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RANK TESTS FOR SCALE: H A J E K ' S INFLUENCE 
AND R E C E N T D E V E L O P M E N T S 

HERMANN WITTING 

In discussion are recent developments on rank tests for two-sample dispersion problems 
with continuous one-dimensional distribution functions Ei and E2. It turns out that the 
nonparametric theory strongly depends on whether the dispersion centers /«i and \i2 are 
known (and equal) or unknown (and equal, or unequal). The linear rank tests are adjusted 
to the case "//i = H2 unknown". Most of the literature following the book of Hajek-
Sidak [12] tries to extend this theory to the case "/xi ^ [12 unknown". As is indicated 
in Section 1, these results are explicit or implicit within the framework of semiparametric 
models. Therefore, Section 2 of this paper starts with a nonparametric formulation of the 
dispersion problem as it is done for the location case in Lehmann [17]. This is followed by a 
dis .ussion of the most important dispersion orderings. Section 3 gives a complete solution 
of the testing problem for the case afi\ = \i2 known". In Sections 4 and 5 these results are 
extended to the cases "i<i = [12 unknown" and "/xi 7̂  M2 unknown". 

Sections 2 - 5 survey a couple of partially still unpublished results that were received 
over the last 15 years. They reflect the influence which Hajek's ideas continue to have on 
the development of nonparametric statistics. 

1. LINEAR RANK TESTS AND THEIR EXTENSION T O T H E CASE OF 
T W O UNKNOWN AND UNEQUAL DISPERSION CENTERS 

Let Xij, j = 1 , . . . , rii, i = 1,2, be independent random variables (r.v.) with one-
dimensional continuous distribution functions (d.f.) E;, not depending on j . We 
are interested in one-sided distribution-free tests for dispersion, i.e. whether Ei is 
more dispersed than E2, or not. In the framework of parametric or semiparametric 
statistics, these problems are formulated by means of a location-scale model 

Fi(.) = F ('-^-Y inem, cn>Q3 i = i,2, (l.i) 

where E is a known or unknown continuous d.f. In such a model the hypotheses are 

H a\ < (J\, K:cr\>crl. (1.2) 

In classical statistics E is assumed to be the d.f. (j) of the normal distribution 
.A!"(0,1). It is well known tha t in this case the E-tests are distribution-free on the 
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boundary J : o\ = a2 of the hypotheses, and this in the cases that the dispersion 
centers [i\ and \i2 are known or unknown. 

If F is unknown (or known but different from (j>) and /J,\ equals fi2, it is standard 
to use linear rank tests: Let Hni,..., Rnn, n := n\ + n2, be the ranks of the r.v. 
X\\,..., x2n2 w.r.t. the pooled sample and 6 n i , . . . , bnn be given scores. Then, the 
linear rank statistic 

Tn = J—---- — Y]6n f i . V bnRnJ =: V c n ^ n i j n ( (1.3) 
Vjn + nj^m^J n2i=t+i / ti 

is distribution-free and asymptotically normal M(0,<r2) under F\ = F2, if the se
quence of scores-generating step-functions 

n 

1=1 

converges in L2 to a function 6 £ L2 with /6dA = 0 and a\ := J 62dA > 0. For 
this it is sufficient that the scores bnj are either the exact scores * Eb(Uny), the 
averaged scores n J 611-,^ ±,d\ or - if, in addition, 6 is of locally bounded variation 

- the approximate scores 6(^l-j-), for a given score-generating function 6 £ L2; cf. 
Hajek-Sidak [12], Ch. V.l.b. 

In case of a dispersion problem it is reasonable to use U-shaped scores, i.e. scores 
bnj fulfilling the condition 

6ni > ••• > 6n[i] < . . . < bnn. (1.5) 

Well known examples are among others the Capon-scores 

bnj=E[<t>-1(Uny)]
2-l, (1.6) 

or the Klotz-scores 

bnj — 
n+ 1 

2 

- 1 , (1.7) 

i.e. the exact and approximate scores for the score-function 6(-) = [<?i_1(-)]2 — 1; cf. 
Hajek-Sidak [12], Ch. III.2.1. Cf. also Duran [9], which surveys also nonparametric 
tests for scale of different kinds. 

Though these rank tests with U-shaped scores are very sensible in the case ufi\ = 
[12 unknown", their application in the cases ufi\ ^ /i2 unknown" and "/J,\ = fi2 

known" is not without problems. In the first case the ranks of the Xij have no 
meaning for testing the hypotheses (1.2); cf. Moses [18]. In order that this is the 
case - a t least approximately -, first one has to estimate the dispersion centers //.• 
by some statistics fcn, i = 1,2, and to determine the ranks Rni, • • •, Rnn of the 

1 Here and in the following U\,.. ., Un denote independent uniform (rectangular) 7^(0,1)-
distributed r.v. and Unfj the j t h order statistic, 1 < j < n. X indicates the one-dimensional 
Lebesgue-measure. 
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centered r.v. Xu — p,in, • • •, X2rl2 — ft2n. Then the question is whether the modified 
rank statistic 

Ťn =YlC^hnŘrll 
1=1 

is at least asymptotically distribution-free. Hajek [11] - using the Jureckova-lineariz-
ation of regression rank statistics, cf. [14] - has shown that this is the case for all 
d.f F, that permit a differentiable Lebesgue-density / satisfying 

/ 
bbFd\ = 0, bF :=-J—oF-\ (1.8) 

Since U-shaped score-functions b are quite often symmetric w.r.t. 1/2, the condition 
(1.8) is met, if bF is skew-symmetric w.r.t. 1/2. This again is the case if the density 
/ is symmetric w.r.t. 0. Symmetry conditions for handling this problem by means 
of Chernoff-Savage-type methods were already used by Raghavachari [22]. 

In the second case, i.e. in the case "//i = fi2 known", rank tests with U-shaped 
scores are biased, at least in a slightly more general nonparametric model. 

E x a m p l e 1.1. (Schafer [23]) Let n\ = 2, n2 = 1, i.e. n := n\-\-n2 = 3, /i = 1/10. 
Define F\,F2 by their Lebesgue-densities f\ = ll(o,i/io) + y^H(i,2),/2 = H(o,i)- Then 
it holds true that 

F1(x)>F2(x) Vx</ i , F1(x)<F2(x) Vx>/i , (1.9) 

i.e. Ei is more dispersed than F2. Let y? be a linear rank test of level a = 1/3 
with U-shaped symmetric scores, i.e. with 631 = 633 > 632. Then one easily verifies 
EFlF2(p < 1/3, i.e. all these tests (i.e. for instance the Klotz- and the Capon-test) 
are biased. Similarly, d.f. Ei,E2with 

EiOr)<E2(aO Var</i, Fx(x) > F2(x) \fx > ft (1.10) 

can be given, for which Ei is less dispersed than F2 and for which the level a is not 
preserved, i.e. with EFlF2<p > 1/3. 

