
K Y B E R N E T I K A — V O L U M E 30 (1 9 9 4) , N U M B E R 6, P A G E S 7 4 5 - 7 5 3

POLYNOMIAL OPERATIONS:
NUMERICAL PERFORMANCE
IN MATRIX DIOPHANTINE EQUATION

F E R D I N A N D K R A F F E R , S O Ň A P E J C H O V Á A N D M I C H A E L Š E B E K

In the absence of any theoretical work on polynomial operations, the paper suggests
possible evaluation of particular numerical algorithms to solve linear equation in polynomial
matrices and draws some preliminary conclusions with respect to the use of polynomial
operations.

1. INTRODUCTION

This paper is motivated by misproportion between theoretical developments in poly
nomial control and their computer implementation. Evolved from early attempts to
use polynomial equations in discrete-time linear systems design, currently, poly
nomial control also covers continuous-time, infinite-dimensional, time-varying and
nonlinear systems. However, popularity of polynomial control is sometimes under
mined by pointing at its numerical weakness. No doubt, a lot of performance would
be improved had there been numerical mathematics for polynomial operations.

The ultimate goal of this paper is one step forward in exploring polynomial oper
ations impact on control system design. It is addressed by choosing a typical design
equation and comparing various numerical algorithms to solve this equation. Due to
the persistent lack of numerical mathematics, we are almost unable to compare the
algorithms theoretically, thus we pursue the way of experiment. Quantities compared
are solution error and computation time.

Usually, a number of polynomial equations are to be solved in the course of
every design procedure. These may have different nature, however, in every design
procedure, the most frequently encountered equation1 reads

ax + by = c, (1)

with a, b, c given and x, y unknown polynomials in one indeterminate. In multivari-
able control system design, (1) turns into a matrix version, such as

AX + BY = C, (2)
1 It is often called Diophantine for its similarity to the equation over integers.

746 F. KRAFFER, S. PEJCHOVÁ AND M. ŠEBEK

which is the subject of our paper. Here A, B, C are given while X, Y are unknown
polynomial matrices at compatible sizes. Every design procedure for multivariable
systems usually includes, a number of equations (2) and alike. Hence, an effective
tool to crack (2) is a must which certifies our preference.

In the last two decades, various numerical algorithms for (2) have appeared. They
remain uncompared due to weak numerical background for polynomial equations.
Therefore, we have started a project of experimental comparison. In the project, a
number of numerical examples are computed using our software package [6] which
is made up of MATLAB1 and C programs for basic polynomial operations. As far
as the polynomial matrix representation is concerned, we identify ourselves with [4]
and recall that no standard is available in MATLAB® [5].

In our experimental work we have exercised various algorithms based on poly
nomial operations and/or constant matrix operations. To investigate polynomial
operations we chose

EOM elementary operations method
SSM state-space realization method
PIM polynomial interpolations method.

These are ordered by amount of polynomial operations they use from exclusively
polynomial to constant matrix only. Based on diophantine equation theory, we
chose a standard to test the methods on. This benchmark triple A, B, C constitutes
ill-conditioned equation.

The paper is structured followingly: First, diophantine equation theory is briefly
surveyed. Second, listed methods are explained with particular emphasis on poly
nomial operations involved. PIM is not based on polynomial operations, therefore it
is covered only by brief list of consecutive steps. Third, the benchmark is discussed
and its simple realization is set along with experiment conditions. Last, results are
described and conclusions drawn.

2. BRIEF REVIEW OF THEORY

Equation (2) has a solution pair X, Y over polynomials if and only if every common
left divisor of A, B is a left divisor of C.

As a consequence, if A, B are relatively left prime, then (2) has a solution pair
for any C.

Further, let Si, R\ be relatively right prime polynomial matrices, such that

ARx + BSi = 0.

Then if X°, Y° is a particular solution pair of (2), any solution pair X, Y is of the
form

X = X° + RiT

Y = Y° + S1T3, (3)

where T is a polynomial matrix parameter.
1 MATLAB is a trademark of The Math Works, Inc.

Polynomial Operations: Numerical Performance in Matrix Diophantine Equation 747

3. THE ELEMENTARY OPERATIONS METHOD

This algorithm originates from [3]. Its ideas can be traced to the previous section.

1. We postmultiply the composite matrix [A B] by unimodular matrix U to bring
it into a quasi-triangular form, i.e.,

[AB]U-[GiO], (4)

where G\ is a triangular matrix. This represents elementary column oper
ations.

