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ON ADAPTIVE ESTIMATION 
IN NONLINEAR REGRESSION 

S I L V E L Y N Z W A N Z I G 

To study adaptive estimators for the regression parameter we embed the usual non
linear regression model in a semiparametric one. The parameter of interest is the finite 
dimensional regression parameter and the unknown density of the error distribution is the 
infinite dimensional nuisance parameter. 

In this paper the LAN property for the semiparametric nonlinear regression model is 
shown. Necessary conditions for the existence of an adaptive estimator are derived and a 
minimax theorem is given. 

The interpretation of the necessary conditions is the following: In the nonlinear model 
we need a symmetric error density. In the linear model adaption is also possible with 
asymmetric error density, if we have an asymptotic symmetric design. 

1. T H E SEMIPARAMETRIC MODEL . 

We regard the nonlinear regression model: 

W = 0 ( * . i 0 ) + «ii i = l , . . . , n (1) 

The regression function g(-, •) : X x O —* 3ft is known. The random errors e,-, i = 
l , . . . , n are i.i.d. with Eej = 0, Var^i = <r2 and density p ( ) of S\ with respect to 
a sigma-finite measure ft. Let L2 (/i) denote the usual L2-space of square integrable 
functions and let ||.||^ denote the usual norm in L2 ((.i). Thus ||>/p|| = 1. The 
unknown "parameter" 9 of the semiparametric model has a parametr ic component 
•0 and a nonparametr ic component p: 

e = (d,P) (2) 

0 G 0 C 9£? parameter of interest 

P € r C L2(fi) nuisance parameter 

The design points x,; £ X C 9ftm, i = 1 , . . . , n, are fixed and known, such tha t 
y = \Uli • • • > Vn) is a sample of random, independent, not identically distributed 
values with probability P * 
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The main problem is to estimate the unknown regression parameter. If the density 
p is known, we can use the maximum likelihood estimator, which is asymptotically 
efficient. The general aim of adaptive estimating is to find an estimator, which has 
the same asymptotical efficiency and does not depend on p. For that reason we 
regard the density p as nuisance parameter. 

2. THE LAN PROPERTY 

In the usual nonlinear regression model the LAN property was proven under some 
regularity conditions on the likelihood function and the regression function (compare 
[2], Chapter 1). We will need such conditions and propose the following notations. 
Let TLAN he the set of all densities, which fulfill (LI), (L2), (L3). 

(LI) The likelihood function /(•) = \np() is twice continuously difTerentiable. /**>(•) 
denotes the kth derivative. 

(L2) 

E p / ^ Ы ^ O E, P ( 2 ) Ы 

«, 

< oo, 

0 < s 2 = -Ep . (2>(£,) = V a r / " ( e , ) < 00. 

(L3) There exist a function R, with EpH(£i) < oo, and a constant <50 such that for 
all 6 < 60 and for all d with d = d(e\) and \d\ < 6 

p(2)(el+d)-PW(e1)\<6p(el)R(el). 

Let G the set of all regression functions, which fulfill (Gl), (G2), (G3), (G4). 

(Gl) The regression function g(xi, •) : G —• 9ft is twice difTerentiable uniformly re
spect to i and the derivatives are equicontinuous. g^'(xi, •) denotes the q 
dimensional vector of first partial derivatives. g(2\xi, •) denotes the q x q 
dimensional matrix of second partial derivatives. 

(G2) For all ů 
1 

—=z max 
УJП i = í,...,n 

9^(XІ,Щ = o ( l ) . 

(G3) It exists a constant c independent of i such that for all d 

P\XІ,Ů) < C. 

(G4) It exists a positive definite matrix I(tf) such that 

lim ^g^Hzi^gWizi^f = !(*) 
n—+oo П 

ť = І 
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Let us generalize the concept of local alternatives 6n = (dn,Pn) of the "true par
ameter" 9 on the semiparametric case. We define: 

tfn = t>+ * /», heW, (3) 
v n 

P n = p + - L s , / ? e H 0 c H c L 2 ( / 0 . (4) 

The set B in (4) respects the definition (2.2) of all possible deviations of y/p in [1]. 
Also contaminated models 

P n = ( l 7=e)p+-7=epu Pi G TLAN,. e e ( 0 , l ) 
\ y/n J \/n 

can be given in the form of (4), if we set 

Ho = {/?:/? = e(Pl -p), pi € rL A N , £ 6 (0, 1)} . 