The reason for the bias of linear rank tests is the fact that these tests are based 
on only one set of U-shaped scores. This implies that the scored ranks are minimal 
in a given point (typically in the median of the sample), whereas they should be 
minimal for those observations which are next to the known (common) dispersion 
center fi. 

This intuitive argument suggests to use scores depending on the random number 
v £ {0 , . . . , n} of observations, which are less or equal to /i. Using such empirical 
scores bnj(-), 1 < j <n, 0 < v < n, we define linear empirical rank statistics 

Tn = ̂ 2cnlbnRnl (-^-J , Vn = #{(*,;) : 1 < j < nh 1 = 1,2: Xtj < //}. (1.11) 
1=1 V n J 
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As can be seen by means of Theorem 2.1, using the //-ordering (2.13), the condition 
(1.5) has to be replaced by 

bnl ( - ) > . . . > C ( - ) < • • • - hnn ( - ) V 0 < t J < r j . (1.12) 

T h e o r e m 1.2. (Schafer [23]) Let 7.1,712 £ N be fixed, n := n\ + n2 and bnj(~), 
1 < 7 < n, 0 < v < n, be given empirical scores. Then it holds true: 

a) Under F\ = Fi each empirical rank statistic (1.11) is conditionally distribution-
free, given Vn = v. 

b) If the condition (1.12) is fulfilled, then the empirical rank test with test statistic 

(1.11) is unbiased against all pairs of d.f. (F\, E2) with (1.9) and preserves its level 

under all pairs (E i ,E2) with (1.10). 

E x a m p l e 1 .3 . (Burger [5]) Let b : (0,1) —• M be an integrable function and 
K £ (0,1) . Then exact empirical scores are defined for v £ { 0 , . . . , n) by 

кл-) = < ::: т ("з) v^ 1 Eb(KUv^j) for j < v, 

Eb(K + (1 - K)Un-vy-v) for j > v. 

If 6 is K-isotonic, i.e. antitonic in [0,K] and isotonic in [K, 1], then the condition 

(1.12) is fulfilled. The same holds true for the approximate empirical scores 

/ 7 ) X ( b(K^-T-) for j < v, 

'W ^ h{K + (!_*)_!=«_) f o r i > V ) 

and the averaged empirical scores 

J / ( » f c i ^ ] M A f o r i < v ; 

l 5 f / ( K + ( 1 _ K ) i ^ i , K + ( 1 . K ) S ] M A f o r j > t / . ^ G ) 
For instance, if /c = 1/2 and 6 = [0 : ] 2 - 1, then (1.13) yields the empirical Capon-
scoros 

] / 2 / n [ E[<f>-\\Uv^)f-l (otj<v, 
C (-) = (1-15) 

and (1.14) the empirical Klotz-scores 

' I*'H^+TT)]2 - 1 f o r j ' < ^ 
Л2 Ѓ-Ì 

n^ W 

ï(w+l) 
(1.16) 

l(n-v + l) 

Since 6 = [ 0 - 1 ] 2 —1 is 1/2-isotonic condition (1.12) is fulfilled. According to Theorem 
1.2 the empirical Capon-test (1.11), (1.15) and the empirical Klotz-test (1.11), (1.16) 
are unbiased and level-preserving (in contrast to the usual Capon- and Klotz-test). 
The same holds true, for instance, for the analoguously defined empirical quartile-
scores and the empirical Ansari-Bradley scores. 
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it allows a simple sufficient condition for unbiasedness of tests and for more general 
isotony s tatements of power functions; cf. Theorem 2.1. 

The technique can also quite often be applied to other testing problems. It is 
only necessary tha t the ordering on the set .M1(M,]B) of one-dimensional d.f. or, 
more general, on the set A41(XQ,BQ) of probability measures on a Polish spare XQ 
with Borel sets #0 can be extended by a (closed) order relation y on the set K, or 
XQ. Then, for 7i being the set of all functions h : XQ —» M which are isotonic w.r.t. 
y, according to a theorem of Kamae, Krengel, O'Brien [15], cf. also [25], Ch. 7.1.2, 
the ordering y on jV.'1(.To,^o) is defined by 

Fi y F2 <=> fhdFl>fhdF2 V / i G H . (2.2) 

Furthermore, according to that theorem, it holds true that for (.To, #o)-valued r.v. 
Xi,X2 with C(Xi) y C(X2) there exist (A ,

0,.5o)-valued r.v. Yi,Y2 (on a different 
probability space) with £(Xi) = C{Yi), i = 1,2, and Yi y Y2. It should be noticed 
that for instance for the stochastic ordering, but also for the dispersion ordering 
employed later on, this theorem is not really needed, since Yi can be given in a 
constructive manner, namely as Yi = Ff (Ui), i = 1, 2. 

In all these cases the orderings on XQ can not only extended to M}(XQ, BQ), but 
also to the class of joint distributions, 

V = { E f 0 ® E2
(n2) : Fi G Tc, i = 1 , 2 } . 

For this, first define in a canonical way 

Xi < x\ :<=> Xij K x'y V j = 1 , . . . , n», i = 1,2. (2.3) 

By means of this abbreviation one gets an ordering on (X, B) = (XQ , B Q 1 n2') 
according to 

(xi,x2) •< (xi,a?2) '•<=> xi •< x\, x2yx2 (2.4) 

and then an ordering on V by means of (2.2). This again can be described by a 
corresponding ordering on the parameter set 0 C Tc x Tc, defined by 

(Fi,F2)i1(F[,F,
2) :<=> .Fi<F[, F2yF'2. (2.5) 

Using this terminology and the above mentioned replacement in distribution also 

for the tupels of the (ni •+• n2) r.v. Xn,... ,X2n2 under (Fi,F2) and (F[,F2), i .e. 

by F f 1(Un),...,F2~
1(U2n2) resp. F{ \Un),..., Ft, \U2n2), one easily proves 

T h e o r e m 2 .1 . Let Xij, j = l , . . . ,n 2 - , i = 1,2, be independent real-valued r.v. 

with distributions F,-, and let if be a test function on XQ1 n2' which is isotonic 

w.r.t. (2.4). Then the following is true: 

a) The power function (Fi,F2) •—• EFlF2<p(Xi,X2) is isotonic w.r.t. (2.5), i.e.: 

(FiF^)y(Fi,F2) = > EF,F,(p(Xi,X2)>EFlF2<p(Xi,X2). (2.6) 
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b) If ip is a-similar on J : F\ = F2, then it preserves its level on H : Fi ^ F2 and is 
unbiased against K : F\ y F2 with Fi ^ F2. 

