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ON POWER SERIES, BELL POLYNOMIALS, 
HARDY-RAMANUJAN-RADEMACHER PROBLEM 
AND ITS STATISTICAL APPLICATIONS 

VASILY VOINOV AND MIKHAIL NIKULIN 

A possibly unknown approach to the problem of finding the common term of a power 
series is considered. A direct formula for evaluating this common term has been obtained. 
This formula provides useful expressions for direct evaluation of the number of partitions 
of a nonnegative integer and the partitions themselves. These expressions permit easily to 
work with power series, evaluate nth derivative of a composite function, calculate Bernoul
li, Euler, Bell and other numbers, evaluate Bell polynomials, cycle index etc. Alternative 
expressions and some other new results for the truncated Bell polynomials have also been 
obtained. Some statistical applications of results under consideration and features of gen
eralized probability generating functions are discussed. 

The problem of solving in integers the Diophant's equations 

x\ + 2x2 + ... -f kxk = n, k < n, (1) 

is very important for applications. 
Let an insurance company expect that next year there will be n accidents among 

its clients. It is very interesting for the company to know the distribution of a number 
of the accidents, i.e. to know the number x\ of people suffered in one accident, the 
number xo of people suffered in two accidents, etc. Thus, we are to solve the problem 
(1). We are able also to find the number of people suffered at least in k accidents 
and in no more than m accidents, 1 < k < m < n, etc. 

Let us study customers demands in a big department store. Suppose there were n 
purchases during a time T in a day and we are interested in the clients distribution 
by the number of purchases, i.e. we would like to know how many clients x\ bought 
one thing, how many clients x-i bought two things, etc. This might be useful when 
organizing a cashing, when distributing advertisements, etc. 

Let us study a spreading of some decease, e.g. influenca, among a given group 
of citizens during some years. Let n be the number of deceases registered, then (1) 
gives the number x\ of people who were ill once, the number x-i of people who were 
ill twice, etc. 
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The integer u might be a number of authors who published their researches during 
a given period of time in scientific journals, then x\ is the number of authors who 
published one paper, x-2 is that for authors who published two papers, etc. 

Many important examples of applications of Diophant's equations in algebra, 
group theory, analysis, etc. may be found in references cited below. 

1. INTRODUCTION 

A usual way for deriving the common term of a power series which is an arbitrary 
complex power a of another power series consists of using the Faa di Bruno's formula 
for the n-th derivative of a compound function. It is this formula which defines 
the well known Bell polynomials (Riordan [17]). Schur [19] and Riordan [18] gave 
explicit formulas for the common terms of the above power series in a case when o: 
is a positive or negative integer. 

The need for evaluation of these common terms often arises in probability theory 
and mathematical statistics. Let one wants to generalize any distribution consider
ing its probability generating function h(t) = f(g(t)), where f(x) = x±n, n being 
an even integer and g(i) being an analytic function. The problem of deriving the 
probabilities and moments of the corresponding generalized distribution is a problem 
of expanding h(t) into a power series. Charalambides [3,4] used Bell polynomials 
to derive probabilities of discrete distributions considering the probability generat
ing function being known, see also Johnson and Kotz [10]. Philippou [13,15, 16], 
Philippou et al. [14], Hirano [8], Ling [11], Hirano et al. [9] and others consid
ered generalized discrete distributions of order k defining first the probabilities and 
then deriving desired generating functions, but, in each case, they used the Bell 
polynomials. 

In our presentation we will consider the problem of finding the common term of a 
power series which is an arbitrary complex power of a polynomial. A direct formula 
for the common term of this series will be generalized, providing thus an alternative 
expression for Bell polynomials. 

2. MAIN RESULT 

Consider the problem 
/ m \ a oo 

X>2' ==£>(«, m)**, (1) 
\ l _ 0 / Jfc=0 

where a is an arbitrary complex. Here and in the sequel we consider all power series 
as being converged. 

Lemma 1. Coefficients a,k(a,m) satisfy the recurrency 

[-1 
ak(a, m) = J~ -~ak.ms(a - s, m - 1)6^, (2) 

5 = 0 
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where (cv). = cv(cv — 1),. . .(cv — s + 1), [x] is an integer part of x. 

Applying the binom formula which is evidently valid for any complex cv we obtain 

oo 

[(60 + • • • + bm.,zm-1) + bmzm]a = £ ak(a, m)zk 

k=0 

or oo 

£ {-^(bmzmf(bo + • • • + bm^zm~] ) a - k = £ ak(a, m)zk. 
k=0 ' k=0 

Since ^ 

(60+• • •+6m_ 1zm-1 )«-* = £>(<* - *, m - i y , 
/=0 

we have 
OO OO / x 00 

E£^«-*,»>-i)Czm*+ '= £«*(«,>»)*'. 
5 = 0 /=0 ' it=0 

Assuming / = k— nis, summing over 0 < 8 < [̂ -] and equating coefficients at zk we 
arrive at (2). 

For m = 0 formula (2) gives ba = X^fcLo^^-O)' s m c e ao(«,0) = ba, a*(a>0) = 0> 
if Ar> 1. 

