
K Y B E R N E T I K A — V O L U M E 31 ( 1 9 9 5 ) , N U M B E R 4, P A G E S 3 7 5 - 3 8 4 

STRONG CONSISTENCY OF REGRESSION F U N C T I O N 
ESTIMATES 1 

ZHANG SHUANG LIN 

Let mn(x) and Mn(x) be a partitioning estimate and the kernel estimate, respectively, 
of a regression function m(x) = E(Y|X = x) for the i.i.d. sample (Xi, Yi),..., (Xn, Yn). 
Under the condition E|Y|P < oo, where p > 1, and some conditions on the partition and 
the kernel function, the strong L\ -consistency is proved. 

INTRODUCTION 

Let (X\, Yi),..., (Xn,Yn) be independent observations of an 7ld x It-valued random 
vector (X, Y). Denote the probability measure of X by [i, and the empirical measure 
for X1,X2,...,Xnby fin. 

The regression function 
m(x) = E(Y\X = x) 

can be estimated by the kernel estimate 

Y:YiKh(x-Xi) 

Mn(x) = -=* (1) 
J2Kh(x'-Xi) 
»=i 

where h > 0 is a smoothing factor depending upon n, K is an absolutely integrable 
function (the kernel), and Kh(x) = K(x/h) ([11,14]), and the k-nearest neighbor 
estimate, 

mn(x) = J2wni(x;X1,...,Xn)Yi, 
»'=i 

where Wni(x; X1}..., Xn) is \/k if X,- is one of the k nearest neighbors of x among 
X\,..., Xn, and Wni is zero otherwise. Note in particular that YA=I ^«» = 1- The 
Ar-nearest neighbor estimate was studied by [13] among others. Alternatively, one 
can use the partitioning estimate, which is based on a finite or countable infinite 
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Borel measurable partition Vn of 1Zd (Vn = {An\,An2,..-}). If An(x) is the set 
from Vn to which x belongs, then the partitioning estimate is defined as 

Z) / {^ ,e> ln (x )}^ 

n(x)=\ '",.,.(,,.(.)) ifM4.(x))>,0 (2) 
n 

- y] Yj otherwise. 
n *—' * 

V » = 1 

We are concerned with the L\ convergence of mn to m as measured by 

Jn - I \mn(x)-m(x)\fi(dx). 

This quantity is particularly important in discrimination (see [8] or [13]). Stone [13] 
first pointed out that there exist estimators for which Jn —* 0 in probability for 
all distributions of (X, Y) with i?|Y| < oo. This included the nearest neighbor and 
partitioning estimates. In 1980, Devroye and Wagner, and independently Spiegelman 
and Sacks, showed that this is also the case for the kernel estimate with smoothing 
factor h provided that K is a bounded nonnegative function with compact support 
such that for a small fixed sphere S centered at the origin, i n f^ s K(x) > 0, and 
that 

lim h = 0, lim nhd = oo. 
n—*oo n—+oo 

Since then, many authors have considered the strong consistency of the three esti
mates. We summarize what is known in this respect: 

- For the k-nearest neighbor estimates, Jn —* 0 almost surely under the con
ditions k —• oo, k/n —* 0 whenever X has a density and Y is bounded (chapter 
X of Devroye and Gyorfi [5] and Zhao [15]). Beck [1] showed this result earlier 
under the additional constraint that m has a continuous version. The asymp
totic normality is proved by Falk and Reiss [9jr Moreover, Jn —*• 0 almost 
surely for all distributions of (X, Y) with Y bounded (the existence of the 
density of X is not required), provided that k/n —> 0 and k/\oglogn —> oo 
(Devroye [4]). Jn —* 0 almost surely for all distributions of (X, Y), under the 
conditions that L^|Y| < oo, and k/n —:• 0 and k/\ogn —• oo (Devroye, Gyorfi, 
Krzyzak and Lugosi [6]). 

- Assuming that Y is bounded, the kernel estimate is strongly consistent if 
limn_oo h = 0, limrj—oo nhd = oo holds, K is a Riemann integrable kernel and 
K > als, where a > 0 is a constant, and 5 is a ball centered at the origin 
(Devroye and Krzyzak [7]). 

