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STATISTICAL TESTS OF OPTIMALITY 
OF SOURCE CODES 1 

I G O R V A J D A 

For newly defined data compaction codes, as well as for the traditional data compression 
codes, we prove an asymptotic uniformity of probabilities of codewords, a kind of the 
asymptotic equipartition property. On the basis of this we propose an easily applicable 
Neyman-Pearson test of optimality of a code with a given asymptotic level of significance 
0 < a < 1. The test is based on the sample entropy of code. 

1. INTRODUCTION 

There is a common intuitive belief that a good code is approximately uniform in 
the sense tha t all codewords are nearly equally likely. If this is true then one can 
te^t the hypothesis tha t a code C : X »—> V* of a source (X, P) is good as follows. 
Let X = {xi,. . . , xm}, P = (p(xi),. .. ,p(xm)), and let X\,... ,XN be independent 
realizations of a message X from (X,P). Put PN = (pN(x\),... pN(xm)) where 
pN(x) denotes the relative frequency of the codeword C(x) corresponding to x (from 
the set V* of finite length binary strings). Denote by H(X) = H(P) the source 
entropy and by H(PN) the entropy of a fictive random source (X,PN) depending 
on realizations X\,..., XN. Finally, let h > 0 be smaller than but close to logm = 
maxp H(P). If there exists a set KN C [0,logm] such tha t 

sup Pi \H(PN)eKN} = a (I) 
P:h<H(P)<\ogm L J 

then [H(PN),KN] is a Neyman-Pearson a-level test for our problem (cf. Lehman 

[7])-

There are two serious obstacles on this road: 

(i) It is not clear whether good codes are always uniform, and 

(ii) the Neyman-Pearson test satisfying (1) is unknown. 

Nevertheless the engineers are visibly forced to move in this direction. Indeed, there 
is a number of papers where H(PN) is calculated and if "not too far" from logm, 
then the hypothesis tha t a code is good is "confirmed". 
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In this paper we prove that the hypothesis in (i) is true in a quite general sense, 
and overcome the difficulty (ii) by introducing a Neyman-Pearson asymptotically 
a-level entropic test [H(PN), KN] for any given 0 < h < logm and 0 < a < 1. 

Remind t h a t (H(PN),KN) is said asymptotically a-level if (cf. [7]) 

sup 
P : / . < / ř ( P ) < l o g m ! V - * 0 0 

lim Pr \H(PN) <E KN\ = a. (2) 
V-*oo «. J 

Since 
KN = KN(a,h) = [0, cN(a, h)] C [0,logm), (3) 

our test is in fact defined by a critical level 0 < cN(a, h) < logm. 
Note t h a t for the particular case h = log m there exists a well known N e y m a n -

Pearson asymptotically a-level statistical test, namely the Pearson's goodness-of-fit 
X2-test [x2(PN),KN], where 

X2(PN) = -Y,(™PN(X)-V2 

m -•--
X 

and KN = [0 ,c^(a) ] is defined by the critical value 

CN(«) = X2-Q,m-i ( = ^ [ x ^ T = 3 + $ ( 1 _ Q ) ] 2 i f m > 3 o ) . 

Here x _ m - i denotes the a-quantile of the x 2 -distr ibution with m — 1 degrees of 
freedom and $ a the a-quantile of the standard normal distribution. Unfortunately, 
this test is of a little practical use in our problem, as the good codes are almost 
never exactly uniform so that , for large sample sizes n, the %2-test usually rejects 
the hypothesis t h a t the code is good even at the levels exceeding 0.2. 

Feistauerova [4] introduced the particular entropic test [H(PN),KN] for h = 
logm, i.e. with KN = KN(a,\ogm), and found that this test shares the practical 
disadvantages with the goodnes-of-fit x 2 -test . The extension of this test to 0 < h < 
logm is thus inevitable. From a purely statistical point of view, this is a nontrivial 
step as the simple hypothesis 7i = {H(P) = l o g m } is becoming composite, Ji = 
{h < H(P) < l o g m } . This step is made below with the help of Feistauerova, Vajda 
[5], where the problem of testing general composite entropic hypotheses is solved. 

