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OPTIMAL RECONSTRUCTION OF STATE VECTOR 
IN 2-D SYSTEMS 

ANDRZEJ DZIELINSKI 

In the paper a 2-D Kalman filter algorithm is derived as a result of effective transport 
of 1-D optimal state estimation theory to the discrete two-dimensional setting and an 
algorithm which could be directly applied for image processing purposes is obtained. 

1. INTRODUCTION 

Searching for new effective methods in image processing, the attention has been 
directed to recursive estimators, leading naturally to the subject of 2-D Kalman filter. 
Kalman filter is a very well known and useful algorithm in one-dimensional digital 
signal processing, so there arises an interesting and important goal of generalization 
of this algorithm into two-dimensions taking advantage of the recently introduced 
2-D systems models. The main questions posed while extending the standard 1-D 
recursive filtering techniques to the 2-D case are: 

• how to establish a suitable 2-D recursive model by defining a proper state 
vector? 

• how to reduce the dimensionality of the resulting state vectors by reasonable 
approximation? 

• how to speed up the obtained Kalman filtering procedure by processing signals 
in parallel? 

The early papers devoted to image modelling by state-space techniques were given by 
Nasi and Assefi [13], Habibi [7], and by Aboutalib, Murphy and Silverman [1]. In the 
following years there were several attempts to generalize a Kalman filter algorithm 
to two dimensions. The first one, so called Reduced Update Kalman Filter (RUKF) 
was due to Woods and Radewan [18] and was continued in several subsequent papers 
[17], [9], [5]. This approach has been based on autoregressive (AR) two-dimensional 
models with general or nonsymmetric half-plane (NSHP) coefficient support. Other 
approach to Kalman filtering in two dimensions with applications to image process
ing has been proposed by Chen [6] and this was rather straightforward application 
of 1-D Kalman filter to a line-by-line scanned image. Next important contribution 
to the subject has been by Porter and Aravenna [14]. They considered a Roesser 
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Model converted to wave advance process model. The solution has been restricted 
to a local state realization. This idea has been utilized by Marszalek [12] to present 
a state estimation algorithm for 2-D systems based on well-known Bayes theorem. 
Recently Angwin and Kauffman [2] proposed the Reduced Order Model Kalman 
Filter (ROMKF) which is based on a lower order state space model of an image and 
is similar to the approach of Woods and Radewan. The low dimension of this system 
results in decreased computation time. Several other authors have proposed different 
2-D Kalman filtering schema for restoration of images degraded by both blur and 
noise. Suresh and Shenoi [16] proposed the Kalman strip filtering with modelling the 
blur by 2-D state-space structure. Wu [19] employed three-dimensional state space 
models to develop another strip filtering model for the degraded image with NSHP 
support. Later on, Azimi-Sadjadi and Wong [3], [4] presented the two-dimensional 
block Kalman filtering scheme. The 2-D block state space model considered in this 
approach takes into account the correlations of the image data in successive neigh
bouring blocks and reduces the edge effects. However, the optimal Kalman filters 
for strip observations as well as for the block observations are characterized by com
plexities and large computational requirements. Most recent results in the field are 
by Zhang and Steenart [20]. They presented a simple 2-D Kalman filter for two 2-D 
state space structures cascaded to form a composite state space dynamic model. At 
last, quite different approach to the problem has been proposed by Sebek [15]. He 
formulated and solved the Kalman filtering problem via 2-D polynomial methods. 
In this paper we introduce a new Kalman filter algorithm for a general model of 
2-D systems given by Kurek [11]. The reduction technique due to Klamka [10] and 
Kaczorek [8] is essential in this approach and resulted in an interesting recursive 
estimator's algorithm. 