- For the partitioning estimates, Devroye and Gyorfi [5] gave an exponential 
bound for the tail distribution of Jn for all (X, Y) with Y being bounded, and 
Gyorfi [10] has pointed out that Jn —* 0 almost surely for a modification of 
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partitioning estimates 

I]/{XгЄДn(x)}У. 

mn(x) = { ^fin(An(x)) 
n 

JE.. 

i f / - „ ( - 4 n ( * ) ) > T 

otherwise, 
i = l 

whenever L7|Y"| < oo, provided that limn_co h = 0, limn_oo nhd/\ogn = oo is 
satisfied. 

In this note, we study the strong consistency of the partitioning estimate (2) and 
the modified kernel estimate 

Mn(x) 

J2УгKh(x-Xt) 
1 = 1  

f^Kф-Xi) 
if | |x| | < łn 

(3) 

— __ Y{ otherwise, 
n i=i 

(where td = (,
 n \ g + 1 , q = -£-;, and 0/0 is defined as 0) when Y is unbounded. 

In the following we use mn(x), Mn(x), Mn(x) to represent the partitioning esti
mate (2), the modified kernel estimate (3) and the kernel estimate (1), respectively. 

1. MAIN RESULTS 

T h e o r e m 1. Suppose that i ? | y | p < oo for some p > 1, and assume that the finite 
partition pn = {Ani,..., Ankn} with 

kn _ 
(lognY 

and q = ^_j satisfies that for each sphere S centered at the origin 

= 0. 

Then partitioning estimate (2) is strongly consistent, i.e. Jn —•> 0, a.s. 

lim sup max I sup || x — y 
n _ o o i\Anir\S^4> \x,ySAni 

(4) 

(5) 

T h e o r e m 2. Suppose that £"|Y"|P < oo for some p > 1, K(x) is a kernel function 
such that there are constants C\ > 0, C2 > 0, r > 0 with C\Isr(x) < K(x) < 
C2^sr(

x), where Sr is a sphere centered at origin of radius r. If limn_co h = 0 and 
. d 

l im n _oo (i0gn)9+i = 00, then 

/ 
\Mn(x) — m(x)\fi(dx) —> 0 a.s. 
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2. PROOFS 

In order to prove the theorems, we need the following lemmas: 

Lemma 1. (Devroye and Gyorfi [5]) If Y is bounded, that is there is a constant 
L such that \Y\ < L < oo, then under conditions (4) and (5), for each e > 0, there 
exists no such that 

P I I \mn(x) — m(x)\fi(dx) > e I < exp(—c(e/L2)n)\ n > no. 

for some constant c. 

Lemma 2 . (Chernoff [3]) Let B be a binomial random variable with parameters 
n and p. Then 

P(B < e) < exp(£ — np — e \og(e/np)) (e < np). 

P r o o f of the Theorem 1. For an arbitrary L, let 

( Yi if\Yi\<L 
iL = l 

I Lsign(Y,) otherwise 
• 

and let mL, mnL be the functions m, and mn when Yi are replaced by Y,jr. Then 

Jn= \mn(x) - m(x)\ fi(dx) 

< f \mn(x)-mnL(x)\n(dx)+ \mnL(x)-mL(x)\n(dx)+ \mL(x)-m(x)\fi(dx). 

From Lemma 1, we know that 

\mnL(x) - mL(x)\n(dx) —> 0 a.s. (6) 

and it is easy to see that for any e > 0, if L is large enough, then 

(\mL(x)-m(x)\n(dx) = E(\E(YL\X)-E(Y\X)\)<E(\Y-YL\)<e a.s. (7) 

So, in order to prove Jn - » 0 a . s . , we only need to prove that there is a large constant 
L such that 

limsup / \mn(x) — mnL(x)\ fi(dx) < £ a.s. (8) 

Introduce the notations 

Tn = {. : //(^m) > 8-2J--} , Hn = UeTT^nn 

In={i:/inUn,)>l2
n^}) --»« = Uj€J.-4»., 

•In = lz • /-n(-^n») = 0} , Dn = U.'gJ0 -"-ni, 

In = {I" : J < AinMni) < = ^ } . Dn = U € / i ^ni, 

/ 
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Wm{x)=['-mm ->.w.(.)»o 
- otherwise. 