2. G O O D CODES A R E UNIFORM 

One cannot say whether a good code is uniform without specifying what a good 
code is. Obviously, this is not a difficult problem as the whole information theory 
concentrates arround the concept of a good code. We shall make this problem a 
bit harder by trying to go beyond the scope of tradit ional definitions of Shannon 
information theory. 

Consider sources X of a product type, i.e. replace (X, P) by (Xn,Q) with Q 
not necessarily equal Pn. Further let mn be an increasing sequence of naturals and 
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consider strings of binary random variables 

,v v . / dXi Xn),Yt'+l,...,YZ. 
( X I , . . . , Ymn) — ( 

\ mn-prefix of C\X\,...., Xn) , 

where C : Xn i—• V* is a similar code as considered in Sec. I, and where the 
upper possibility takes place iff I = \C(Xlt... ,Xn)\ < mn (then Y/ + 1 , . . . ,Ymn 

are arbitrary dummy random variables) while the lower possibility takes place in 
all other cases. Consider a decomposition Xn = An + Bn where An contains all 
messages x = (x1:. .., xn) uniquely decodable from y = (2/1,..., ymn) E Vmn and 
Hn all the remaining ones. Define a mapping <p : Vmn •—> An U {Bn} by 

/ C~1(y) if C~1(y) is unique 
p(y) = ( D . 

\ Hn otherwise, 

and consider the "code entropy" H(Yi,... ,Ymn). 
Since H(tp(Yi,..., Ymn)) < H{Y1,... ,Ymn) (cf. Problem 5 on p. 43 of Cover and 

Thomas [3]), it holds 

Y, -q(x)logq(x)-Q(Bn)\ogQ(Bn)<H(Y1,...,Ymn)<\og\Vmn\ = mn, 
x£An 

where the left-hand side equals 

H(Xu...,Xn)+ J2 q(x)\ogq(x)- J2 q(x)\ogQ(Bn) 
x£Bn x£Bn 

q(x) 
= H(X1,...,Xn)+ Y q(x)\og 

x£Bn 

= H(X1,...,Xn) + Q(Bn) IP -£J-

Q(вn) 

q(x) q(x) 
log 

xGBn - * ^ - " ' Q(Bn^ 

= H(X1,...,Xn) + \Bn\Q(Bn)Y^(^) 

> H(X1,...,Xn) + \Bn\Q(Bn)(f>f~-\ (*) 

= H(xi,...,xn)-Q(Hn)log|Hn| 

> H(Xu...,Xn)-nQ(Bn)\og\X\. 

Note that (*) follows from the Jensen inequality applied to the convex function 
<j)(t) = tlogt. Hence we have proved the inequality 

H(X1,...Xn) n H(Y1,...,Ymn) 
— Q(Bn) log \X\ < — < 1, (4) 

m n m n m n 

where the set Hn depends on the code and on the sequence m n . 
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The above considered code depends on the source size n, i.e. C = Cn. Let us 
consider a family of codes Cn |£ depending not only on n but also on a real parameter 
e>0. 

In accordance with the spirit of Shannon information theory we say that Cn<z is 
(asymptotically) good if for every sequence mn > H(xi, - . . , Xn) + en with e > 0 

limlimsupQ(Hn) = 0. 
«10 n—.oo 

For example, if Q = Pn and the source entropy rate H = H{X\,.. .,Xn)/n is 
positive then it follows from the AEP property (cf. Theorem 3.1.2 in [3]) and from 
(4) that the block {n, [H + e] + l)-codes Cn,e for An equal to the set Ae of e-typical 
sequences is good. Indeed, it holds Pi{An

e)} > 1 - £ and \An
s)\ < 2 n ^ + e ) so that 

there exists a binary block code with \C{X\,..., Xn)\ = [H + e] + 1 such that all 
x £ Ae} are uniquely decodable and Q{Bn) < 6. 

Under the last assumptions concerning the source there exists (cf. Sec. 5.4 in [3]) 
an instantaneous code Cn with 

n 

|C(xi,...,xn)|«X)- lo^TO and c~lv* = xn 

such that Pn{Bn) at most equals P r ( |C (x i , . •. ,Xn)\ > mn), which is for mn > 
n{H + e) bounded above by Pr ( |C(x i , ...,Xn)\ > n{H + e)). But, by the law of 
large numbers, the last probability tends to zero for every e > 0. Therefore the code 
Cn is good. 