2. PROBLEM STATEMENT 

Let us consider the linear, discrete 2-D system general state space model in the form 

[11] 

e(i + l , j + l) = Aox(i,j) + Aix(i + l,j) + A2x(i,j + l) + B0u(i,j) 
+Bxu(i + l,j) + B2u(i,j + 1) + w(i,j) + w(i + l,j) + w(i,j + 1) 

y(i,j) = Cx(i,j) + v(i,j), (1) 

where: i,j integer valued horizontal and vertical coordinates 
respectively and 0 < i < A t , 0 < j < M , 

x(i,j)£7ln local state vector at the point (i,j), 
u(i,j) £ 7^m input vector, 
y(i,j) 6 7lp output vector, 
w(i,j) G 7ln "white" Gaussian noise with covariance matrix W 

(state disturbance), 
v(i,j) 6 TZP "white" Gaussian noise with covariance matrix V 

(output or observation disturbance), 

and Ak, Bk for k = 0,1, 2 and C are real valued matrices of appropriate dimensions. 
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At this stage of the considerations let us assume that state and observation noises 
are uncorrelated "white" noises, i.e.: 

E[w(k,l),w(m,n)} = W6klmn 

E[v(k,l),v(m,n)] = V6klmn, 

where 
0, for i ^ m or I / n; 

% 1, for k = m and / = n, 
for any k, I, m and n. 

Boundary conditions for (1) are given by 

x(i,0) = xio for i = 0, l , . . . ,7V 

and 
x(0,j) = xoj for i = 0 , l , . . . , M , (2) 

where: xso and x0j are known vectors. 
The problem to be solved may be stated as follows: 

Given the values of observed signal y(i,j) and system input u(i,j) over a certain 
subset of the points forming the neighbourhood (defined differently in different ap
proaches and applications) of given point (k, I), our task is to find a linear estimate 
x(i,j) of the system's state vector in the point (k, I) so as to minimize the expected 
value of the square of estimation error i. e. 

J = E(x(i,j)-x(i,j))\ 

3. SOLUTION TO THE KALMAN FILTER PROBLEM FOR GENERAL 2-D 
MODEL 

For the sake of simplicity and taking into account that the model (1) represents an 
image, we can set B0 = 0, B\ = 0 and Bi = 0. For the considerations to follow we 
assume the region of the solution of equations (1) in the form 2 x 2 = [0, N] X [0, N] 
and the boundary conditions for (1) to be deterministic and given on all sides by: 

x(i,0) = 0 and x(i,N) = 0 for i = 0 , 1 , . . . , TV 

a n d x(0,j) = 0 and x(N,j) = 0 for j = 0 , l , . . . , M . 

If these boundary conditions were nonzero the assumptions of B0 = B\ = 5 2 = 0 
would hold no more and by appropriate choice of these matrices the deterministic 
inputs u(i, j) would account for these non-zero boundary values. For the sake of later 
consideration we assume that the whole image model in the area Z x Z is composed 
of two submodels: one corresponding exactly to the equations (1) for i + j<N and 
the second of the form as follows 

x(N-i-l,N-j-l) = A0x(N-i,N-j) + Aix(N-i-l,N-j) 
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+Л2x(N -i,N-j-l) + Bou(N -І,N- j) 
+BlU(N -i-l,N-j) + B2u(N -І,N -j -
+w(N - i, N - j) + w(N -І-\,N -j) 
+w(N-i,N-j-\) 

y(N-i,N-j) = Cx(i,j) + v(i,j) (3) 

for i + j > N with the same assumptions concerning the matrices Bo, B1 and B2. 
This way we obtain 2-D system representation in two subareas of the region Z x Z: 
lower left triangle described by equation (1) for i + j < N and upper right triangle 
described by the equation (3) for i + j > N. First submodel is causal (quarter plane 
causal) with respect to the variables i > 0 and j > 0. Second one can be assumed 
also to be causal but with respect to the variables i = N — i, j = N — j . 

It has been shown by Kaczorek [8] following the idea of Klamka [10] that it is 
possible to rewrite the equations (1) in the form of reduced 1-D variable structure 
and variable dimensionality of state vector system in the following way: 

x(k + 2) = Fhk+1x(k + l) + F2,kx(k) + Gitk+iu(k + l) 
+G2tku(k) + H1>k+1x(0, k + l) + H2ik£(0, k) 
+T2,kw(k) + 7\ik+1w(k + 1) 

y(k) = Ckx(k) + v(k) + Pki(0,k), 

irhere: k - nonnegative integer values 

(4) 

*(*) = 

-æ(JЬ — 1,1) 
x(к-2,2) 

x(2, к - 2) 
,x(l,k- 1) 

є7г * - 1 ) n , й(k) = 

11(4,0) " 
u(к- 1,1) 

u(\,k-\) 
u(0,к) . 