We choose the set of deviations B in such a way, that also pn is in TLAN for sufficiently 
large n. More exactly B denotes the set of all /?, which fulfill (Bl), (B2), (B3). 

(Bl) 

/ ^ d A i = 0. 

(B2) 

*eB) '«-
(B3) /? is continuously differentiate and there exist a function R with EpR(e\) < oo 

and a constant 8o such that for all 8 < 6Q and for all d with d = d(e\) and \d\ 
<6 

2 

^(e1+d)-^(e1)\<8p(e1)R(e1), Ep ( ~ 7 j y ) < oo. 

Now we can formulate the theorem on the asymptotic behaviour of the likelihood 
quotient. Introduce the log likelihood ratio 

r i T T Pn(Vi ~ 9(Xi>dn)) . , T T / , Qxx ^ n 

/ -» = ' - n p(!/,.-g(x^)) • ,f JJP(*-»(•«.«»>o 
and n n 

Ln=0, if IJp(lfc -flr(ar,-,i.l)) = JJj>n(ifc -flr(x,*,i5»«)) = 0 
t = i t = i 

and 
n n 

Ln = oo, if Y[p(yi-g(xi,ti)) = 0 and J Jp» ( f c -g(xi}dn)) > 0. 
t = i t = i 
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Theorem 1 . (Local asymptotic normality) For g G G and p G FLAN and 0 G B 
and h G ffl it holds 

Ln = 

with 

" = 7 í £ A i - ^ ( A i ) 2 + 0í(1 

p(e») p(Si) 
(5) 

o^(l) converges with probability PJ1- to zero. 

The A,- are independent random variables with expected value zero and the av
erage of their variances is bounded. Hence we have: 

Corollary. For g G G and p G FLAN and 0 G B and h G $q, such that a2 (/?, /i) > 0 
with 

\/P y/P 
<т2(0,h) = + s2hт(l(ů)-mmт) 

and 

it holds 

171 = lim i f ^ W ) . s2 = 
n—юo П -—' 

1 = 1 

,(1) 

VP 

r-L » " * ^ f-^2(/?,/o^2(/?,h)\. 

and the probability measure PJf is contiguous to F^n. 

R e m a r k . From the contiguity it follows, that the consistency of some estimator 
under p implies the consistency under the contaminated model pn = (1 — en)p+enp\ 
with en = --jj-c for any pi G T L AN-

P r o o f of Theorem 1. We give an outline. Especially we are interested in the 
influence of the deviation 0 from the density p. Because of (4) we have Pg a.s., that 

L =^\n(E^LZli^*l2^1 | 1 ft(y,-g(g.,i9n))\ 
^ I P(£i) y/n P(£i) / 

Under (Gl) for all i Taylor expansions of first and second order hold, such that 

1 T 
&gi = g(xi,K)-9(xi,0)=-^gw(xi,$

i)) h, 

A9i = ^ " ( . ^ f k + i * ? 1 U^Yh, y/n In V / 

with d such that àPV-.*|< -~||Ä|| for* =1,2. 
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We have also expansions for the density and the deviation: 

p(ei - A9i) =p(ei) - p0> (ei) A9i + l-p^ (ei + 6™A9i) Agl 

P(ei - A9i) = 0 ( C j ) - ^ ( s i + 6^A9i) A9i, 

with 6{
(
k) = r5<*> (a) such that U(fc)| < 1 for k = 1,2. 

