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DEAD-BEAT RESPONSE OF SISO SYSTEMS 
TO PARABOLIC INPUTS WITH OPTIMUM STEP 
AND RAMP RESPONSES 

C.A. BARBARGIRES AND C. A. KARYBAKAS 

The design problem of optimum control systems with dead-beat response to parabolic 
inputs is considered. The optimization is performed by the minimization of the sum of 
the squared-error coefficients of the system due to step and ramp inputs, where different 
weighting factors are used for each error sequence. Response characteristics are illustra
ted through diagrams of typical prototype responses and normalized overshoot and cost 
function curves. 

1. INTRODUCTION 

The design of control systems that exhibit dead-beat response to parabolic inputs 
with minimum squared-error restrictions on step and ramp responses was introduced 
by J.L. Pokoski and D. A. Pierre [1]. The performance measure they considered was 

oo 

I=Y^e2(kT) + he2(kT), 
k=0 

where es(kT) and er(kT) are the unit step and ramp errors at the fcth sampling 
instant and h is a weighting factor. For the system to exhibit dead-beat response to 
a parabolic input, they also considered the two well known conditions for the overall 
transfer function M(z) of the system, that is 

M(z) = bxz~l + b2z-2 + ••• + bnz~n 

a n d 1 - M(z) =(l- z - 1 ) 3 (1 + alZ~l + ••• + a n _ 3 z -" + 3 ) . 

Stability considerations impose that all unstable (or critically stable) poles of the 
plant must be included in 1 — M(z) as zeros, and all zeros of the plant that lie on or 
outside the unit circle must be included in M(z) as zeros [2]. The equations resulting 
in the _jt which minimize / may be found by setting 

- i - = 0 for k = 1 , 2 , . . . , n - 3. 
dak 
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This results in n — 3 equations which may be solved for the n — 3 values of a*, but, 
according to the authors [1], since it is difficult to solve the resulting equations for 
the a/c as functions of both h and n, they are solved for the limiting cases, h = oo 
(only ramp error considered) and h = 0 (only step error considered). The responses 
for the intermediate values of h are generally expected to lie between those of the 
preceding cases. 

In this work is proposed a new approach to the design of optimum dead-beat 
response systems to parabolic inputs based on the same performance criterion. Re
cently introduced necessary and sufficient error conditions [3] are elaborated, and 
the optimization is performed by the minimization of the sum of the squared step 
and ramp response error sequence coefficients of the system, in which each error 
sequence is regarded with a different weighting factor, thus obtaining a more general 
solution. Response characteristics are illustrated through diagrams with typical pro
totype responses and normalized overshoot and cost function curves. The response 
of the system to a complex input is also examined. 

2. ERROR CONDITIONS FOR DEAD-BEAT RESPONSE TO PARABOLIC 
INPUTS 

Consider the digital control system shown in Figure 1. The z-transform of the error 
sequence is 

R(z) 
E{z) l + D(z)Gh(z) 

from which the transfer function of the digital controller can be obtained as 

D(z) = 
Gh(z) \E(z) 

- 1 

(1) 

(2) 

Under the above mentioned stability conditions, from equation (2) is readily implied 
that for the design of the digital controller, the z-transform of the error sequence E(z) 
in response to a given input signal R(z) must be determined. A system exhibiting 
dead-beat response to parabolic inputs, will exhibit dead-beat response to step and 
ramp inputs, as well [3]. 

R(z) 

,( Г D(2) 

Җz) 

Gh(z) 
C(--) 

Л Г D(2) Gh(z) Г 
Fig. 1. Digital control system. 

Suppose there are n steps before the settling of the output signal when the system 
is forced by a step, a ramp or a parabolic input. By denoting as a*, bk and c^ the 
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terms of the error sequences in response to a step, a ramp and a parabolic input, 
respectively, we have 

k=0 k = 0 k = 0 

These error sequences are not independent to each other, but are related through 

fc-1 

E0(z) = Y/akz-k, E1(z) = J2bkz~k, E2(z) = X>z-* . (3) 
k=0 k=0 

independent to each other, but are related through 

fc-1 

bk=Tj2ai for all k (4) 
i=0 

and ,fc_i / ,-_i \ 

ck=T2J2\ai + 2Yla') foralU"' (5) 
i=o V ;=o / 

where T is the sampling period. Equations (4) and (5) for k = n + 1 lead to 

5> = 0 (6) 
i = 0 

and „ ,_i 

E E a ' = °- (7) 
t=o ;=o 

The last two equations have been proven to be necessary and sufficient conditions for 
the system to exhibit dead-beat response to parabolic inputs [3]. These equations 
are elaborated in the sequel for the solution of the optimization problem. It is readily 
apparent that for the design of the digital controller, the determination of only one of 
the three error sequences is sufficient, since they are associated by explicit relations. 