є 

ў(k) = 

ľy(к- 1,1)1 
y(к-2,2) 

y(2,k-2) 
LУ(\,k-ì) 

є 7г<--->' 

ž ( 0 , 0 ) = 1 ( 0 , 0 ^Ąt!ïh^ 
ғlл = o 

Fi,к+i — 

A2 

Ai ł 
0 i 

0 ... o o -
12 . . . 0 0 
li . . . 0 0 c <j£knx(k+l)n 

0 
0 

0 ... Ai 
0 . . . 0 

A2 

eП(k-l)mt 
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ғ2,k = 

Gi,k+i — 

Г 0 0 0 

A 0 0 0 

0 A 0 0 

0 0 0 

L 0 0 0 

Гßi B2 0 
0 ßi ß 2 

0 0 0 
L 0 0 0 

Зo 0 

0 BQ 

G2.k = 

0 0 

L 0 0 

0 01 

0 0 

0 0 

A 0 0 

0 0J 

0 0 

0 0 

. B2 0 

• Si B2 J 

0 0 1 

0 0 

£ll(k-l)nx(k + l)n 

є 7 г
( * + 2)mx(fc + l)n 

BQ 0 

0 B01 

eП(k + l)mx(k + l)n 

Г-4i 0 " 
0 0 

Hi,k+i = 

0 0 
. 0 A2_ 

eП2nx(k+l)Пj ң2кz= 

A 0 0 
0 0 

0 0 
L o л 0 J 

en2nx(к+l)n 

cк = 

w(к) = 

C 0 .. 
0 c .. 

0 0 .. 

w(к- 1,1) 
w(к-2,2) 

w(2,k-2) 
Ltt>(i,fc-i)J 

eП(k-l)pX(к + l)n 

, v(к) = 

v(к- 1,1) 
v(к-2,2) 

v ( 2 , Ä : - 2 ) 
iv(l,к- 1)J 

J J 0 . .. 0 0 
0 J J . .. 0 0 

Jl.it+l = 

0 0 o • •• J 0 
.0 0 0 . .. J J 

єn(к+2)nx(к+i)n^ т2к = iє7г(fc+1)rix(*:+1)n 

J — identity matrix of appropriate dimensions. 
Initial conditions for the system given by (4) are x(0) = 0 and a;(l) = 0. The 

system described by equations (4) can be rewritten in more convenient way as 1-D 
first order, linear, variable structure discrete system as follows 

x(k + l) = Fkx(k)+Gku(k) + Tkw(k) + Hkx(0,k) 
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y(k) = Ckx(k) + v(k) + Pkx(0,k), (5) 

where 

_,,, r x(k) i _ . , . r w(k) 
x ^ = [ X ( k + i ) \ ' ^ = U ( * V i 

x(0,к) 
x(0,к + í x(0,k) = 

Fk = | P rp \ , Hk = 
_F?,k i>\,k+\\ 

[G2,k G\ik+\ J 

O — matrix composed of zero elements of appropriate dimensions. 
Now for the system given by equations (5) we may assume that w(k) is the state 

"white" noise with known covariance matrix W and v(k) is the output noise with 
known covariance matrix V. The properness of this assumptions is easy to check. 
We note that 

E[w(k),w(l)} = Whu, 
E[v(k),v(l)} = VSu, 

where 
0, k±l 

6k,= " 1, k = l. 

These note is a direct result of the assumptions posed on the noise of original 
2-D system (1). So, for the system described by the equations (5) we can derive 
Kalman filter equations. As the reduction process (transforming the system (1) to 
(5)) demonstrates, the original system (1) has a natural half-plane causality, so the 
estimator obtained without other conditions would be half-plane causal. To obtain 
a quarter-plane causality we have to impose some additional constraints on the form 
of Kalman filter gain matrix. 