With these notations, 

f\mn{x)-mnL{x)\ti{dx) < J2 fwni{x)fi{dx)\Yi-YiL\ 
I *'=i "I 

- t 
< £ / ^m(x)/i(dx)|y;-Y;.L 

j = i JB
n

nD
n 

n . 

+ 2*2 Wni{x)f,{dx)\Yi-YiL\ 
t = 1 J B n V D n 

n f 
+ £ / W m W M d x ) ^ - ^ ! 

, = 1 JDU 

= fnl + In2 + fní 

Since 

inз < - è iy« - ? « . - ^fy - yIj a-s-
*'=1 

so, for sufficiently large L, 

Note that 

limsupI^з < --

^(Лn(x,)) /• /ҶЛ-ДЛІИ 

For ? = ^ j w get 

- ^ /i(^n(^»)) r n x l i K - K r 
/Sl - g^n(An(X t))7^^^Ul ^ 

l l / í 

Lèí »'i"í(A.W) { i€B" . Ei«-y'-r 
, '=1 

1/p 

gř^w^w*.^ 
-1/9 

(9) 

E i y . - y . I j p 

1/p 

*'=1 

. 1 / 9 

E ľ'(A«i) 

uiéwî n , - 1 ^" 1 (^). 
£.y.-y«p 

^ 81. l 0 g n 

- b nl,q~nïl7 iŽw-nt-i 
*'=1 

L* = l 

1/p 

1/p 
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< 
1 n 

-УjY-YгL 

1/p 

so when L is large enough 

limsup Ini < ~õ a- s-

Moreover 
1 -І---A џ(An(Xi)) r , v | 

Ei2 = - V ,A /v(x I{XiЄBaUDn}\Yi ' YШ n ~Ѓ Џn(An(Xi)) 

So for sufficiently large L 

8 n 

l imsup/ n 2 < limsup - > |Yi - Y%L\ = 8E\Y -YL\< 
n f—-1 

» = l 

if we show that 

sup \ max — —. i { x e B UJD , ^ < 8 
-oo ll<«<n/in(An(X.-)) ' J 

nmí a.s. 

It follows 

P ( l ,msup { max - M j U ; f | ) ) % ( 6 B .uZ>. ) f > 

= lim P 
k—юo 

(r{ Í n(An(Xi)) \ \ 
l J m a X ' / A fJ\\ I{Xt£BnUDn} > 8 

s v STv( KAn(Xj)) _ A < hra > P max —--— '' IsXlPBnuDn} > 8 _ ^ " „ T Í \-<ť<»Wn(-4n(X t)) t-*.e-«.u.v.j y 

< lim V n P fa G D n U / 3 n , ^ ^ | > 
*-*°°írí V Hn(An(XX)) 

= h m f ^ n p f x 1 G H . ! ^ ^ > 8 S 

fe-oof-^ V A-n(-4„(-*l)) 

and 

, д Қ A . ( A i ) ) 
Џn(An(Xx)) 

= £ ř ( i l 6 4 J I 4 k I > 8 ) 
f.±. \ /-n(-4ny) j 

= ] T P fa(-4«i) < -í-^S-i xl 6 i íni) M ^ i ) 

;ю) 

( ц ) 

(12) 
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j€l~ ^ ' = 2 ' 

< ] V KAnj) exp(-nfi(Anj)) < n~' 

j€l~ 

from Lemma 2 for sufficently large n. Then we get 

P (limsup I max —TXTFv . 1{x.€B»uJDn} > > 8 ) = 0 , 
\ n-oo [!<•<»» ,«n(-4n(Ai)) J J / 

so we completed the proof of the theorem. • 

Lemma 3. (Devoye and Krzyzak [7]) Let Mn(x) be the kernel estimate with kernel 
K. UK satisfies the condition of Theorem 2, and limn_oo hd = 0, limn-^oo nhd = oo 
then for every distribution of (X, Y) with bounded Y, 

\Mn(x) - m(x)\ fi(dx) ^ 0 a.s. 

