2) 
Jo 

where x = col{ .ri,x 2 } is the state vector with xi(t) £ Mni and x2(t) £ Mn2, 
u(t) £ MP is the control input, w £ Mq is the disturbance. The matrices Aij = 
Aij(t), Bi = Bi(t), Di = Di(t) (i = 1,2, j = 1,2) are continuously differentiable 
functions of t > 0, and e is a small positive parameter. The symbol (•)' denotes the 
transpose of a matrix, 

«-*-'(£ £)-* '----(& ffi)-°-
Denote by [ • | the Euclidean norm of a vector. Let Sij = BiB'- — j-2DiD'j, i = 

1,2, j = 1,2, B£ = co\{B1,e-1B2},D£ = col{Due'1D3}t 

A _ ( A1X A12 \ ( Six e~lS12 
£ ~~ ' e-'A21 t-lAn) ' b< " \e'lS2i e~2S22 
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With (1.1), (1.2) we associate the Riccati differential equation (RDE) 

Z + A'eZ + ZAe-ZS£Z + Q = 0; Z(tf) = F (1.3) 

for the matrix function 

*-*-*••>-(3$5) 2$:«))- (14) 

For each £ > 0 the H°°-optimum performance y*(e) is computed by the formula [1], 
[10] 

7*(e) = inf{7 > 0 | (1.3) has a bounded solution on [0;</]}. 

A controller that guarantees the performance level 7 > 7*(e) is determined by the 
relation 

u(t) = - [H i ; e-1B'2]Z(t,e)x(t), t € [0;*/] , (1.5) 

where Z(t,e) = Z(t,e,j) is the solution of (1.3). 
In the infinite horizon case we take A£, B£, D£ and Q = C'C to be time invariant, 

F = 0 and assume: 

A l . The triple {A£,B£, C} is stabilizable and detectable for e E (0,£o] (eo > 0). 

The H°°-optimum performance is determined from the full-order generalized al
gebraic Riccati equation (ARE) of the form (1.3), where Z = 0 as follows [1,10]: 

7* (e) = inf {7 > 0 I the full — order ARE has a nonnegative definite solution such 

that the matrix A£ — S£Z is Hurwitz}. 

Computation of 7*(e), and the corresponding suboptimal controller (1.5) for small 
values of e > 0 presents serious difficulties due to high dimension and numerical stiff
ness, resulting from the interaction of slow and fast modes. In [10] an upper bound 
7 for 7* (e) has been found on the basis of a slow and a fast control subproblems. 
For each 7 > 7 a composite controller has been designed that gives the zero-order 
approximation to the controller of (1.5) and achieves the performance 7 for the full-
order system for all small enough e (see also [3] for a composite controller in the 
case tf = 00). In [7] and [9] the frequency domain decomposition of H°° control 
problems has been obtained, however the issue of optimal controller design has not 
been addressed. 

The main objective of the paper is getting the exact decomposition of the problem. 

2. MAIN RESULTS 

We will develop the method of exact decomposition of the full-order Riccati equations 
initiated with the works [4,12], to H°°-optimal control problem. We begin with the 
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finite horizon case. Consider the Hamiltonian system corresponding to (1.3) with 
the adjoint variables y!,£y2: 

/ X i 

Rll P-12 

P-21 Я22 I . ««=(% I I ) , (2-la) 
У2 

x1(tf) = x\, y1(tf) = F11x°l + £F12x°2, x2(tf) = x°2, y2(tf) = F21x°l + F22x°2. 
(2.1b) 

Lemma 1. For each £ > 0, (1.3) has a bounded on [0,2/] solution iff there exists 
the matrix function of the form (1.4) such that for all x^' G Mni, x2 G lRn2 a 
solution of (2.1) can be represented as follows: 

co\{yi,ey2} = Zx, t 6 [O.t/]. (2.2) 

For p r o o f of Lemma 1 and the other Lemmas of the paper see Appendix. 

Let C2C2 = Q22. Consider the following ARE 

A'22MW + M ( ° U 2 2 + Q22 - M^S22M^ = 0, t G [0, tf], (2.3) 

which corresponds, for each t G [0,2/], to the fast infinite horizon subproblem. 
Assume 

A2. The triple {A22,B2,C2} is stabilizable and detectable for all t G [0,2/]. 