For m = 1 we have afc_,(cv — s,0) = 0 if 0 < 8 < k — 1, and we obtain from (2) 
the binomial coefficients 

ak(a,\)=^brkbt (3) 

Using (3) formula (2) gives for m = 2 

-("•2)=|g%^(*;s)c(t-^-2x w 
Generalizing (4) for an arbitrary m we have the following 

T h e o r e m 1. If a subsequent power series exists then for any arbitrary complex cv 

( m \ « oo 

5>z' = £«*(«, m)z\ 
/=o / ib=0 

where 

ak <•.«>- £ £ £ 
/ m - з ) + ^ ^ " 

m - 2 / , , ч m - 3 

(..ÍГ-W*î+''~* П Cłl-!,+,tï-!'-i|;-', (5) 
» = 0 N , T 1 * " г < 6 ' » = 0 



or 
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/0 = k, lm = 0, a + = m a x + { 0 , a } , [x] being an integer par t of x, or 

/ \ \-~ {a)k-h (m-l) /m_ 1 
at{°' m) = „+...+§„.„» (.-«,-—-_-o-..w-/_-..-

6 a - » + / , + - + ( m - l ) l „ - , 6 * - 2 l , - . - m l _ - , ^ 1 - - - 6 u _ l i ( 6 ) 

-.(«.•»)- E ^'Vr*.'""""'"^ •••*»•, (7) 
; i i ) i ' 1 • ' ' * m • <H (-m/m=fc 

where /_, -2» •' * >Zm __ 0 are integers. 

P r o o f . To prove the theorem we must show that coefficients ak{a,m) defined 
by expression (5) satisfy recurrency (2) of Lemma 1. In other words we should show 
that 

r ( r _ - l V _ w ( m - 2 ) l 1 ] [_____.] 

V* ' V* V (oQfc-ti (k~ h\ (h ~h\ (lm-2-lm-l 
h fa ''j±;^-w\h-h)\h-i3)-\ /_., 

,a+/1-A;,A;+/2-2/1./i+/3-2/2 ijm-3+/m-i - 2 / m _ 3 , . - _ 3 - 2 - - - i w _ . _ 
°0 °1 °2 ' " ' ° m - 2 ° m - l °m ~ 

rjLi r_______z___i] r____-ii_.i r H - f i 
l m J / \ l m - l J L m - 1 J I 2 J / x 

E (ft)s y > y - > p (a - s)jfc_m._tl 

_! - ^ 2-r ' ' " Z_. (ib-m--_i)! ' 
s = 0 t i = 0 t 2 = 0 t m _ 2 = 0 v l ; 

fc- m s - t A / . j - _ 2 \ (tm-2-tm-2 
t l - t 2 ) \ t 2 - t 3 ) ' \ tm-2 

ia—s+ti-fc+ms i_-ms + . 2 -2 t i Lti+t3-2t2 i t m _ 3 -2 t m _ 2 ,tTO_2 , a / Q \ 
"°0 °1 °2 " ° m - 2 0m-l°m- \°) 

Changing variables s,ti,t2,... ,tm-2 on the rigth hand side of (8) by s - / m _ i , 
t\ - h - ( m - l ) / m _ i , t2 = l2 - ( m - 2 ) / m _ i , . . . , - m _ 2 = / m _ 2 - 2 / m _ i we see tha t 

(or), {a - s)jb-m.-«i (k - ms - t%\ ft\ - t2\ (tm-3 - tm-2\ _ 

s\ (k-ms-h^X _ i -_ 2 ) \t2-t3)' ' \ tm-2 ) ~ 

(«)„-/, (k - h - lm-\\ flm-3 - lm-2 - /m-l 

/-.-!.(* - h - / m - l ) ! Ml - /_ - Zm-lj V Z-.-2 - 2/m-l 

_ ( < * ) * - / i  

" lm-X\{k - 2/i + /2)! • • (/m_3 - 2/m_2 -f /m-l)!(/m-2 = 2/m_i)! 

(«)*-/_ f*~-A tóf/_\ t-/m-2-/m-l 

~(*-/l)V \h-hj' \h-l3)' A 'm-l 
(9) 
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This is evidently the coefficient of the summand on the left hand side of (8). On the 
other hand 

i r t - * + t i - f c + m * i f c - m 5 + t 2 - 2 t i L t i + t 3 - 2 t 2 . t m _ 3 - 2 t m _ 2 , t m _ 2 , 5 _ 
°0 °\ °2 "°m-2 °m-\°m ~ 

_ t„-k+hhk + h-2hhh+h-2h t * m - 3 + / m - l - 2 / m _ 2 / j m _ 2 - 2 / m _ l , / m _ x 

— °0 °l °2 ' " ° m - 2 °m-l °m 
and limits of summation on the right hand side of (8) become the same as on the 
left hand side of (8), i.e. (8) is the identity. 

Owing to (9) we may write 

rtfc 
( t t ) f c - t ! 