P r o o f of the Theorem 2. For bounded Y, from Lemma 3, it follows that 

J \Mn(x) - m(x)\n(dx)-> 0 a.s. 

and 

I \Mn(x) - m(x)\ n(dx) 

< J \Mn(x) - Mn(x)\ fi(dx) + J \M'n(x) - m(x)\ /i(dar) 

< nMn( .c)-m(ar)| /a(dx)-|-L//(C' . .)-->0 a.s., 

where Cn = {x : \\x\\ > tn}. For unbouded Y) from now on, without loss of 
generality, assume r = I, h < 1, tn > 2. For an arbitrary L, let Y\L be as in the 
proof of Theorem 1 and let mL, MnL be the functions m, and Mn when Yi are 
replaced by YiL. Then 

J\Mn(x)-m(x)\fi(dx) 

< J |M n (x ) -M n L (x ) | /Ji(dx)+J \MnL(x)-mL(x)\fx(dx)+J \mL(x)-m(x)\fi(dx). 

We know that 

J\MnL(x)-mL(x)\li(dx)-*0 a.s. (13) 
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and, as in (7), if L is large enough, then 

/ \mL(x) — m(x)\ fi(dx) < e. (14) 

So, in order to prove the theorem, we only need to prove that there is a constant L, 
such t h a t 

Thus 

l imsup f \Mn(x) - MnL(x)\ fi(dx) <e a.s. (15) 

/

n 1 n 

\Mn(x) - MnL(x)\n(dx) < J2 Vni\Yi - YiL\ + - ] T |Y, - YiL\, i=l i = l 

where 

T , f Kh(x-Xi) 
Vni ~ \ - = - H — T 7 - 7 - — 7 r r M d ; c ) 

I||x||<ť» j L j - l - * * ( * ~ X3) 
^ C2 f I{xeXi+Sh} 

<-i IU«H<*« -W=-i ' í = l I{XjЄx+Sh} 

C2 

C 

< 2 

2 / I{x£X,+Sh} r ,A v 
- / v^ň ; I{||x,||<ť„+i}/^(dar) 
1 J\\x\\<tn l^j=i 1{xjex+sh} 

C2 f I{xeXi+Sh} 
77" / =7ň j T-TI{\\xt\\<tn+i}K^)-
C\ J\\x\\<tn Ъ]=1 4Xjex+sh} + 1 

We split the cube [—2tn, 2tn]
d into small cubes with side length | , we get the set 

of small disjoint cubes Vn = {AnU ..., Ankn}, kn = [ ^ ] d = ( l o g * n

g + 1 • For any 

Xi with llxill < tn + 1, An(Xi) is the small cube from Vn to which X,- belongs, 

so, there is a constant N (N < 5 d ) , such t h a t An(X{),..., A%(X{) e Vn, and 

^i + Sh C Um=i K(Xi)- Using a = 2gf, now we get 

N . T 

T/ s r» V / 1{xeA^(x,)} , v K» < c 2 ^ / ==-?.—-—a rTJ{iix,ii<t»+i}Md*) 
^ T i J\\x\\<tn 2^j = i t{X;€*+S»} + 1 

JV r 

r'X^ I HxtAzjx^} ( , 
.fei Ilkll<*» Ei=l fegA? xo} + -

JV 

< 

, - ^ /i(-4y(-Yj) 
Z ^ „ „ / á m / Y . u 1 1 { 

At 

£ Bft.'(V(i)') +1 J«*^'-+1> 
Now let us introduce some notations 

J = {•': ra < «•> + 1}, 

J„m = | i : i G J , / i ( ^ ( x i ) > C ^ 

fnm = J : I E J, ,Un(;4™(x;) > 
n 
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For a set A \A\ is the number of the elements of set A. With these notations we get 

A 
— -/nl + jn2-

For I n2, note tha t \J^m\ ._. ^ n l o g n , similarly to the proof of (10), for sufficiently 
large L, we get 

l i m s u p J n 2 < - , 

and as in the proof of (12) we can show 

l i m s u p j max - — t ^ ^ L — < (A a .s . 
» - » hejnmulnm Vn{A™{Xi)) + 1/n " J 

sc for sufficiently large L 

CCN n e 
l i m s u p / n i < l i m s u p — — - ^ l Y i - i ; L | = CC'NE\Yi - YiL\ < - a .s . 

i= i 

so we completed the proof of the theorem. • 
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