Now the question is which order relation should be used in the dispersion case. 
Whereas in the location case there is only one nonparametric ordering, appropri
ate for describing the hypotheses, namely the stochastic ordering, there are several 
orderings which could be used, at least in the first moment. 

2 .1 . Spread ordering >:sp (cf. Bickel-Lehmann [3]) 

Here Ei Xsp E2 is defined by the fact that the quantile distances under F\ are always 
greater than or equal to the same distances under F2, i.e. 

Fx>:spF2 :<=> F-1(v)-F^1(u)>F2
l(v)-F2

1(u) VO < t i < w < 1. (2.7) 

Though this has the advantage that no dispersion centers are needed, this ordering 
is not adequate for handling rank tests for dispersion. The main reason is that the 
largest group, which leaves the testing problem invariant, is the group of component
wise affine transformations, cf. [7], or [25], Ch. 7.1.2, and this does not reduce to 
ranks. Furthermore, the technical handling of (2.7) is very difficult. 

2.2. //-ordering >^ (cf. Schafer [23] and Burger [5]) 

TLis is defined for fixed known / i G l b y 

J i - b i - S . •<=> Fi(x)lF2(x) Vxfji. (2.8) 

Since only continuous d.f. are admitted, the following holds true 

FihpFi => Fi(fi) = F2(fi) =: u. (2.9) 

Contrary to (2.7), the /^-ordering is very flexible. This is already indicated by the 
fact that the following statements are equivalent; cf. Burger [5] or [25]. 

a) Fi >-„ F2; (2.10) 

b) F f 1 >v Ff1 ; 

c) \Fi\u).-v\>\Ft\u)-ij\ V t i € ( 0 , l ) ; 

d) 2 f , f 1 W - i ; , f 1 ( t i ) > F 2 - 1 ( t ; ) - . F j - 1 ( « ) V 0 < U < I / < W < 1 ; (2.11) 

e) Fit + ritoF^. + fi). 

Here in (2.10) yv is defined formally as >̂ M in (2.8), i.e. 

F-lyvF~l :<=> F~\t)iF-\t) V*fi/. (2.12) 

Of course, in a) ==> b) one has v := Fi(^) = E2(/i)> whereas in b) = > a) one needs 
ix := FfV) = FfV). 
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One more advantage of y^ compared with X s p is the fact that the /i-ordering of 
one-dimensional d.f. can be generated by the fi-ordering on M. 

x' y^ x :<=> [x < u. =-> x' < x, x > n => x' > x). (2.13) 

Using (2.2) one verifies tha t the induced ordering equals the ordering (2.8) and 
therefore, according to Theorem 2.1, unbiasedness and level-preservation can be 
ascertained. The property (2.11) indicates the connection with the spread ordering. 

According to its definition the /i-ordering is adapted to the two-sample disper
sion problem with known and equal dispersion centers. The case that fi\ and fi2 are 
known but unequal can trivially be reduced to the case fi\ = p,2 = : fi or equivalently 
be handled by the following extension of the //-ordering (2.8) 

F\y^^2F2 :<=> F1(- + fil)y0F2(- + fi2). (2.14) 

2.3 . Free / i -orderings (cf. B u r g e r [5]) 

The /i-ordering can also be modified in such a way that cases can be handled in which 
the dispersion centers are unknown (and equal or unequal). For these cases a location 
functional j : Tc —+ 11 is needed which is equivariant for affine transformations, i .e. 

J(F(.-—\ J =vj(F) + u V w G M V U > 0 . (2.15) 

Well known examples are for instance the quantile functional je(F) = F~1(Q) 
for fixed 0 < o < 1 and the mean-value functional j(F) = J xdF(x), defined for all 
distributions F with finite first moments. 

Using such a functional j , the free /i-orderings >-* and >-", appropriate for the 
cases "/ii = fi2 unknown" and aji\ ^ fi2 unknown", are defined by 

:<=> Fi(< + u.)y0F2(- + fi), U.:=J(F\) = J(F2), (2.16) 

F\y\lF2 :<=> F\(- + j(F\))y0F2(- + j(F2)). (2.17) 

The adequacy of these two orderings for describing the two testing problems with 
equal resp. unequal dispersion centers is reflected by the implications 

F\h\F2, Fi(-) = F ( ^ \ , i=l,2 = > a\>a2, 

Fi >z\l F2, Fi(-) = F ( ' - ^ ) , i = 1,2 = > a\>a2. 

Finally, according to Burger [5], the following equivalence holds true 

F\yspF\ <=> F\y]y\F2 V ^ € ( 0 , 1 ) . 

This makes clear why y}f allows a stronger reduction than ysp, namely to ranks, 
which is - as mentioned before - not possible for >^sp . 
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3. EMPIRICAL RANK TESTS FOR T H E CASE "fi\ = fi2 KNOWN" 

As already mentioned, the nonparametric theory of dispersion problems strongly 
depends on whether the dispersion centers of the two samples are known (and equal) 
or unknown (and equal or unequal). Section 3 discusses the simplest case, namely 
tha t both centers are known and equal. The main goal is to justify the linear 
empirical rank test (1.11) as a locally optimal invariant test, and to derive its main 
asymptotic properties. Again, X{j,j = 1,. . . , n^, t = 1, 2, are independent r.v., the 
distribution of which is independent of j . The hypotheses are 

H(fi):F1<flF2, K((i):F\>:fiF2 with Fx # F2, (3.1) 

where /. 6 1 is given and for which the common boundary (for instance w.r.t. the 
totalvariation-norm) is J(/J-) '• F\ = F2, i.e. independent of [i the set J = {(F, F) : 
F £ Tc\. The theory of rank tests for scale is based on the fact that this testing 
problem is invariant against the group G(/i) of all transformations on the sample 
space ffi.n of the form (x\,..., xn) i—» (TX\, ..., TXn), where r : E —+ M. is surjective 
and strictly isotonic with Tfj, = /i. One easily verifies that Mn = (Rn, Vn) is maximal 
invariant under G(/i), where Rn is the vector of ranks and Vn is the number of 
observations, less than or equal to \i. Obviously, the null distribution of Mn is not 
distribution-free. This follows from the well known facts, tha t under (F, F) £ J 
the statistics Rn and Vn are independent, Rn has the discrete uniform distribution 
Cn on the group of permutat ions of { 1 , . . . . n} and Vn has the binomial-distribution 
B(n,v), v := F(fx), i .e. 

CFF(Mn) = Cn®B(n,v) \/(F,F)EJ. 