Let 7} = inf{7 ;| ARE (2.3) has a solution M<°> > 0 such that A0 = A22-S22M^ 
is Hurwitz}. We choose 7/ = sup fer01 1 7^. Under A2 7/ < 00 [10]. We shall further 
consider only 7 > 7/ +6 with 8 > 0 fixed. From [2, Lemma 4] and from the continuous 
dependence of H22 on t G [0,2/] and I /7 G [0,(7/ + <$)-1] it follows that for all 
7 > 7/ + <5 and t G [0, 2/] the matrix P22 has n2 stable eigenvalues A, ReA < —a < 0 
(corresponding to Ao) and ri2 unstable ones, ReA > a. This implies [11] the existence 
of £7 > 0 such that for each 7 > 7/ + <5 and e G [0, £7) there are the matrix functions 
H = -R22R2i + £H(t,e), P = R12R22

l + eP(t,e), M = M<°) + eM(.,e) and 
L = L*-0' + £L(2, £:) that satisfy the equations 

eH + eH(R11 + Hi2H) = R21 + H22H, (2.4a) 

eP + P(R22 - eHR12) = e{Rn + H12IV) P + H12, (2.4b) 

eM + ML422 + eKi + (eK2 - 522) M] = - Q 2 2 + eK3 + (-A2 2 + eK4)M, (2.4c) 

£L-L[A'22-sKA+M(£K2-S22)] = [A22+£K1+(eK2-S22)M] L+eK2-S22, (2.4d) 
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where 

Ki 

Kз 
K2 
K4 

= - H H 12, H # i 

Я 3 

Я 2 

H4 

p Pi 

Pз 

Я 2 

PA 
(2.5) 

The matr ix M(°) is a solution of (2.3) and L(°) satisfies the Lyapunov equation, 
t h a t results from (2.4d) by setting e = 0. If the coefficients of (1.1) and (1.2) are 
smooth, the functions H, P, M and L can be easily found in the form of asymptotic 
expansions. T h e terms of these expansions can be determined from linear algebraic 
equations [11]. In the time-invariant case, H,P,M and L can be also computed 
numerically [6]. 

For 7 > 7/ + 5 and £ G [0,£7) the nonsingular transformation [11] 

(2.6) 

fhere 

£ i 
E3 

E2 

E4 
(I + єHP) 

I 
M 

L 
I+ML 

Gi 
G3 

G2 

G4 

= P 
I 

M 

L 

I+ML 

decomposes (2.1) into the slow system for wi G IRni and V]_ G Mni 

= Hn + H12H, = W W = 
Wi 

w3 

w2 

w4 

(2.7a) 

and the two fast decoupled equations for u2 G IRn2 and v2 G Mn2 

eu2 = (A22 + eKx + ( - S 2 2 + eK2)M) u2, ev2 = (-A22 + eK4 + M(S22 eK2))v2. 
(2.7b) 

In all previous derivations £7 can be chosen independent of 7. Really, the matrix 
functions H, P, M, L define integral manifold of (2.1) and some auxiliary singularly 
perturbed systems [11]. Due to the inequality ReA < —a for the eigenvalues of Ao 
and since the coefficients of (2.1) are uniformly bounded on 7 - 1 G [0,(7/ + <S)-1], 
these integral manifolds exist for all small enough e and 7 > 7/ + S. Thus we get: 

P r o p o s i t i o n . There is £Q > 0, such that for all e G (0,£Q] and 7 > 7/ + 8 the 
transformation (2.14) exists and decomposes (2.1) into the systems of (2.7). 

Substituting (2.6) into the terminal conditions of (2.1) and further eliminating 
x\ and x2, we obtain the following terminal conditions for u i , v1, u2, v2: 

î / l i 

U21 

єU12 

Я22 
(2.8) 

where 

Uu єU12 

u21 u22 
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By straightforward computations we get 

To assure the existence of the inverse matrix in (2.9) we assume 

A3. The matrix I + L(°)(M(°) - E22) is invertible at t = tf for all 7 > 7/ + 6. 

Consider the pure-slow RDE for the n1 x rii-matrix function N = N(t,e) 

N + N(W1 + W2N) = W3 + WAN, N(tf) = Un, (2.10) 

and the pure-fast linear equations for the ni x rij-matrix functions N.-j = -Yiy(f,e): 

_Ni2 = - N i 2 ( A + _(Ni + K2M + W2)) + EWAN12, N12(tf) = U12, (2.11) 

eN2i = - (A ' - s(KA - MK2))N21-eN21(W1 + W2N), N21(tf) = U21, (2.12) 

_N22 = -N22(A+£(N i+N 2 M))- (A , -£ (N 4 -MN 2 ) )N22 , N22(tj) = U22, (2.13) 

where A = A22 — S22M. Similarly to Lemma 1, equations (2.10)-(2.13) have bound
ed solutions on [0,//] iff a solution of (2.7) can be represented in the form 

_i = Nui +eN12u2, v2 = N2i«i + N22W2, t e [0,tf] (2.14) 

for every M? G Mn\ u°2 6 Mn2. Finally, substituting (2.14), (2.6) into (2.2), and 
equating separately terms with «i and u2, we get 