2. We partition U according to numbers of columns in A, B and G\ calling the
partitions

Tj [P\ R\
U [Vi Si

It has been proved that Pi, V\ and R\, S\ are couples of right coprime polynomial
matrices. To appreciate this fact, note that (4) is equivalent to

APX + BVi = Gi
(5)

ARi + BSi = 0.

Clearly, G\ is a greatest left divisor of A, B.

3. We extract G\ from C by C = G\ C\ backsolve, calling the result C\.

Then (5.a) postmultiplied by C\ recovers (2) with a particular solution pair

X° = PyCi
Y° = ViCi.

4. We compute this particular solution pair.

Note, that G\ extracted from (5.b) recovers (3) which certifies the [/-partition
notation.

4. THE STATE-SPACE REALIZATION METHOD

This algorithm is adopted from [2]. Here, A is assumed nonsingular which implies
existence of observable state-space realizations to strictly proper parts of A~lB,
A~lC such that these realizations1 differ only in the input matrix G.

B = {F,GB,B} = A~XVB

C = {F,Gc,B} = A~lVc,

a x(t + l) = Fx(t) + Gu(t)
y(t) = Hx(t)

748 F. KRAFFER, S. PEJCHOVA AND M. SEBEK

where A~lVB and A~lVc are strictly proper parts of A~rB and A~lC, respectively.
This fact is utilized as follows: Premultiplied by A~l, the diophantine can be teared
apart into polynomial and strictly proper parts only in two consecutive stages. In
deed, one cannot split A~lBY without knowledge of Y which reveals the first stage
be about computing Y.

1. We start the first stage by modyi factorization on B and C

B = AUB + VB

C = AUC + VC,

to find polynomial pairs UB, VB and Uc, Vc such that A~1VB and A~XVC are
strictly proper.

These factorizations can be inserted into A~ ^premultiplied diophantine to get

X + (UB + A~1VB)Y = Uc+A~lVc, (6)

where infinite sequences can be teared apart from polynomials. Note, that the former
constitute equation in unknown polynomial matrix Y, i.e.,

A~lVBY = A~lVc.

It has been proved that this equation can be given a state-space interpretation which
leads to

Un[Y0> Y{ ... Yn }' =GC

(7)
Un = [GB FGB ... FnGB } ,

where Yo, Y\,..., Yn are coefficient matrices2 of Y. 1Zn has n + 1 blocks, where n is
the degree of Y and, hence, is to be determined.

2. We finish the first stage by solving (7) which is equation in constant matrices.
Note that (7) is solvable if and only if Sp[Gc] C Sp[72.„]. Left-to-right deletion
of linearly dependent columns in TZn uniquely defines not only n but also Y.
Of course, one may adopt other strategies to compute Y from (7). Clearly, our
strategy solves for minimum column degrees of Y.

In the second stage, given the knowledge of Y, the diophantine split is finished.
This enables to complete the particular solution pair with X.

3. We start the second stage by modA factorization

VBY = AU + V

to find polynomial U, V such that A~XV is strictly proper.

This factorization can be inserted into (6), and polynomials can be equated apart
from causal sequences. Note, that the former constitute equation in unknown X,
i.e.,

X + UBY + U=UC. (8)

4. We finish the second stage by computing X which follows from (8) after simple
polynomial operations.

2 Polynomial matrix is treated as matrix polynomial.

Polynomial Operations: Numerical Performance in Matrix Diophantine Equation 749

5. THE POLYNOMIAL INTERPOLATION METHOD

For full detail, the reader is referred to [1]. Here, A is considered to be a square
row reduced (/ x /) matrix. The solution degree r depends on the reachability
index v of the system represented by A~lB, where A, B are left coprime matrices
with A row reduced with di := degri[.A]. Solution of rth degree exists if r satisfies
degr,[C] < di + r and r > v — 1 for i — 1, 2,..., /. Hence, for a sufficiently high r,
the equation is solved as follows:

1. Compute the number k — Sd,- + l(r + 1) of interpolation couples (ZJ , ctj)
for j — 1,2,... ,k , where Zj are distinct scalars and ctj are nonzero constant
/-vectors.

2. Choose interpolation couples. To ensure X is of the rth degree, assume Xr,
the matrix coefficient at zr of X, to be identity.

3. For all interpolation couples, consider (1) in Zj-s and multiply it from the left
by a(j)- Solve linear equation in constant matrices.