Therefore 

.„ = £.n(l + -L.Ai + i^>), 

where A,- is defined in (5) and 

2fta> _ __^__> ( > , (Xi,^.))T
fcy _ ^ f c V 2 > ( X i , ^ > ) \ 

(6) 

with й_ I < —== max 
^jTl 1 = 1,.,n 

ÿ ( 1 ) (* í , l ) ) | < o ( l ) for Âr = 1,2. (7) 

(7) is a consequence of (G2). 
It holds 

±=Ai + iR ( 1 ) = OB (1), 
Vn n 

because under (G2) and (B2) uniformly in i 

IE|^|«_^|^)(_i|^Wi + iEf(J^) ,_0 (8) 
and because of (G3) and (B3) uniformly in i 

ІE 
n 

Я (1) 0. 

Now we apply the expansion ln(l + x) = x — \x2 + Ax3 with A < 1 in (6): 

ь«:jвÊ*-sÊ-4н>. 
v t = i t = i 

where 

42»=-t^i)-^__ftSi)A.-^_:K))2+Af:(;i^)+4=A1 
n f-f A/nn f-f 2n 2 f-f \ / f-f V n ' V n 

t = i v t = i t = i t = i x v 

It remains to show, that R„ ' converges in probability to zero. The first term of the 
rest we split again: 

ié1í i )* iÈ^ )+ iè*í i ) 

t = i t = i t = i 

(9) 
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with 

up - £Mf» l9itfr k - £!Mhvgw (#li#)h _ £ JM,O) (,,,.f /, 
p(e,) p(e,) p(£i) 

The regularity conditions on p and /3 allow a change of integration and differentiation, 
such that from (Bl) and the normalizing property of densities it follows, that the 
expected value of R\ ' is zero. Further we get from (G3), (G4) and (L2), (B2), 
(B3), that the average of their variances is bounded. Then the law of large numbers 
implies 

n 

( I D І E « Í 3 ) = MD. 
71

 І = I 

Using the continuity arguments of (Gl), (L3) and (B3) we can also show 

Let us discuss it for one of the terms more detailed: 

l n 

Using (7), (B3), (G2) and (G4) give us the following inequalities 

(12) 

^y^' ( "*S"""""'" ' '-" T ' 

E | F „ | < max E 
i = l,...,n 

< 

ß^{єi+d^)-ß^(Єi) 

P(Єi) iE|j(l>(*i.*)T''| 
І = I 

o(ì)EpR(єi)y/hӮҢд)h + o(ì) 

The other terms of Rn we can estimate by arguments used above. For instance 
it follows from (8) and (9) with (11) and (12) 

< PІ-^-YR^&І^Є^ 4= m a x AІ < лj7 ) 

+ P\~J2R(ІÌ)AІ>Є~-7= m a x ДІ>V^| 

V V r ш Tľf лjПi=l,...,n J 

< P^gRS^^+P^^Д^^Sod). D 
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Now we can search the "least favourable" direction /?* to approach p for the 
problem of estimating t?. 

,2 

ß* = arg min а2 (ß,h) = arg min 
ßЄB0 ßЄBo 

P ( 1 ) T, ß m h — — 
VP VP 

Ł^PÍ^Ч: 

(13) 

(14) 
VP \VP 

here P : L2 (/.) —* Ho denotes the projection. If Ho = B, then /3* = p^mTh. We w 
obtain 

with 

а2(ß*,h) = s2hTГ(д)h 

I* (д) = I (Ů) - mm "(Ў)l 
ulil 

(15) 

If H0 = H, then 7* (t?) = 7(0) - m m T . Note 7* (tf) < 7(#) and I* (t?) = 7(i?) if 

' (£)-•• 
3. NECESSARY CONDITIONS FOR ADAPTATION 

First let us recall the definition for an adaptive estimator (compare [1]). 

Definition. A sequence of estimators dn(Y) is said to be T-adaptive if under 0n 

from (3) and (4) for all 6n and all $ 

L (Vn(*» (Y) - *»)) —• TV, (0, * - 2 / ( t f ) - 1 ) 

Remember, s~27 (??)_ is the covariance matrix of the asymptotic distribution of 
the maximum likelihood estimator (compare for instance [2], Chapter 1). 

Further we say, that an estimator t?n (V) is regular at 9, if for every sequence 
6n the distribution of -s/n(t9n(Y) — dn) converges under 9n to a law L(9), which 
depends on 9 but not on h and (3. From the LAN property we get the presentation 
theorem for regular estimators. 