This implies the first important property: Each invariant test, i.e. each test of the 
form (fin = ipn(Rn, Vn), is only conditionally distribution-free, given Vn = v, 

£FF(lpn(Rn,Vn)\Vn = V) = CFF(xpn(Rn , v)). 

Example 3.1. The linear empirical rank test (1.11) only depends on Rn and Vn. 
Therefore it is a conditional rank test, the critical values of which can be fixed 
independently of (F, F) £ J, conditionally given Vn = v. In particular it is true that 
Tn, given Vn = v, behaves like a linear rank statistic with the scores bnj = bnj (-). 
If, in addition, condition (1.12) is fulfilled, the test (1.11) is unbiased against K(/J.) 

and preserves its level on H(fi). 

The second important property of empirical linear rank tests is that of local 
optimality among all invariant tests for finite sample size n. For this, as in the 
location case, we start from a score-function b £ Li, which enters the test statistic 
(1.11) only in a discretized form, namely in that of the empirical scores bnj ( - ) , 
1 < j < n, 0 < v < n, or equivalently in form of some generating function bn(-, •). 
Correspondingly, for discussing the local asymptotic optimality among all tests we 
start from a score-function b £ h2. For proving these optimality properties and for 
asymptotic investigations of these tests one has to guarantee that the discretized 
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versions of 6 converge to 6 in a sufficient manner. But contrary to the location 
case besides 6 another constant K £ (0,1) enters and, implied by this, the value 
v £ {0 , . . . , n} of a corresponding statistic (namely of Vn). Therefore, as in the 
location case, it is useful to define a step-function bn for n £ N, which here also 
depends on K and v. For technical reasons we first divide the intervals [0,/c] and 
[K, 1] into v resp. n — v equally long subintervais and then define 6£( —, •) as the 
step-function which assumes the j empirical score 6£;- (^) on the j of these 
subintervais, i.e. 

b« (j.-) = X X (I) W...](->+ E ^ (J.) »c«i-.)-ai-.-K.-.)fe«(-)-
j = i ;'=v + l 

(3.2) 
Then it can be shown, cf. Burger [6], that the systems of exact, averaged and -

if 6 is of locally bounded variation - approximate empirical scores 6*- (^j are stable 
in L r , i.e. it holds true that 

l) Җ {—,•)—+b(-) in L г for min{г;n, n — vn} —> oo; 

b) sup sup 
Í I É H 0<v<n 

* ( : • • ) 

< oo. 

(з.з) 

(3-4) 

Now it is possible to define in each point (Eo,Eo) £ J with Eo(/~) = « one-
parameter classes T(Fo;b,«) of alternatives along which the linear empirical rank 
test with scores 6* • (^) turns out to be locally optimal invariant (for r = 1 in case 
of exact empirical scores) resp. asymptotically optimal (for r = 2 in case of L2 

-stable empirical scores). These classes {P^ : n £ E} have to be compatible with the 
hypotheses (3.1) in the sense that it holds true that 

Ho £ J, Pve H (/i) for n < 0 and Pv £ K(p) for n > 0. 

For defining these classes one first fixes a distribution Eo £ -To i-e- a point 
(Ib,-Fo) € J- Then, for given 6 £ L-.K := F0(/-) G (0,1),« £ {0 , . . . , n} and 
the corresponding averaged empirical scores 6*- (n-), i.e. for given step-functions 
bn(~, •), one-dimensional d.f. FA for A £ E are defined by 

AF. 
^ ( . ) = 1 + Л ^ , З Д ) , * = * ( Д ) : = 

к Л (1 — к) 

2|A| | |6 | | l r 

Vk 

Finally, (n\ + n2)-dimensional d.f. Pn, n £ E, are defined by 

F ("0 E (7.2) 
•д. / n i n a ** _ j L . / Ј Ł i « a ľ -

"1 V n l + n 2 n 2 V n l + n 2 

E«*(A)]. 

(3-5) 

(3-6) 

Using the basic results on Lr-differentiability, cf. [24], and the terminology in
troduced before, the assertions a)-c) of the next theorem follow immediately. Part 
d) guarantees the compatibility of the class V = {Pn : V £ E} with the hypotheses 
(3-1). 
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Theorem 3.2. Let K E (0,1), b E L^ and E0 E Fc with E0(/i) = K. Then it holds 
that 

a) the one-parameter class T(F0;b,K) := {EA : A G 1 } is Lr(0)-differentiable, 
with derivative b o F0; 

b) the one-parameter class V(F0; b, K) := {P^ : f] E Hi} is Lr(0)-differentiable, with 
derivative Sn

KF°(xx, . . . , xn) := YTt=i cmb(F0(xe)); 

c) If Mn = (Rn,Vn) denotes the maximal invariant statistic, then the one-
parameter class of their distributions is Lr(0)-differentiable, with derivative 

EFoFo(S
b

n
KFo\Mn) = J2cn£bnRnt (^f) = Th

n
K. (3.7) 

In particular, the linear empirical rank test (1.11), (1.13), is locally optimal at 
the point (F0, F0) E J along the family V(F0; b, K) among all invariant tests. 

d) V(F0;b,K) is compatible with the hypotheses (3.1) provided f bdX <K 0, i.e. 
when 

/ 6dA < 0 for U<K, / bdX > 0 for u > K. (3.8) 
J(0,u) J(«,l) 

It is sufficient for (3.8) that the following two conditions are fulfilled: 

6 /c-isotonic, 
'o 
/ bdX= [ 6dA = 0. (3.9) 

JO J K 

e) If bn- (^x , 1 < j < n, 0 < v < n, are the exact or approximate empirical 
scores for b and K, the test (1.11) is unbiased against K(n) and preserves its 
level on H(n). 

Example 3.3. Let K e (0,1), b E L° with (3.9) and F0 E Tc with F0(\i) = K. 
Then, according to Theorem 3.2d, the class V(F0;b,K) is compatible with (3.1) and 
therefore the linear empirical rank test ipn

K with test statistic (1.11) and exact em
pirical scores is a locally optimal invariant test. Since because of (3.9) the condition 
(1.12) is also fulfilled, according to Theorem 2.1 tpb

n
K is an unbiased level preserving 

test. 

Obviously, according to Theorem 3.2c, the optimality property of the test <pn
K is 

independent of the special point (F0,F0) with F0(fi) = K. It is now the question 
whether - for given b and K with (3.8) - also in all other points (F,F) E J, i.e. 
those with F(fi) ^ K, a one-parameter class exists, along which the test ipn

K is locally 
optimal invariant (for r = 1) resp. locally asymptotically optimal (for r = 2). This 
is indeed true. But, contrary to the location problem, the score-function b which 
defines the alternatives according to (3.5) and (3.6), has to be "adapted" to the 
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point (F,F) E J or, more precisely, to the value v = F(/J). To be concrete, let 
6 G ILr and F0, F £ Tc with K = F0(\i), i = F(fi). Then the adapied score-funciion 
for b and K is defined by 

{ &(-«) for u < v, 

i ( , ! - « / rt r ( 3 - 1 0 ) 
M K + i^(u _ z /) j for u>v. 