Theo rem 1. If the source {Xn ,Q) satisfies the condition 

lim -H{Xl,...,Xn)>0 
n-*oo n 

then an arbitrary good code Cn>e: is asymptotically uniform in the sense that it holds 

h m , im *(*--.r.n) = .. 
e|0 m-»oo m 

P r o o f . If mn < m < m n + i , then it follows from the monotonicity and nonnega-
tivity of the entropy 

H{Yly...,Ym) > H{Y1,...,Ymn) 
m ~ m n + i 

If the assumptions hold, then there exists a sequence mn considered in the definition 
of a good code such that 

lim J22_ = 1. 
rwoo m n + i 

The desired assertion thus follows from (4) and from the definition of a good code. 

• 
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Theorem 1 solves the problem of uniformity of good codes for source codes with 
a zero distortion. Now we prove an analogue of Theorem 1 for codes with a positive 
distortion, in the frame of the general distortion model of Gray and Davisson [6]. 

Consider an arbitrary source 

(Xi=1Xi, Xiz=lAi, P), 

where (Xi,Ai) = (X,A) is a measurable space and P is a stationary ergodic prob
ability measure (cf. Sec. II in [6]), not necessarily of the product-type. Elements 
x = ( x i , . . . , xn) 6 Xn are called simply messages and the restriction of P on the 
space (Xn,An) is denoted again by P. A measurable distortion p(x,y) > 0 with 
p(x, x) = 0 is considered on X x X, satisfying the condition 

i n t / p{x,y)dP(x) 
yє* Jx 

< oo. 

For every n and all messages x = (x\,..., xn) and y = (y\,..., yn) from Xn we 
define 

1 " 
Pn{x,y) = -J2p(xityi). (5) 

n -—* 
»=i 

By a block code C we mean a measurable mapping C : Xn i—> Xn. The subset 
C = C(Xn) C Xn is called a codebook corresponding to the code C. Let 

H(C7)=ilog|c|G[0,oo] 
n 

be the information rate of a code C and Cn(R) R > 0, the set of all codes with 
information rates at most R. It is known (cf. Sec. II in [6], or Chap. 7 in Berger [1]) 
that there exists a nonincreasing function d : [0,oo] i—> M such that the functions 

dn(R)= inf / pn(x,C(x))dP(x) 
ceCn(R)Jx» 

satisfy the limit relation 

dn(R)id(R) as n -4 oo. (6) 

The function d(R) is a distortion-rate function for the source and distortion measure 
p under consideration. 

It is convenient to extend the concept of code by means of randomization. By 
a random code C we mean a channel (Markov kernel) (Px : x g Xn) with input 
space (Xn ,An) and output space (Xn,An). By P*C we denote the joint probability 
measure induced by P and C on (Xn xXn, An xAn). P is one marginal of P*C and 
the other marginal is denoted by P C. We shall present an alternative definition of 
d(R) by means of random codes. Let Cn(R), R > 0, be the class of all random codes 
C such that the /-divergence In(P * C, P x PC) of P * C and P x P C (Shannon 
information) satisfies the condition 

In(P*C,Px PC)<nR. 
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It is known (cf. Sec. II in [6] or [1], [2]) that there exists a nonincreasing function 
D : [0, oo] i—• JR such that the functions 

Dn(R)= inf / pn(x,y)d(P*C)(x,y) 

CtCn(R)JX«xX" 

satisfy the limit relation 

Dn(R)[D(R) a s n - ^ o o . (7) 

It follows from a theorem of Berger, cf. Theorem 1 in [6], that 

D(R) = d(R), H6[0,oo]. (8) 