3. OPTIMIZATION 

The error coefficients can be determined by optimizing the system's response in 
accordance to an objective function which may be arbitrarily selected. As such a 
performance criterion, a function of the squared values of the error sequences due 
to step and ramp inputs is chosen. In particular, by defining that 

Jo = J2al W 
t=o 

and n 

Ji=Y,bl (9) 
t=o 

then as an objective function can be chosen the following 
n 

J = sJ0 + rJt = J2 (sal + rbD • (10) 
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where s and r are weighting factors. 
Since the error coefficients b>. can be expressed as a function of the error coeffi

cients ak, the optimization of the system's performance in accordance to the specified 
objective function will be achieved through the minimization of J with respect to 
the coefficients ak, with the subsidiary constraints expressed by equations (6) and 
(7). Thus, it is a problem of static optimization under linear constraints, which can 
be solved using the Lagrange method of undetermined multipliers. The modified 
function „ „ ,_i 

7 = J + A1VJa!+A2VJV^a, (11) 
«=0 i = 0 (=0 

is considered with no constraints, and is optimized with respect to the coefficients 
ak (for k = 1,2,... ,n, since ao = 1) for which I becomes optimum are given from 

- — = 0 for j = 1,2,...,n 
oaj 

~ - = 0 fori =1,2. 
k dXi 

(12) 

The partial derivatives of the last set of equations can be written as 

61 dJ , 8 / " \ g ( " ^ \ 

^ = ^ + A , ^ l S a v + A ! ^ l S S a ' i orj=+ " 
dXi 

dl _ 

i = 0 1=0 

and the set of equations (12) is equivalent to 

ŐÃT = £Ž> 

daj daj \fe ) daj \fafe ) 

_ > = 0 (14) 

E & = « 
i=0 1=0 

now from equation (10) 

daj daj daj 

where by using equation (8) 

dJ dJ0 , dJi . , . 
- — = s- \-r-— for j = 1,2,.. .,7i, (15) 

^ = 2aj f o r i = l , 2 , . . . , n (16) 
Oӣj 
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дJi 

and equation (9) 

U£-^2E £"-
U 3 k=j + lm=0 

In this way, the first of (14) transforms to the equation 

(17) 

2 s a ; + 2 r T 2 ^ ] T am + Ai + A2(n - j) = 0 for j = 1,2,... ,n. (18) 
k=j + lm = 0 

Expanding the left-hand side series of (18) and taking into account that ao = 1, we 
have in matrix form 

s + (n - 1) rT2 (n - 2) rT2 

(n - 2) rT2 s + (n-2) rT2 

rT2 

0 
rT2 

0 

- ( r T 2 + ү 

• rT2 0 
• rT2 0 

• s+rT2 0 
0 s 

ai 

ӣ2 

an-i 

an 

(19) 

' n - ľ " 1 ' 

^ 
n-2 

Ai 
1 

) 1 
2 

1 
0 . 1 . 

Solving the set of linear equations (19) for the unknown coefficients a* we have 

ai 

a2 

an-i 
an j 

s + (n - 1) rT2 (n - 2) rT2 

(n - 2) rT2 s + (n - 2) rT2 

rT2 

0 
rT2 

0 

rT2 0 
rT2 0 

s + rT2 0 
0 s 

' т 2 + ү 

n - 1 
n - 2 

^ 

UJ/ 
(20) 

From equation (20) the coefficients a* are obtained as a function of the Lagrange 
multipliers Ai and A2. Elimination of these parameters is achieved using equations 
(6) and (7). As a result, coefficients a* are expressed as a function of T, s, r and 
n, only. Furthermore, substitution of these coefficients into equation (3) leads to 
the reduction of the ^-transform of the error sequence Eo(z), and finally by use of 
equation (2), the transfer function of the digital controller D(z) is obtained. 
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In the specific case that the plant pulse transfer function Gh(z) contains more 
than one discrete delays, say L + 1, the designed closed-loop system must involve 
at least the same magnitude of transportation delay [2], and the optimization of all 
coefficients ak, for fc =— 1,2,..., n is not possible, since the first L values of the error 
sequence stay intact, that is a^ = 1, for k = 1,2, ...,L. Nevertheless, the remaining 
n — L error coefficients can be optimized by the procedure developed above. 

4. SPECIAL C A S E S 

4 .1 . No cost on r a m p response (r = 0) 

In this case, the transient response of the system is optimized by the minimization 
of the sum of the squared step-error coefficients only, with no cost on the ramp 
response. In this way the first of (14) transforms to the equation 

2 a J + A l + A 2 (n - j ' ) = 0 for j = 1,2,. . . , n (21) 

which can be written as 

aj = -^[\i + (n-j)X2} for j = l , 2 , . . . , n . (22) 

Substituting the last equation into equations (6) and (7), and simplifying the sums 
that appear, the following set of equations is derived 

2nA! + n(n- 1) A2 = 4 
3(n - 1) Ai + (n - l)(2n - 1) A2 = 12 

and the values of the Lagrange multipliers are reduced from its solution as 

(23) 