4. Recover X,Y from the partitioned matrix [X'0 Y0' X[Y{ ... X'T Yr'] ',
where X,, Y; are matrix coefficients at z% of matrix polynomials X, Y, respec
tively.

6. EXPERIMENTS

From the theory follows that A, B, C triple constitutes ill-conditioned equation any
time a left common divisor of A, B is "close" to violate the necessary and sufficient
condition on solution existence. Recall, the condition demands the divisor be a left
divisor of C. This fact motivates our choice of benchmark. For simplicity, C is
chosen identity and property of "being close" is simulated by parameter over reals
the zero value of which brings a left common divisor of A, B into the scene.

Well over thousand experimental examples have been computed thus far by the
use of the software packages [6] and [7]. To illustrate the same, two typical repre
sentatives have been chosen in the paper.

Both tested examples posses the same

A -

and

З + Зs - 1 + s 2

0 - 1 + s 2

C =
1 0
0 1

while the matrix B is different:

5first =
(l + e)s + (l + e) 2 s 2 _2 + 2(l + e) 2 s 2

- l + (l + e) 2 s 2 _ 2 + 2(l + e) 2 s 2

750 F. KRAFFER, S. PEJCHOVÁ AND M. ŠEBEK

e + (1 + efs + (1 + e) V - 2 + 2(1 + e) V 1
(e - 1) + e(l + e)s + (1 + e) V - 2 + 2(1 + e) V J

Clearly, for e = 0 there exist nontrivial greatest common left divisor (the same for
both examples):

9cld(A,Be=0) = [l + "S °_1 + s 2]

which makes the equation unsolvable. Hence, the equation becomes ill-conditioned
when
e —* 0. In the experiments, we set e = 2~x and let it to approach zero by substi
tuting x = 0 ,1 ,2 ,
As we have noted earlier in the paper, there exist an infinite number of solutions to
the Diophantine equation, which are parameterized by (3). Unfortunately, each of
the investigated methods yields by its nature different type of particular solution.
Using EOM, the degrees of solution pair are a priori unknown in contrast to PIM
which solves for conveniently chosen values. As implemented, SSM yields a solu
tion with minimum column degrees in Y. Of course, by (3), particular solutions
can be brought to the same type, however, this creates additional operations which
should not be included. Clearly, different control problems require different partic
ular solution choice (e. g. minimum row degrees for LQ optimization in contrast to
minimum column degrees for deadbeat) and fair comparison is possible only for a
specific problem in hand.

To overcome this difficulty we simply substitute every computed solution X°, Y° to
the original equation and enumerate the norm | | J4X° + BY0 — C\\.

Thus, the first quantity to evaluate the experiment is

error - the MATLAB norm(Z, inf), where Z = AX° + BY0 - I.

Quite naturally, the second quantity is

time - computational time of one run in MATLAB on a 486 PC under MS DOS.

Both quantities are plotted as functions of x for each method considered. As a result,
each example is described by a couple of graphs, where the "stop" prefix is used to
denote the point of numerical breakdown.

Polynomial Operations: Numerical Performance in Matrix Diophantine Equation 751

First example

1 ГU
ERR0R (e - > 0)

s t o p PIM 3

10-6

c-c- fc І

c -e" " fc" І

" ..c..c c- -j

Ю-iз
; "e .«,..*-*•••*'•"'"'' J

1П-20

-
s top EOM s ţ o p SSM

» « « « « » « * « « u * Г в l Ü C Ł J ' - І . C Í ^ 1

10?

101 ç

10° ь

ю - i

10 15 20

x, where e = 2 e x p (- x)

TIME (e - > 0)

25 30

:
J

t — — * -»-«-.>•-»-•- stop E0M
J

p-C--C-«--ö-tг-C—C--fc- -•a-fc—tì—c—u—e-- f t - Ь - - Ѓ -c—c- --ь--
stop

- « — Й — c — Ł — *
SSM j

r c - " " f c
* . . « , • • • " • • * - « ,

c.
•C--ť-C" c - e - ••c"ь c

0 ..0. c
stop

Ь—t ì - (ä-<i . . . Ľ .
PIM q

. 1 1 1
10 15 20 25 30

x , where e = 2 e x p (- x)

752 F. KRAFFER, S. PEJCHOVÁ AND M. ŠEBEK

Second example

101

ю-6 h

10-13L

ERROR (e->0)