One easily verifies the following properties which motivate Theorem 3.5: 

a) v = K = > 6^ = b; 

b) 6 (strictly) K-isotonic ==> 6;, (strictly) iv-isotonic; (3-11) 
c) fbdX<KQ => jbvdX<vQ; (3.12) 

d) V(F0;b, K) is compatible with the hypotheses (3.1) in (Eb,Eb) => 

V(F;bv,v) is compatible with the hypotheses (3.1) in (F,F); 

e) The exact, approximate and averaged empirical scores for b, K and bv,v coin
cide, i. e. 

Ьí 
П] 

(ľЛ =b^(-Y l<j<n, Q<v<n, Q<к<l. (3.13) 

E x a m p l e 3.4. Let b0 : (0, 1) —> R. Then the following holds true: 

f & 0 ( — ) for w < AC f & 0 ( — ) for u<v 
b(u)=\ K K ' ~ => bv(u)=\ K " - (3.14) 

\ &o(f5j) for O . ^ ' \ 6o(?Ej) f o r u > v-

Beyond this implication we have 

&o isotonic <=> b K-isotonic <=> bv /v-isotonic. 

The exact, approximate and averaged empirical scores for j < v resp. j > v simplify 

in this case to 

bnj (^) = Eb0(Uv^v-j + i) resp. Eho(Un-vy-v), 

M S ) = -»(-sfJ-) resP- 'o(^Sr), , ,., 
fe«i ( n ) = u / ^ - j ^ - i + i ^ O o d A resp. (n - u) J ( , - , - i j - v ) 60dA. 

Now it is clear, what has to be done. Replace (To, F0) £ J with F0(fi) = K by an 
arbitrary point (F, F) £ J with E(/i) = ^ and b by &„. Define classes J-"(E; &!,, iv) and 
V(F; bv, v) according to (3.5) resp. (3.6). Because of (3.12) V(F; bv, v) is compatible 
with the hypotheses (3.1) in the neighborhood of (F,F). Then, in generalization of 
Theorem 3.2c, the following holds true: 
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T h e o r e m 3.5. If Mn = (Rn, Vn) denotes the maximal invariant statistic and if the 
one-parameter class V(F;bv,v) is Lr(0)-differentiable with derivative Sn"

KF, then 
the class VMn(F; bv, v) of distributions of Mn is L r(0) differentiable, with derivative 

EFF(Sb
n«

KF\Mn) = J2cnlbnRnl f ^ \ = Tb
n\ (3.15) 

ř=i 

In particular, the linear empirical rank test (1.11) is locally optimal in each point 
(F, F) £ J along V(F; bv, v) among all invariant tests. 

The special set-up (3.5) leaves open the question whether there are further one-
parameter Lr(0)-differentiable classes, which are also compatible with the hypotheses 
(3.1) and which would lead to a different type of locally optimal tests. It is therefore 
important, to determine the totality of all those one-parameter classes or at least of 
their Lr(0)-derivatives. One easily verifies that this tangent-set, cf. Pfanzagl [21] or 
[26], consists of all functions 

n i n . 

^ 6 i o E 0 ( ^ ) + Y, b2oF0(xl) : bl,b2EL°r, / (6j - 62)dA <K 0, (3.16) 
t=l Z=ni+1 J 

*vhere f{b\ — 62)dA <K 0 means f(Q u\(b\ — 62)dA|0 for U^K. 

For practical purposes it is sufficient to determine the subset of all those Lr(0)-
derivatives, which are "orthogonal" w.r.t. the boundary. This so-called co-set con
sists of all functions 

1 " 1 . 1 n r 

— YjboF0(xl) J2 boFoM- 6GLr°, bd\<K0. (3.17) 

The third important property of linear empirical rank statistics is that of asymp
totic normality. This can be proved by means of Theorem 3.2 for r = 2, using a 
Pythagoras-kind of argument; cf. [26]. On the one hand Sn

KFo is a sum of indepen
dent r.v., standardized in a form appropriate for applying the central limit theorem. 
On the other hand - because of (3.15) and properties of conditional expectations -
TbK is orthogonal to Sb

n
KFo - TbK w.r.t. L2(Eo), i.e. it holds 

VaTFoFo(S
b

n
KFo - TbK) = VavFoFoS

b
n

KFo - VavFoFoT
bK. (3.18) 

Now VarirOJp05n'
cFo = YTt=i cni I ^ ^ —* / 62dA according to the Markov-inequality 

and Slutsky's theorem it is sufficient to verify 

VarFoFoTn
6* — y > d A . (3.19) 

But this is achieved as in the location case; cf. [7]. 
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By means of Theorem 3.2 asymptotic normality can be established under any 
other distribution (F, F) G J. For instance one verifies 

V a r ^ T * * —> V2

KK :=- f b2d\ + i—__ / b2d\, (3.20) 
K J(0,«) 1 - AC J(K.l) 

if F(IJL) = v. In particular, if 6 is of the form (3.14), then it holds 

ul. = / &2dA. 
r L = Jьl< 

Also, using Le Cam's third lemma, cf. Hajek-Sidak [11], Lemma VI. 1.4, or [25], corol
lary 6.139, the limit of the power function under contiguous alternatives (Fn,Fn) 
of the form (3.5), (3.6) with some function a G L" instead of the score-function 
b E Li] can be determined. Using these tools and the terminology introduced above 
we come to 

Theorem 3.6. Let K G (0,1), b G L§ Ac-isotonic and F e Fc with F(fi) = v. Then 
it holds true that 

a) the one-parameter class V(F; bv,K) is L r(0) -differentiable, 
with derivative Sn

vKF; 

b) CFF(SYF) -^ jV(0,<J; 

c) CFF(Ti«) -z* A!"(0,<J; (3.21) 

d) Cғ.ғ.(Tľ) -Ґ. M (fì J«i»dX,<гÜ 

/ ł , d Л < . 0 Ì ^ / o M A > 0 . 
Ґ1 i /_ icr . t r .шe I J 

e) 
a iv-isotonic 

In particular the linear empirical rank tests (pn

K are asymptotically unbiased and 
level-preserving in the vicinity of each point (F,F) G J along all classes V(F;a,v) 
with «v-isotonic a, f,Q s ad\ = J, ^ ad\ = 0. 