4 19 
A 1 = - - , A 2 = - — ^ — . (24) 

n n(n- 1) 

Substitution of these parameters into equation (22) leads to 

2 ( ^ n _ M - 3 j ) fo - = 1 2 ( 2 5 ) 

n(n — 1) 

with aj = 0 for j > n, and the transfer function of the digital controller is obtained 
as 

1 2 i _ 4 2 - l _ _ ± l z - 2 ?_ - (n + 1) 2_ -(n+2) 
D(z) - - 1 2±if S_if __i£ _±lf (26) 

{1~Gh(z) - a T _ 2 z - i + a ± l z - 2 - ^ T - - ( » + D + ; ^ z - ( « + 2 ) - ^ 

From equation (25) it follows that after a maximum overshoot of £ • 100% at the first 
sampling instant, there is a linear decrease of the system output, until a maximum 
undershoot of ~ • 100% is reached at the nth sampling instant. 
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4.2. No cost on s tep response (s = 0) 

In this case, the transient response of the system is optimized by the minimization 
of the sum of the squared ramp-error coefficients only, with no cost on the step 
response. In this way the first of (14) transforms to the equation 

n fc-1 
2 T 2 J2 X ) a m + A i + A 2 ( n - j ) = 0 for j = 1,2,.. . , n. (27) 

fc=j+lm=0 

The last equation for j = n leads to 

Ai = 0 (28) 

while for j = 1 and use of condition (7) leads to 

2T2 

A2 = — . (29) 

Substitution of the Lagrange multipliers from equations (28) and (29) into equation 
(27), and solution of the resulting equation yields 

{ - ^ j - forjfc = l 

0 for 1 < k < n (30) 

j - i - for k = n 
with a.k = 0 for k > n, and the transfer function of the digital controller is obtained 
as 

n(A _ 1 (-l + z^)z-»-nz-i + (2n - l)z^ 
W Gh(z)' ( - 1 + * - ! ) ( - - - " + - . - - - - 7 1 + 1) • ( } 

From equation (30) it follows that besides the first sampling instant when an over
shoot of ^~ • 100 % is observed, and the nth sampling instant when an undershoot 
of ^ j - • 100 % results, the system output presents zero error at step inputs. 

5. OPTIMUM RESPONSE CHARACTERISTICS 

In the following are examined the general properties of the systems designed with the 
proposed procedure. A new normalized variable m is introduced, which is defined by 
m = ^jrj. In this way, certain features of the system, such as the overshoot, depend 
only on the variable m and the number of sampling periods n for settling. In Figure 2 
is presented the step response of a system designed with the proposed procedure, 
for n = 5 and for various values of the parameter m. As it can be observed, the 
maximum step response overshoot occurs at the first sampling instant after the 
application of the input, and becomes smaller as the parameter m increases. This 
happens because greater values of m enhance the step response of the system. After 
the first sampling period, the output of the system gradually approaches the input, 
but it presents an undershoot, which is maximum at the nth sampling instant. In 
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Figure 3 are presented t h e normal ized curves for t h e step response, a n d in Figure 4 

t h e normal ized cost funct ion curves, all as a function of t h e variable m, for n = 

2 , 3 , . . . , 1 0 . 
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F i g . 2. Step response for n = 5 

Fig . 3 . Normalized maximum overshoot curves. 
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Fig. 4. Normalized cost-function diagrams. 

In Figure 5 are presented the maximum overshoot and undershoot curves as a func
tion of the number n for the two special cases considered above. In Figure 6 are 
presented the responses of three particular systems to a rather complex input signal, 
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F i g . 5. Maximum overshoot and undershoot curves for the special cases. 
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F î y . 6. Response to a complex input signal. 
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namely to the Bessel function of zero order Jo(kT). The sampling period T is taken 
equal to 0.6, and the number of sampling periods to settling is taken n = 5. The three 
systems regarded are the two ones corresponding to the special cases mentioned and 
a system designed with m = 1. As it is expected, the system with m = 0 presents the 
maximum overshoot, but attains the best tracking performance. The system with 
m = oo obtains the minimum overshoot, but has not as good tracking performance 
as the previous one. The system designed for m = 1 has a moderate response to the 
complex input, since it presents lower overshoot than the minimum prototype one, 
while at the same time attains a good tracking performance. 

6. CONCLUSIONS 

In this work was presented a generalized approach to the design of optimum dead-
beat response systems to parabolic inputs on the basis of an extendedperformance 
criterion. The optimization was performed by the minimization of the sum of the 
squared error coefficients of the system due to step and ramp inputs, with a dif
ferent weighting factor regarded for each error sequence. This was accomplished 
by the utilization of recently introduced necessary and sufficient conditions for the 
error sequences of a dead-beat response system. General features of the optimum 
systems resulting from the proposed design procedure were readily apparent from 
the normalized diagrams presented. 

(Received November 12, 1993.) 
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