T h e o r e m 2. Let p £ TLAN , P £ BQ , g £ G. If tin(Y) is a regular estimator with 
limit distribution L, then it exists a distribution Li(#) such that 

L( ) = Nt ( 0 ) Г 2 Г W " 1 ) * L i M 

The p r o o f is omitted. It is analogously to that of Theorem 3.1. of [1]. 

If we want to find an adaptive estimator, then it is only possible if 1(d) = /*(*?)• 
From this equality we derive the necessary conditions for the existence of adaptive 
estimators. 
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Theorem 3. Let p 6 TLAN, P £ Bo, g £ G. A necessary condition for the existence 
of an adaptive estimator in the nonlinear regression model (1) is (Nl) or (N2): 

(Nl) 
1 n 

lim - > a(1)(*,-,tf) = 0 for all #. 
n—KX> n --—-* 

1=1 

(N2) 
p0>0 l V 

d/í = 0 for all ß Є Bo-

R e m a r k . The condition (Nl) is fulfilled in the linear regression model with an 
asymptotic symmetric design: 

1 n 

lim — > XІ = 0 
n —<-oo 71 -*-"-' 

t = l 

In the location model g(.c.", t?) = i? (Nl) is not fulfilled. For B = Bo adaption is not 
possible. We have !($) = 1 and l*($) = 0 . It is necessary to choose : 

чĄß-.j -ÍO/Í 
B0 = ip: J ---^d/i = 0, / ? e B | . 

The condition (N2) is fulfilled if p is a symmetric density and the local alternatives 
pn are also only symmetric. 

P r o o f of Theorem 3. If an adaptive estimator exists, then by Theorem 2 it 
must hold 1(d) = I*(tf). The equality holds only for fT = 0. Remember (3* is the 
solution of the minimization problem (13). This implies 

( ^ 4 V i for all /J 6 S0. 

If /?* = 0 , then 

y/Pj \/P 

— m T / i J . 4 - for all ß G Bo-
P y/P 

Hence for all h 

roтA/E^d/J = 0. / 
From this it follows (Nl) or (N2). D 

4. THE MINIMAX BOUND 

A further consequence of the LAN property is an asymptotic minimax theorem of 
Hajek type. It may be useful also in cases, where adaption is not possible. 

Denote W the class of functions w : 3ft? —*• 3?+ such that w(0) = 0, w(x) = w(—x), 

all sets {x : w(x) < c} are convex and In w(x) < o(\\x\\ ) . 
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Theorem 4 . Suppose w eW,p€ IYAN, 9 EG and I* (i?) y 0 and 

Un (c) = [en = (*ntPn) : ||t?„ - tf||2 < c , | |P n - p||J < c} . 

Then it holds for all c > 0 and all estimators $n(Y) 

lim inf sup E9nw(y/n(tin(Y)-dn))>Ew(z*) 
n^°°a«€U(c) 

where z* is /V? (o, (s2I* (tf)) M distributed. 

P r o o f of Theorem 4. Choose the worst direction of deviation /?* in (13) of p 
and fix the sequence 

then 

0„ = O?»,p„), with p ; = p + . * / r , 
y/Jl 

sup E í f ł u;(-A(i . í n (У)-tf n ))> sup E ð ; ^(A( i?„(Y ) -г9 n )) 
ØnЄU(c) | | t?„-t? | | 2 <c 

The likelihood quotient 

r* =frPn(yi-9(xi,tin)) 
n i\ Pn(Vi-9(Xi,*)) 

is LAN at 0 with s2I* (d). It is not possible to apply the Hajek Theorem (Theorem 
12.1) in the book of Ibragimov, Hasminskii [3] directly, because L* has a different 
structure as the likelihood quotient in their Definition 2.1. If we check the proof of 
Theorem 12.1 step by step, we see that only the LAN property is used. We omit 
this checking and apply this theorem on the last inequality and obtain the result. • 

(Received March 3, 1994.) 
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