Besides (3.21) the limit of the conditional distribution of Tn

K, given Vn = v, can 
be determined and the asymptotic equivalence of the corresponding asymptotic test 
iph

n = t(Tn

K > uao-},vK) and the conditional level a-test can be verified. 

Theorem 3.7. Under the assumptions of Theorem 3.6 it holds true that 

a) CFF(Tn

K\Vn = vn) —jr* ./V*(0,<7j K) for almost all sequences(iyn); 

b) ipn

K and <pn

K are asymptotically equivalent under all pairs (F, F) G J. 

If 6 is strictly Ac-isotonic, then the asymptotic equivalence holds under each pair 

(F1,F2)eH(fi)UK(fi). 

We omit efficiency results since these are immediate consequences of the supple
ment in Theorem 3.6. But we wish to mention that also consistency can be proved 
under very general assumptions. Similar to the location case this is based on a law 
of large numbers for standardized linear empirical rank statistics. 
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Theorem 3.8. Let K £ (0,1), b £ L° ^-isotonic and Tn
K a linear empirical rank 

statistic (3.7) with Li-stable scores. Let <pn
K be a test with test statistic Tn

K,X £ 
(0,1), Hx = \F1 + (l-\)F2andyh

x*(FliF2;vL) = fbv(Hx)(dF1-dF2). Then for 
n —> oo with m/n -+ \ it holds for all (FUF2) £ H(fi) U K(v): 

a) TtK^liK(FuF2Ms) (Fu E2)-a.e.; 

f 1, i f 7 * ' t (F l j F 2 ; / i )>q j 

b) - ^ - V * " - { 
( 0, i f T ^ ( E 1 , E 2 ; / i ) < 0 . 

In particular, if b is A-a.e. strictly K>isotonic, then cpn
K is consistent for the hypothe

ses (3.1). 

The supplement follows from the fact that for strictly /c-isotonic b the functional 
7A

K(Ei, F2; fj.) characterizes the hypotheses according to 

(FUF2) EH(fi) *=> 7{R(FuF2iti)<0, (3.22) 

(FUF2) £J <=> 7iK(FuF2;ti) = 0, (3.23) 

(FUF2) £K(fi) <=> T5K(i ri,Iv2;/i)>0. (3.24) 

4. EMPIRICAL RANK TESTS FOR THE CASE "m = //2 UNKNOWN" 

For making the testing problem "fi\ = fi2 unknown" precise it is necessary to have 
a location functional 7 : Tc —+ M. for fixing the unknown common dispersion center 
fi. Then, by means of the free //-ordering -<* defined in Section 2.3, the hypotheses 
can be formulated as 

H:F1<\F2, K : Ei >\ F2 with Fi -- F2. (4.1) 

In ihis situtation it suggests itself to use the test statistic Tn =: Tn(fi) from Section 3 
with fj, replaced by an estimator fin. If this depends only on tha.order statistic of 
the pooled sample - which for instance is the case for the canonical estimator -y(Hn) 
- the same is true for Hn(fin). Therefore, since in this case Rn and Hn(p,n) are 
independent under J : F\ = F2, the resulting test statistic 

n 

Th
n

K(fLn) = Y, cmbnRnt(Hn(lLn)) (4.2) 
£=1 

is conditionally distribution-free, given Vn = v. 
This again implies that the critical value can conditionally be determined in

dependently of the special point (F, F) G J . More precisely, if Vn = v implies 
Hn(fin) = w/n, then Tn

K(ftn) behaves conditionally, given Hn(fin) = w/n, as a 
linear rank statistic with the scores bnj = bnj(^-), 1 < j < n. 

If fin is an equivariant estimator for /i the substitution of/i by jln can be justified 
by invariance against the translation group Qx of all transformations ( x i , . . . , xn) H-> 
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(xi + u,.. . ,xn + u),u £M, which in the case "/_i = //2 unknown" leaves the test
ing problem invariant. Since (x\ — fin(x),. .., xn — ftn(x)) is a maximal invariant 
statistic, the justification follows from 

Rn(x - fAn(x)ln) = Rn(x), Hn(0;x- fin(x)ln) = Hn(fin(x);x). (4.3) 

Using this method it is near at hand to ask whether the results about local opti-
mality, asymptotic normality and asymptotic unbiasedness, formulated in Section 3 
for the case "fi\ = /~2 known", can be extended to this more general case. This is in
deed possible, if fin is yfn-consistent and depends only on Hn, i.e. only on the order 
statistic. All these results are based on the asymptotic equivalence o{Tn

K(fin) and 
ThK([i) under fixed distributions (F, F) £ J, which, of course, extends to contiguous 
alternatives. 

T h e o r e m 4.1. Let K £ (0,1), b £ L2 be K-isotonic and Tn

K(fi) for fixed / j £ l a 
linear empirical rank statistic (3.7) with L2-stable scores. If /~n is a A/n-consistent 
estimator for fi depending only on Hn, <pn

K a test with test statistic ThK(fin) and 
Fn a d.f. defined by (3.5) with some function a £ L 2 instead of b £ L°, then for all 
F £ Tc the following holds true: 

a) Th

n

K(fin) - TiK(fi) - 0 in (F, ^-probability; 

b) £FF(ThK(j±n)) -?> M(0,a\vK); 

c) Cnn(ThK(ftn)) -^ H(n\abA\^KK); 

d) <phK is asymptotically unbiased and level-preserving; 

e) <pn

K is a locally asymptotically optimal test. 

Besides the limit of the (unconditional) distribution of the test statistic Tn

K(jj,n) 
we can also find the limit of the conditional distribution, given Hn(fin) = wn/n, for 
almost all sequences (wn/n). More precisely, these limit distributions are the same 
and the tests turn out to be asymptotically equivalent. 

T h e o r e m 4.2. Under the assumptions of Theorem 4.1 it holds for all F £ Tc and 
(F, E)-almost all sequences (wn/n) that 

CFF(T^(M\Hn(Hn)=^) -Č+ A/-(0,<J. 

b) The tests with the test statistic Tn

K((in) and the conditional tests of the same 
level with the same test statistic, given Hn(fin) = wn/n, are asymptotically 
equivalent under all (F, F) £ J . If 6 is strictly /c-isotonic, then both tests are 
asymptotically equivalent under all (F\, E2) £ H U K. 