Using all these facts we can prove the following statement, where 
H(C) = Y,~P (C-\y)) logP (C-\y)) 

y€C 

is the entropy of a code C : Xn ^ Xn with a codebook C = C(Xn). Note that 

\og\C(Xn)\ = \og\C\ = nR(C) 

is the well-known upper bound on the entropy H(C). This bound is achieved by a 
code with finite R(C) only if this code is uniform in the sense that 

p(c_1(y)) = IcT forall^GC-

Theorem 2. Every sequence of codes Cn : X
n *—> Xn approaching for some R 6 

(0,oo) the distortion-rate bound d(R) in the sense 

lim (R(Cn), dn(Cn)) = (R, d(R)) (9) 
n—»oo 

is asymptotically uniform in the sense 

lim - H ^ l -- = 1. (10) 
n-oolog|Cn(*»)| V ^ 

P r o o f . Since the ratio in (10) is at most 1 and log|Cn(.Tn)| = n R(Cn) where, 
by (9), R(Cn) —* R, it suffices to prove that 

R0 = liminf n~1H(Cn) 
n—+oo 

equals R. It obviously holds 0 < R0 < R and for every e > 0 there exists a 
subsequence n^ and a natural &o such that 

n~lH(Cnk) < R0 + e, k > k0. 
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Fix arbitrary k > k0. By (2.29) and (2.39) in Cover, Thomas [3], it follows from 
here 

n-1I(P*CnkiPxPCnk) = n-1[H(Cnk(X))-H(Cnk(X)\X)) 

= n~1H(Cnk(X)) = n-1H(Cnk)<R0 + e, 

i.e., Cnk G Cnk(R0 -f- e). On the other hand, it is easy to see that 

Pnk(x,y)d(P*Cnk)(x,y) = dnk(Cnk). I 'XnkxXnk 

Therefore it follows from (6)-(9) and from the definition of Dn(R0 + e) 

D(R0+e)= lim Dnk(R0 + e)< \im dnk(Cnk) = d(R) = D(R). 
k—too k—*oo 

Since the function D is nonincreasing in the whole domain [0,oo], it follows from 
here R0 + e > R. Further, e > 0 was arbitrary so that R0 > R. • 

Remark. In the proof of Theorem 2 we have not explicitely used the assumption 
that the source is stationary ergodic, nor the assumption that the distortion function 
is of the relatively frequency type (5). What we explicitely used were the conver
gences (6), (7), the equality (8), and the monotonicity of d(R) which is however an 
ob 'ious consequence of (6). Therefore Theorem 2 applies to all distortion functions, 
e.g. to the Itakura-Saito distortion function mentioned in Sec. 13.2 of [3], and to 
all sources such that 

lim dn(R) = infdn(R) = inf Dn(R) = lim Dn(R). 
n—>oo n n n—»oo 

3. ENTROPIC TESTS OF OPTIMALITY 

Consider a code C : Xn i—• Xn, the entropy H(C) defined in previous section, and 
the numbers 

M=\C(Xn)\, 0<h<logM. 

In this section we introduce a Neyman-Pearson a-level test of the hypothesis 

H= {h < H(C) < log M}. (11) 

It follows from Theorem 1 or 2 that, for suitable h and under the circumstances 
described there, this becomes in fact an a-level test of the hypothesis that the code 
C is good or optimal respectively. 

For example, if M = 210 and the hypothesis H = {9 < H(C) < 10} is rejected at 
the level a = 0.01 then the test provides enough ground to believe that C is not a 
good choice, and Theorem 1 or 2 implies that C = CUi£ or C = Cn can be replaced 
by a better code C = Cn,el or C = Cn„ for which H' = {9 < H(C) < 10} cannot 
be rejected at the level a = 0.01. Because the rates of convergence in Theorems 1 
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and 2 are unspecified, we cannot give justified recommendations for h = 9 in the 
test. Therefore we consider the level of h as a test parameter which characterizes 
how strict is the optimality demanded. 

The test is based on statistical observations of relative frequencies PN(V) of 
codewords y of the code C in a series of N independent realizations of messages 
from the encoded source. The test statistics is the entropy H(PN) of the vector 
PN = (pN(yi), • • • ,PN(VM)) and the test itself is a pair 

H(PN), KN] - [H(PN), cN(a,hj\ (cf. (3)). 