I + EG2N21 sG1+eG2N22 

Hi + H2N + E2iV2i Ex + E2N22 + _H2N12 
(2.15) 

N + _C74N2i eN12+eG3 + eGAN22
 x 

_(H3 + H4N + H4N2l) SE3 + CEAN22 + _2H4Ni2 

If for 7 > 7/ + 6 and small _ RDE (2.10) has a uniformly bounded solution on 
[0,tj] then the linear equations (2.11) -(2.13) have solutions, exponentially decaying 
on[0 , . / ] : . 

| IVi / ( . , _ ) |<Ke°^ -^ ) / e , te[0,tf], K>0. (2.16) 

Lemma 2. Under A2 and A3 for any 6 > 0 there exists _. > 0 such that for all 
0 < £ < £s and 7 > 7/ + 6 the following holds: 

(i) The full-order RDE (1.3) has a bounded solution on [0,//] iff the slow RDE 
(2.10) has a bounded solution on [0,//]; 

(ii) If (1*3) has a bounded solution on [0,t/], then this solution can be unique
ly defined from the equations (2.4), the decoupled pure-slow and pure-fast 
differential equations (2.10)-(2.13) and the linear algebraic equation (2.15). 

From Lemma 2 it follows immediately: 
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Theorem 1 (finite horizon case). Under A2 and A3 the following holds: 
i) For a prechosen 8 > 0 and all small enough z, the suboptimal controller (1.5), 

that guarantees a 7 > max{7*(£),7/+<5} performance level, can be determined 
from (2.4), the decoupled reduced-order pure-slow and pure-fast differential 
equations (2.10)-(2.13), and the linear algebraic equation (2.15) instead of 
(1.3); 

(ii) If f*(e) > 7/ + 6Q for 0 < z < £0, then for all small enough z, the value of 
j*(z) can be found from (2.4a) and the slow RDE (2.10) by the formula: 

7*(e) = inf{7 > 0 I RDE (2.10) has a bounded on [0,tf] solution}. (2.17) 

In the infinite-horizon case we take A, B, D, Q to be constant and F = 0. In 
this case (2.4) are algebraic equations and H, P, M and L are constant. 

Lemma 3 . Under Al and A2 for any 8 > 0 there exists Zs > 0 such that for all 
0 < z < Zs and 7 > 7/ + 8 the full-order ARE of (1.3), where Z = 0, has a unique 
solution Z, such that the matrix Ae — S£Z is Hurwitz, iff the slow ARE of (2.10), 
where N = 0, has a unique solution such that Ai = W\ + W2N is Hurwitz. The 
solutions of ARE (1.3) and of ARE (2.10) are related by formula: 

Z-( N £°3\( I eG'\X (2 181 
\z(H3 + H4N) zE3J \H1 + H2N E, J ' { l0) 

where the inverse matrix exists. 

Note that Al, imposed on the full-order problem (1.1), (1-2) can be decomposed 
into corresponding conditions for the slow and fast subproblems [8]. From Lemma 3 
it follows 

Theorem 2 (infinite horizon case). Under Al and A2 the following holds: 
(i) For a pechosen 8 > 0 and all small enough z, the suboptimal controller, that 

guarantees a 7 > max{7*(£),7/ + 8} performance level, can be determined 
from (2.4), (1.5) and (2.18), where N is the solution of ARE (2.10) with the 
Hurwitz matrix Ai and Z > 0; 

(ii) If 7* (z) > 7/ + 8Q for 0 < z < £0, then for all small enough z 

y*(z) = inf{7 > 0 | ARE (2.10) has a solution such that Ai is Hurwitz and 

Z, defined by (2.18), is nonnegative definite}. 

3. CONCLUSIONS 

Solutions to the £-dependent reduced-order equations (2.10)-(2.13) can be found 
without difficulty by standard numerical and asymptotic methods. This would lead 
to effective reduced-order algorithms for H°°-Riccati equations. For a nonlinear 
counterpart of the infinite horizon results see [5], where an asymptotic approximation 
to the suboptimal controller is constructed on the basis of exact decomposition, and 
it is shown that the high-order accuracy controller improves the performance. 



Exact Decomposition of Linear Singularly Perturbed Hcc -Optimal Control Problem 597 

APPENDIX 

P r o o f of Lemma 1. Let RDE (1.3) has a bounded solution on [0,t/]. Consider 
the equation 

x = (Ae + B£Z)x, «.€[0,t/]. (A.l) 

Let x(t) be a solution of (A.l) with x(tf) = x°, and yi(t), y2(t) be defined by (2.2). 
Then yi(tf), y2(tf) satisfy the terminal condition of (2.1). Differentiating (2.2) and 
applying (1.3) and (A.l) we shall see that the functions xi(t), x2(t), yi(t), y2(t) 
satisfy (2.1). 