Consistency can also be proved. In analogy to Theorem 3.8 this is based on the 
validity of a law of large numbers for standardized linear rank statistics. 
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Theorem 4 .3. Let K E (0, 1), b £ L° be /c-isotonic and Tn
K(n) for fixed fi 6 

M. a linear empirical rank statistic (3.7) with Li-stable scores. Let \in be a y/n-
consistent estimator for fi depending only on Hn, <pK a test with test statistic 
Th

n
K(Vn), Hx := AEi + (1 - X)F2 and T f ( P i , F2]jt) = Jhu(Hx)(dF1 - dF2). Then 

for n -* co, nxjn -> A E (0,1), it holds for all (FUF2) eHUK that 

a) T^O-n)-* 7 ^ (Pi, F2\li) ( E i , E 2 ) - a . e . ; 
f 1, if 7 i K (P i J P2; / i )>0, 

I 0, if 75K( i r i ,P2;/ i )<0. 

In particular, if b is A-a.e. strictly K -isotonic, then ipn
K is consistent for the hy

potheses (4.1). 

We now concentrate on the special case that in (4.1) 7 = ye is the £>-quantile 
functional2. Then it is near at hand to use the estimator fin = ye(Hn) = H~1(Q), 

such that Hn(fin) = Hn(H~1(g)) is at least asymptotically equal to Q. This implies 

Theorem 4.4. Let Q E (0,1) be fixed and 7 = j e the £>-quantile functional for 
fixing the hypotheses (4.1) and estimating the unknown dispersion center. Then for 
sufficiently large n it holds true that 

a) Hn(fin) = Hn(H~l(o)) K Q (which is not random); 

b) The empirical scores bnj(Hn(fin)) can be approximated by the usual scores bnj, 
defined by the ^-isotonic function b; 

c) The linear empirical rank statistic (4.2) with estimator fin = H~1(Q) can be ap
proximated by the usual linear rank statistic for the ^-isotonic score-function b. 

Theorem 4.4c gives an asymptotic justification of applying linear rank tests in the 
case "/^i = fi2 unknown", as it was mentioned in Section 1 as a standard technique. It 
can be extended to a justification for finite sample sizes by invariance considerations. 
This is based on the fact that the functional j e is equivariant for the group Q of 
all transformations on the sample space of the form (x\,..., xn) 1—> (TX\, ..., TXn), 
where r : K —>JR. is surjective and strictly isotonic. This implies that the testing 
problem (4.1) is invariant against Q. For this group the rank vector Rn(x) is maximal 
invariant, cf. Lehmann [17], Ch. 6.7, and linear rank tests with exact scores are 
locally optimal invariant tests. 

Theorem 4.5. Let Q E (0,1) be fixed and the hypotheses (4.1) be defined by 
the quantile functional j e . Then linear rank tests with exact scores for ^-isotonic 
score-functions 6 are locally optimal invariant tests. 

We mention that for the hypotheses (4.1) unbiasedness (and level preservation) 
cannot be proved by means of Theorem 2.1, since the ordering X* cannot be trans-
fered to the sample space. We also point out that invariance properties strongly 

2 In contrast to Section 3 now g (rather than ^) is fixed. 
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depend on the special choice of the functional 7. Furthermore note that the use of 
linear rank tests for dispersion problems in the case "fii = \x2 unknown" is moti
vated in a slightly different way in Behnen-Neuhaus [2]. Our approach goes back to 
Schafer [23] and was extended and supplemented by Burger [4]. 

5. EMPIRICAL RANK TESTS FOR THE CASE > i -£ fi2 UNKNOWN" 

According to (4.1) the hypotheses are formulated as 

H:Fl<
l}F2, KiFit^Fi withFi/E2. (5.1) 

Here again 7 is a location functional which fixes the testing problem and the dis
persion centers Hi and fj,2. In analogy to the question whether linear rank tests can 
be extended to the case "/ii ^ [i2 unknown" discussed in Section 1 it suggests itself 
first to estimate the dispersion centers yn by some estimators fiin and then to use 
the ranks Hni,..., Hnn of the r.v. Y\\ = xn - / J in , • •• >y2n2 = X2ri2 - fi2n resp. 
the corresponding empirical rank statistic (1.11), i.e. 

n 

Tn = J2cmKRJM0;Y(n))). (5.2) 
1=1 

Here Hn(-;Y(n)) denotes the empirical d.f. of the r.v. Yu,.. . ,y2n 2 . But contrary 
to the test statistic (4.2) this statistic is not conditionally distribution-free, given 
Hn(0;Y(n)). Therefore, we have to ask whether Tn under appropriate conditions is 
at least asymptotically distribution-free. Following Hajek [11] this shall be done by 
linearization. For this the Jureckova-linearization has to be generalized to the case 
of linear empirical rank statistics. 

Lemma 5.1. (Burger [4]) Let Tn
K be a linear empirical rank statistic and T^bK 

the same statistic, evaluated for the r.v. x,j — A,, j = 1 , . . . , rn, i = 1, 2. Let b„ be 
the adapted score-function (3.10) and bF be defined as in (1.8). Then, for n —* 00, 
it holds true that 

Tn
A6K - Tn

6K - A / 6^6FdA -> 0 in (F, F)-probability. (5.3) 

According to this lemma, the statistics Tn and 

n 

fn = ^2cntbnRnt(Hn{0)) (5.4) 
1=1 

have the same limit distribution in a point (F, F) £ J, if 

,bFd\ = 0. (5.5) /м 
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According to the discussion of (1.8) this condition is fulfilled, if bv is symmetric 
and bp skew-symmetric w.r.t. 1/2. This again is typically the case if v = 1/2 and 
F has a Lebesgue-density / which is symmetric w.r.t. 0 and for which we have 
J l&i/t^ldA < oo. 

But also for v ^ 1/2 there are situations of practical interest in which (5.5) is 
met. For this we have to generalize the concepts of symmetry for score-functions 
and d.f.3 Let K 6 (0,1) be fixed. Then a score-function b : (0,1) —> ffi. is called 
quasi-symmetric w.r.t. K iff 

6(« - KU) = b(K + (1 - K)U) V U G (0,1). (5.6) 

This is equivalent to the existence of a function bo : (0,1) —+ E with 

( tf ,. . 7/ \ ill K" \ 
) for u < K, b(u) = bo I - ) for « > K; (5-7) 

cf. Example 3.4. A d.f. F : E —* E is called K-symmetric w.r.t. \i £ R iff 

F(fi) - F(fi - x) = F(n + x) - F(n) 
K 1 — K 

If F has a Lebesgue-density / , this is equivalent to 

V r > 0 . (5.8) 

1 1 
-f(pi- x)= f(pi + x) A-a.e., (5.9) 
K 1 — K 

which again implies that bp o F is skew-symmetric w.r.t. \i. If in addition 6 is 
quasi-symmetric w.r.t. K, then it holds 

/ 
bbFd\ = 0. (5.10) 

Here 6 is a slight modification of b, namely 

6=vM^°^+vi^76V)- <5-n) 
Obviously among others we get 6 E 1.2, (bv) = (b)u and I) = b for v = 1/2. 