Let us consider the function 

/(*) = ( l-2--) log 
1 _ 9 - r c 

2 - - „2 

M - l 
— X 

and the unique solution xM of the equation f'(x) — 0 in the domain 0 < x < log M. 
It is easy to see that for all M > 3 

and 

xм < log — 

f ( I o g E) = ___!_ log 2 < M ~ X> log M ^ M - ł) 
J | 1 ° g 2 j - M 1 0 g M-2 1 0 g 2 ( M - 2 ) 

(12) 

(13) 

T h e o r e m 3. If 0 < a < 1 and 0 < h < logM then the test [H(PN), cN(oc,h)] 
with 

-(/») # - i ( l -a/2) 
CN(&, h) = h — 

VÑ 
and 

a(h) 
ҳ/JЩ if Л > xм 

ҳ/f(xм) if Л < xм 

is asymptotically a-level test for the hypothesis (11). If M > 3 and h = log(M/2) 
then 

1/2 

- log 
M M - 2 , 2 ( M - 1 ) , M 2 ( M - 1 ) 

l o S -T7—7T- l o S M M - 2 2(M - 2) 

P r o o f . The first assertion follows from Assertions 1 and 2 in [5], where asymp
totically a-level tests of more general hypotheses 

7i = {h1<H(C)<h2}, 0<h1<h2<\ogM 

are found. The second assertion follows from the given general formula for cr(h) and 
from relations (12) and (13) valid for M > 3. • 
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We see that in the above considered example with M = 2 1 0 and h = 9 

1/2 

а(9) = 
1022 , 2045 . 1048576 x 1023 

x log i n o o x log 
1024 1022 2024 

= 4.358. 

Therefore the approximately a-level critical value of the test statistic is for large N, 
say N > 100, 

4.358 x $ - ! ( ! - a / 2 ) 

For example, 

cлr(a,9) = 9 -

cN(0.01,9) = 9-

s/N 

11.226 

y/Ñ D 

4. EXAMPLE 

Three codes C , C2 , C 3 for speech compression at the level of information rate 
R = 600 bps) have been computed by means of the Lloyd algorithm (cf. p. 338 in 
Cover, Thomas [3]). The computations have been based on three different ensembles 
of independent realizations x[j\ ..., Xffi, j = 1, 2, 3 with Ni < N2 < N3 of order 
several thousands. Then the codes have been tested on a fourth ensemble with 
N4 = 16 000. The approximately a-level critical value of the obtained statistic 
H(Pi6ooo) is 

ci6ooo(c*,9.8) = 9 . 8 -
3.960 x ф - Ҷ l - a / 2 ) 

4ÕÕ 
= 9 .8-0 .01 x ф - Ҷ l - a / 2 ) . 

TaMe 1. Test statistics H(PN) and critical values c^(a,9.8). 

ciбooo(cŕ,9.8) 
Code II(Riбooo) а = 0.2 <* = 0.1 а = 0.05 а = 0.01 а = 0.001 

O1 

O2 

O3 

9.408 

9.752 

9.793 

9.787 9.783 9.780 9.774 9.767 

The test statistics and the critical values are presented in Table 1. We see that the 
sample entropies H(Pi6ooo) of all three codes exceed the value h = 9 so that the 
hypothesis (11) with h > 9 cannot be rejected at any significance level 0 < a < 1. 

Let us therefore test this hypothesis with h larger than the largest sample entropy, 
say with h = 9.8. This hypothesis is not rejected for the code C 3 even at the level 
a = 0.2, i.e. there is a good chance that this code belongs to the optimality class 
with the entropy between 9.8 and 10. On the other hand, this hypothesis for the 
codes C 2 , C 3 is rejected even at the level a = 0.001, i.e. there is a 99.9 % chance 
that the entropies of these codes are below 9.8. The codes C 2 , C 3 thus almost surely 
do not belong to the optimality class with the entropy between 9.8 and 10. 
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In spite of that it is not known what the relation 9.8 < H(C) < 10 means in 
term of the difference between the code distortion d(C) and the theoretical bound 
G?(600 bps), the results of our test provide a little more statistical evidence in favour 
of C3 than do the values H(PN) = 9.408, 9.752, and 9.793 alone. 

(Received October 11, 1994.) 
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