For the system described by the equations (5) we define the estimator system as 
follows: 

%(k + 1) = F(k) _(*) + Gku(k) + K(k) (y(k) - C(k) _(&)) (6) 

Then, subtracting (6) from (5) we get the error equation: 

e(k + l) = (F(k)-K(k)C(k))e(k)+T(k)w(k) 
+(H(k) - K(k) P(k)) x(0, k) + K(k)v(k), (7) 

where e(&) = x(k) - x(k). 
In the sequel we shall calculate the covariance of e(k) assuming that e(0), w(k) 

and v(k) are all statistically independent. Denoting M(k) = F(k) - K(k) C(k) and 
Qe(k) = cov[e(&)], the covariance equation associated with (6) is as follows: 

Qe(k + 1) =M(k)Qe(k)MT (k) +T(k)W(k)TT (k) + K(k)V(k)KT(k). (8) 
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The Kalman filter gain is to be chosen by minimizing the appropriate optimality 
criterion. In this case this criterion has the form: 

E(e(k)2) = tTQe(k). (9) 

This way minimization of trQe(k) with respect to K(k) yields the optimal filter gain. 
We shall now perform the minimization of performance index in the form: 

J(K(k)) = tTQe(k + 1) (10) 

using variational techniques. Thus we obtain (only first order terms to be con
sidered): 

6J = J(K(k) + 6K(k)) - J(K(k))_ 
= tT[(F(k) - ((K(k) + 6K(k))C(k))_Qe(F(k) 

-(K(k) + 6K(k))C(k))T + T(k) W(k)TT(k) 
+(K(k) + 6K(k)) V(k) (K(k) + 6K(k)f] 

-tv[(M(k) QeM
T_(k) + T(k)W(k)TT(k) + I<_(k) V(k) KT_k)} 

= ti[(F(k) - K(k) C(k) - 6K(k) C(k)) Qe(k) (F(k) - K(k) C(k) 

-6K(k) C(k))T + T(k) W(k) TT + K(k) V(k) KT(k) + 6K(k) V(k) KT(k) 

+I<(k)V(k) 6KT (k)-M(k)Qe(k)MT (k)-T(k)W(k)TT (k)-K(k)V(k) I<T (k) 

= tT[-6I<(k)C(k)Qe(k)MT(k)_-W(k)Qe(k)(6K(k)C(k))T 

+6K(k) V(k) KT(k) + K(k) V(k) 6KT(k)] 

= -2tr[M(Jb) Qe(k)CT\k) 6KT(k) - K(k)V(k) 6KT(k)]. (11) 

It is well known from optimization theory that such a variation is to be nonnegative 
for all 6K(k). The minimum value it achieves at 6 J = 0, so there exists a unique 
K(k) such that: 

6 J = tT[M(k)Qe(k)CT(k) - K(k)V(k)]6KT(k) = 0. (12) 

Since the second order terms in (11) are also nonnegative, that unique K(k) will 
determine the optimal state estimation. Replacing the values for M(k) the expansion 
for 6J becomes: 

SJ = tv{[(F(k) - K(k)C(k))Qe(k)CT(k) - K(k)V(k)]6I<T(k)} 

= tr{[F(k)QE(k)CT(k) - K(k)C(k)Qe(k)CT(k) - K(k)V(k)} 6KT(k)} 

= -tT{[K(k) (V(k) + C(k) Qe(k) CT(k)) - F(k) Qe(k)CT(k)} 6KT(k)} (13) 

we note that K(k) must satisfy: 

6J=-tT{[K(k)(V(k)+C(k)Qe(k)CT(k))-F(k)Qe(k)CT(k)]6I<T(k)}=0. (14) 

A direct solution of (14) yields the desired optimal filter gain: 

K(k) = F(k) Qe(k) CT(k) (C(k) Qe(k) CT(k) + V(k))-1. (15) 
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Putting together (6), (8) and (15) we obtain a complete Kalman filter algorithm 

expressed in terms of system given by (5): 