10-20

; stop ssм T T
stjop

1 /
PIM1

Г t; fc...«,••«"

Г .<*-. ,-•• ."•• .Ľ"' /' Ľ V ""'
L . t — <*••••o
t.<i-C—°'

...i* •Ł .<*••«• e

1

,. i ;
M - u ••• • 1

; i
; i

-.'
i ;

i; |:
i : . ;
1 ':
i ;

3

sţop EOM ,
A o Ü

i ; ;
i ;; 1

0

Ю 2

5 10 15 20 25

x, where e = 2 e x p (- x)

TIME (e - > 0)

101 L

100 L

ю - i

stop E0M
• • - » - • - • . > — • - • - • * r

ö—Ь—t ì - - < - -Чł*- -%;—*» — Ь-—sŕ--<;—Ľ--Є-"** -»-.^.^«—*,^.ЛÍ£S SSM J

<fc...<í...<ŕ...ti...<;....(,;. ..<_;... &•• .<;... <j...(;... 0..-0-.- <ý—<i" 0--4Í—(ý—0 — O—C., ..fc.. ..<£..

0 5 10 15 20 25 30

x , where e=2exp(-x)

Polynomial Operations: Numerical Performance in Matrix Diophantine Equation 753

7. P R E L I M I N A R Y C O N C L U S I O N S

T h e whole exper imen ta l work performed thus far must be taken only as a first s t e p

on the way to fairly evaluate and modify all existing procedures . Yet we can d r aw

some pre l iminary conclusions:

E O M is of a genuine polynomial n a t u r e and the only one to provide a general

solut ion in one shot . In addi t ion , no init ial set t ings are required. Last bu t not leas t ,

bui l t directly on fundamenta l theorems , it is of pedagogical value. On the o t h e r

hand , the m e t h o d is r a the r computa t iona l ly involved and usually the slowest one

wi th in the compe t i t ion . Needless to say, this drawback is par t ly due to the na tu re of

M A T L A B , which is really not well suited for polynomial manipula t ions . In addi t ion ,

after each po lynomia l opera t ion , it demands to de te rmine the degree of the p roduc t .

Th i s critical s tep mus t be accomplished by a specific p rogram module .

S S M i s based on bo th m a t r i x and polynomial opera t ions . It is par t icular ly flexible

wi th regard to pa r t i cu la r solut ion choice. Par t icu la r solut ion Y is picked from a

prespecified family, here it is chosen such t h a t its column degrees are minimal .

PIM is based exclusively on cons tant m a t r i x opera t ions , which are well-understood

and al ready implemented in M A T L A B . T h e m e t h o d provides one par t icular solu

t ion from a prespecified class of solut ions such t h a t the solution degree is less t h a n

a chosen p a r a m e t e r .

Provided the last two m e t h o d s are performed also for homogeneous equat ion, (3)

m a y be used to cons t ruc t a pa ramete r i za t ion of all solut ions.

(Received November 30, 1993.)

REFERENCES

[1] P. J. Antsaklis and Z. Gao: Polynomial and rational matrix interpolation: Theory and
control application. Control Systems Technical Report No. 71, University of Notre
Dame, Indiana, U .S .A. 1992.

[2] F. Krafrer: State-space method to solve polynomial matrix diophantine equation.
Young Scientist Contest 1993, Institute of Information Theory and Automation,
Prague 1993.

[3] V. Kucera: Discrete Linear Control. Academia, Prague 1979.
[4] H. Kwakernaak: MATLAB Macros for Polynomial W<x, Control System Optimization.

Memorandum No. 881, University of Twente, The Netherlands 1990.
[5] M A T L A B ™ for MS-DOS Personal Computers, User's Guide, The Math. Works Inc.,

South Natick, MA.
[6] S. Pejchova: Software Package for Polynomial Operations I. Research Report No. 1765,

Institute of Information Theory and Automation, Prague 1993.
[7] M. Sebek: An algorithm for spectral factorization of polynomial matrices with any

signature. Memorandum No. 912, University of Twente, The Netherlands 1990.

Ing. Ferdinand Kraffer, Ing. Sofia Pejchova, Ing. Michael Sebek, CSc, Ustav teorie

informace a automatizace AV CR (Institute of Information Theory and Automation -

Academy of Sciences of the Czech Republic), Pod voddrenskou vezi 4, 182 08 Praha 8.

Czech Republic.