Under condition (5.5) resp. (5.10) the statistics (5.4) and (5.2) can be compared. 
This is also possible with regard to the validity of other asymptotic properties as 
local optimality or unbiasedness. For the formulation of these assertions it is useful 
to extend - according to (2.7) - the results of Section 3 to the case "/ii ^ \ii 
known". Denoting the statistic thus maintained by T\K(\L\,ii2), (5.2) is of the form 
-MI (/-ln> /-2n)- Before using this as a test statistic, v has to be known (as in the case 
that 7 is a quantile functional) or has to be estimated by some consistent estimator 

3 Examples of dispersion problems in practice, in which the dispersion center of a one-
dimensional distribution is not its median, are given in Deshpande-Kusum [8]. 
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Theorem 5.2. (Burger [4]) Let K G (0,1), b : (0,1) -> R be ^-isotonic and FUF2 

is such that (5.5) is fulfilled, b defined by (5.1) and 1**0-1,/.2) for fixed (/-i,/*2) G I 2 

a linear empirical rank statistic with L2-stable scores for testing the hypotheses 

H •F1^lfi2F2, K:F1yfil^2F2 with F, -£ E2, 

where ^^lA.2 is defined by (2.14). If (/hn»/-2n) = (7(Pln)>7(-?2r.)) is a y/n-consistent 
estimator for (fi\, fi2) and ipn a test with Tn'

K(p.in, (i2n) as test statistic, the following 
holds true 

a) Tt(fnn,fi2n)-Tt(fii,fi2) - 0 in (Fi, E2)-probability; 

b) TFF(T^(/iln,A2n)) - g - / V ( 0 , < J ; 

c) <̂ n is asymptotically unbiased and level-preserving; 

d) (pn is a locally optimal test. 

In the special case that j is the ^-quantile-functional and b fulfils (5.11), then a ) - d ) 
are true for all /c-symmetric F\ (w.r.t. fi\) and E2 (w.r.t. /i2). Beyond that <pn is a 
linear rank test with a ^-isotonic score-function. 

Finally, we discuss a completely different method for handling hypotheses (5.1). 
Whereas the asymptotic justification of tests considered up to now was based on 
the Lr-convergence of the step-functions bn against some function b, now an LAN-
approximation is used; cf. [25], Ch. 6.3.2. More precisely, by means of an appro
priate localization one comes to a limit problem governed by a multidimensional 
normal distribution, which makes possible an exact solution. 

The starting point is the fact that after fixing the one-parameter class of dis
tributions T(F;b,K) we have a three-parametric testing problem with the one-
dimensional main parameter A and the two-dimensional nuisance parameter (//i, fi2). 
Assuming some regularity conditions it is possible to simplify the testing problem 
by localization according to 

A-r}/y/n, Hi=£i/Vn, H2=b/y/n. 

Assuming that F is A-continuous with an absolute continuous density / and finite 
Fisher-information / ( / ) = fbFd\,bF = —4- o E-1, and using the abbreviations 

J n = / ( / ) 6 (0, oo), Ji2 = hi = j bbFd\ (vT - A, -V\) e l l x 2 , 

J22 = Д Л I 0 ° ) є 
> 2 x 2 

the limit problem of the LAN-approximation is 

U\ _M((hiV + h2i 
Vj \\hlV+h2^J ' VJ21 J22 *,[i)-"((ïìl-l).(£-)). (в.14 
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H:r)<0, £GIR2, J ^ : 7 7 > 0 , £ £ M2. (5.13) 

Here the nuisance parameter £ can be eliminated by conditioning, given V = v; cf. 
Lehmann [17] and [24], Ch. 3.3. Since S = U — J ^ J ^ 1 ^ *s stochastically independent 
of V, it is possible to transform the conditional test into an unconditional one. This 
corresponds to transforming the given score-functions b into 

i / bbirdX 
b=h-i§)-b^ < 5 - 1 4 ) 

for which the orthogonality conditions (5.10) is fulfilled. Of course, b1 can be stand
ardized according to 6° = tJ1/||^1||i,2- This technique for handling parametric testing 
problems with nuisance parameters goes back to Neyman [20]. The corresponding 
tests are known in asymptotic statistic as C(a)-tests; cf. [25], Ch. 6.4.3. 

As is seen from (5.14) the resulting test depends on the unknown F £ Tc. Besides 
the factors f bbpdX and / ( / ) , the score-function 6^ has to be estimated consistently, 
as it was done for the first time in Hajek-Sidak [12], Ch. VII. 1.5. 

Using 6° as the score-function we end up with a linear rank statistic or a linear 
empirical rank statistic, depending on whether the location functional 7, which was 
used for making the hypotheses (5.1) precise, is a quantile functional or not. For 
details we refer the reader to Burger [4]. 

6. TWO-SIDED TESTS AND CONCLUDING REMARKS 

Most of the results can be extended to the tv o-sided case just as in the location 
problem; cf. [19]. Since in the nonparametric approach the alternative comprises 
those pairs (F\, E2) for which Ei is either less or more dispersed than F2, the bound
ary of the hypotheses is typically the same as in the one-sided case, i.e. J : F\ = E2-
If the one-pa ameter subclass V\ = { P A : A £ IR} is sufficiently smooth at A = 0, 
i. e. if the power function of any test is twice differentiable at A = 0 and if the 
differentiation can be done under the expectation sign, the locally optimal test for 
H : A = 0, K : A ^ 0 can be defined as a test maximizing the curvature of the 
power function among all locally unbiased level a-tests. If, in addition, V\ is twice 
Li(0) -differentiable with derivatives Lo and Lo, the test can be made explicit by 
the generalized fundamental lemma as a solution of 

VV#A¥>|A=O = Eo(pL0) = sup^,, 

V £ A < H A : = O = E0(<pL0) = 0, 

EQ<P = a. 

In the same way this can be done for two-sided locally optimal rank tests. In all 
these cases it turns out that the optimal test statistic is asymptotically quadratic, 
i.e. it is the square of the optimal one-sided test statistic plus a term which is 
typically asymptotically negligible. Among others this implies that the two-sided 
test asymptotically depends only on the first derivative Lo resp. Lyof0(Lo|Mn), 
which is typical for asymptotic statistics. 
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As is shown in Burger [4], an analoguous theory can be developed for permutat ion 
tests. Finally, it should be mentioned that several results of Sections 3 - 5 hold also 
for other orderings, for norms distinct from the total variation norm and for other 
nonparametric testing problems, e. g. for location problems with censored da ta or 
correlation problems. 
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