Conversely, let there exists Z(t), satisfying (2.2), where {xi(t),x2(t),yi(t),y2(t)} 
is a solution of (2.1). Then x(t) satisfies (A.l). Let (t0,x0), t0 G [0,tf] be an 
arbitrary initial value for (A.l). Then (A.l) has a unique solution x(t) on [0,*/], 
satisfying x(t0) = x0. Differentiating (2.2) on t, at t = t0, we shall get (1.3) multi
plied by #0- This implies (1.3) since t0 and x0 are arbitrary. • 

P r o o f of Lemma 2. Let (1.3) has a bounded on [0,2/] solution. Since Lemma 1 
for any x®, x2 the Hamiltonian system (2.1) has a solution, represented in the form 
(2.2). Consider the system of (2.7), (2.8) with arbitrary terminal values u® and 
u®. This system has a solution represented in the form of (2.14) iff the following 
algebraic system, that is obtained by substituting (2.6) into (2.2), 

vi + eG3u2 + eG4v2 \ _ (Zn eZx2\ ( u\ + eGiu2 + eG2v2 

H3ui + H4vi + E3u2 + E4v2 ) ~ \ Z2i Z22 ) \HiUi + H2vi + E\u2 + E2v2/ 

(A.2) 
is solvable with respect to vi and v2. 

The linear algebraic system (A.2) is solvable with respect to i>i, v2 iff the equations 
(2.10),-(2.13) have bounded on [0,tf] solutions. The uniqueness off the solutions 
of (2.10)-(2. i3) implies that the linear algebraic system (A.2) can possess only one 
solution. It means that the latter system has the unique solution (2.14) and N 
obtained is the bounded on [0,</] solution of (2.10). 

Conversely, let (2.10) and, hence, (2.11)-(2.13) have bounded on [0,tf] solutions. 
Then the terminal value problem of (2.1) has a solution related in the form of (2.2) 
iff the linear algebraic equation (2.15) is solvable with respect to components of Z 
or iff (1.3) has a bounded on [0,tf] solution. The uniqueness of the solution of (1.3) 
implies the existence and the uniqueness of solution of (2.15) and, therefore, the 
existence of the bounded on [0,tf] solution of (1.3). This completes the proof of (i) 
and (ii). • 

P r o o f of Lemma 3. Let ARE of (1.3) has a solution Z, such that the matrix 
A£ — S£Z is Hurwitz. It means [2], that the set 

X- = {(xi,x2,yi,y2) | (2.2) is valid} (A.3) 

is the stable eigenspace of the matrix Ham7 of the Hamiltonian system (2.1). More
over, Hamy has n\ + n2 stable and ni + n2 unstable eigenvalues and such Z is 
unique. Applying to X~ the nonsingular transformation of (2.6), we get the stable 
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eigenspace M of the matr ix V of the system of (2.7). The latter stable manifold 
can be represented in the form 

M~ = {(uuvuu2,v2) | (2.14) is valid} (A.4) 

iff (A.2) is solvable with respect to vi,v2. Eigenvalues of the matr ix V coincide 
with those of Ham 7 . Therefore the matrices N, N12, N21, N22 in (A.4) are uniquely 
defined. This implies the existence and the uniqueness of the solution (2.14) of (A.2) 
and, hence, the existence of M~ given as (A.4). The matrices N, N12, N21, N22 in 
(A.4) satisfy ARE of (2.10) and algebraic equations of (2 .11)-(2 .13) , where N{j = 0. 
The linear homogeneous algebraic equations (2.11) and (2.13) have the unique solu
tions Ni2 = 0, i = 1,2 due to the nonsingularity of Ao-Then the equation v\ = Nu\ 
defines the stable eigenspace of the matr ix W, that has no eigenvalues on the imagi
nary axis, and A i is Hurwitz. The uniqueness of the solution of ARE (2.10) with the 
Hurwitz mat r ix A i follows from the uniqueness of the stable eigenspace of W. Note, 
tha t N21 = 0 since it is the solution of the linear homogeneous algebraic equation 
(2.12), the matr ix of which is nonsingular. 

Conversely, let there exist a unique N satisfying (2.10) and such that A i is 
Hurwitz. Then the system of (2.7) has the unique stable manifold given as (A.4) with 
the zero matrices N12, N21 and N22. By means of the inverse to (2.6) transformation 
this stable eigenspace of the matr ix V is mapped to the eigenspace of Ham 7 . The 
latter manifold can be represented as (A.3) iff the linear algebraic equation (2.15) has 
a unique solution. Due to the uniqueness of the stable manifold of X~, the linear 
algebraic equation (2.15) has a unique solution of the form (2.18). This implies 
existence and uniqueness of the function Z satisfying ARE of (1.3) and such that 
Ae — BeZ is Hurwitz. • 
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