*(* +\) = F(k)x-(k) + K(k) (y(k) - C(k)^(k)) 

K(k) = F]Jz)Qe(k)CT (k)(C(k)Qe(k)CT (k) + V(k))~l 

Qe(k) = (F(k-\)-K(k-\) C(fc-l)) Qe(k-\) (F(k-\)-K(k-\) C{k-\))T 

+T(k - \)W(k - \)TT(k -\) + K(k - \)V(k - \)KT(k - 1) 

x(0) = 0 

Qe(0) = W(0). (16) 

By means of the above-presented algorithm we may obtain the estimated value x(k) 

of the vector x(k) what means that this way we may obtain the values of x(k) 

and x(k + 1) as well. Having estimated the whole vectors x(k) and x(k + 1) it 

is immediate to extract the desired estimated values of the vector x(i, j) for every 

spatial point (i, j) such that i + j = k or i + j = k + 1, for both models (1) and 

(3). Up to now this estimator presented only the property of half-plane causality 

but it is not quarter-plane causal in general. Examining the equations (4) we may 

notice that the specific structure of matrices Ei,fc+i and i^,* (and consequently Fk) 

is essential for quarter-plane causality. In addition C has also a specific structure. If 

the state estimator is to be quarter-plane causal (and this is our goal), the structure 

of matrices M(k) and K(k)C(k) must have the same structure as F(k). Therefore 

the matrix K(k) must have also the same specific structure: 

K(k) = 
K2,k # i , * + i J ' 

where 

Ki,k+i = 

ГKn 
I<21 

0 

0 

K22 

Kз2 

0 0 
. 0 0 

e-Jlкnx(к+l)n 

Kn.k = 

Ä', 

0 к. 

0 

L 0 

Kk,к-1 _Kк,к 

0 Kk+i<кA 

0 

0 

0 

к к,к-l 

0 

є П(к-l)nx(k + l)n Î 0 l к > Q 

Kkih 

Kk+i,k-i 

and O £ Tl(-k~l^xkn - is a matrix composed of zero elements, 1 £ K t nx l™ - is a n 

identity matrix. It could be easily checked that every matrix K(k) of full column 

rank can be reduced to the specific form K(k) by appropriate elementary matrix op

erations performed both on rows and columns of the matrix K(k). This is equivalent 
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to finding the pair of nonsingular matrices: 

S(k) 6rc(--+i)»x(2-+1)n a r id ^ J g R P ' - i ^ l " - ! ) " , 

such that left multiplication by 5(fc) and right multiplication by Z(k) of K(k) results 
in matrix K(k). Thus we can write down: 

K(k) = S(k)K(k)Z(k). (17) 

So the process of optimization has to be changed, since there exists a constraint 
posed on the form of the matrix K(k). Under such assumptions the equation (14) 
has the form: 

SJ = tT{[S(k)K(k) Z(k) (V(k) + C(k) Qe(k) CT(k)) 

-F(k)Qe(k)Cr(k)]6(ZT(k)KT(k)ST(k))} = 0. (18) 

Then the desired optimal filter gain in quarter-plane causal form can be obtained as 
follows: 

K(k) = S-1(k)F(k)Qe(k)CT(k)(C(k)Qc(k)CT(k) + V(k))-1Z-,(k). (19) 

So in the optimal estimation algorithm for quarter-plane causality case we have to 
substitute (19) for the second equation in (16). The rest of the algorithm remains 
unchanged. 

4. CONCLUSIONS 

The 2-D Kalman filter algorithm derived in this paper is a result of effective trans
port of 1-D optimal state estimation theory to the discrete two-dimensional setting. 
It could be observed, however, that such an important feature as quarter-plane 
causality will not be naturally preserved when conventional 1-D theory is applied. If 
quarter-plane causality is essential (what is not always the case in image processing) 
the way of accommodation of the algorithm through constraints on the optimization 
process has been shown. In the very end we obtained an algorithm which could be 
directly applied for image processing purposes. 

(Received November 24, 1993.) 
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