(or.m) _ C _ C ' - - _ C (fc_2< +< 2 ) !-(-m-2-2< r o _i) !< m - i ! 
' 1 ' 2 ' m - l 

/,«+t1-fc/ )fc+<2-2t1 J t m - 2 - 2 t m _ i , t m _ i 

°0 °l ' °m-l °m 

Changing in this expression <i,<2>- • • ,*m-i by 

<m_i - / m _ i , < m _ 2 - /m-2 + 2/ m _i,. . .,<i = /, + 2/2 + 3/3 + • • • + (m - l)/ m _i 

we obtain formula (6). 

Changing in (6) (k - 2li - 3/2 m/ m _i), / i , . . . ,/ m _i by * i , * 2 , . . . , / m we 
obtain (7). This completes the proof of Theorem 1. • 

Corollary. Putting m = k in (5) we see that the upper limits of summation become 

( m - l)fe 

m 

(m - 2)/i 

_ - * 
m 

m — 1 
/, -

/i 

Лг — 1 

= [к-\] = к- 1, 

= ( / i - 1 ) + < * - 2 , 

/ m - 2 
/ f c - 2 " 

/ f c - : 
= ( / . - 2 - l ) + < 1 . 

From these it follows that coefficients ajfc(cv, m) do not contain terms depending on 

Ofc + l-

In other words, considering the problem 

_Ь,A = _ак(а)z> 
J=0 k=0 

we may write dk(cx) as follows 

fc-i ('1-1)+ 

«»w = £ £ £ 
/ i = 0 / 2 = ( 2 / г - f c ) + / f c _ 1 = ( 2 / f c _ 2 - / f c _ 3 ) + 

(k-ky. 
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( * — h\ (h-2 ~ h-l\,a-k+tl,k+l2-2l1 .'fc-2-2/fc_i,/fc-i n n x 

h-h)-{ /,., r *• •••**-• ** ( 1 0 ) 
or 

„ , ( „ ) _ V ^ < _ _ _ (»-')'»-• ,«-*+/>+• -+(1-1)1.-. 

_,+-Í3ř._1_» <* - »» *f--.)WtlW. • ./»-il ° 

. t * - w . — - _ . _ . i l , . .. jh-i ( 1 1 ) 

(«)= £ (n'.f.M'*r'""~u .'->-• < 1 2> 
or 

«Jfc 
•11 • • • «Jfc 

/.+••+*/,._:* 
3. THE BELL POLYNOMIALS AND THE BEL NUMBERS 

The complete Bell polynomials are by definition 

n(/,,/,2,..,/,n) = E^fe(fT) r '-ar. (>3) 
where fr = / r and the summation is over all non negative integers satisfying the 
following conditions 

ri + 2.2 H 1- nr„ = n, n + r2 H h rn = r. 

Consider the problem 

oo \ a oo 

\ f c=0 / Jfc=0 

where 6o = 1. In accordance with (12) we obtain 

«»<«)= £ -fr*^*.* •••*-• c . 
.,+...+fc/fc=fc *•• *' 

Denoting <?m = m!6m, m = 1,2, . . . ,* and ft = / j = (a)j we obtain from (13) and 
(14) 

<-«(«) = — Y*«(/t7i, / _ 2 , • • • t /£»_) . 

Bearing in mind (10) and (11) we obtain two alternative expressions for the Bell 
polynomials 

„_1 (*»-.)+ (fc„_2-l)+ 

, Yn(f9u..-,f9n)=J2 E ••• E 
*i=0 Jfc2=(2fci-n)+ fc„_i=(2fcn_2-fc„-3)+ 

nl /n- t ,  
(n - 2*i + *2)!(*i - 2*2 + * 3 ) ! • • • (*»-_ - 2*„_1)!*„_1f 
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and 

. ( « ) - — . . . ( & ) - , , , 

v (f f \ - V ^ n ! / n - . t ( n - i ) . n _ i  
n ( / i " " " a . * f < ( » - - ' i n / . - i ) ! / . ! / j ! - /_ - i ! ' 

2/i + .. .n/n_i <n 

The Bell numbers Hn are obained from the Bell polynomials (13) if 

fg\ = /</2 = • • • = /i7n = 1, i.e. if P = fj = 1, ̂  = 1, ; = 1,2,.. . , n. 

From (15) and (16) it follows that, 

n - l ( * i - l ) + (fcB_2- l)+ 

*» = £ £ - £ 
fci=0fc2=(2fci-n)+ fcn_1_(2fcn_2-fcn_3)+ 

П! 

(n - 2fei + ib2)!(JЬi - 2*2 + k3)\ • • • (fcn_2 - 2fcn_i)!fcn_i! 

ţ \ k\ — 2fc2+itз / i \ fcn__ —2fcn_i / - \ <-n_i 

or 

2!j V ( n - l ) ! ; V"'-

n! 

(17) 

ß-= £ 2/ + tT < n ^ " 2 / l n/B__i)!/lW,!.../n-i! 
_ / i + - n / n _ i < n 

i);tt)'.-(ir-
The polynomials Tn;jfc = Tn-k(fgi,..., fgm), m = min{n, A;}, defined by 

, v f yn(fg\,.--,f9n), n< k, 
TnAf9i,...,f9m) = \ 

{ Yn-k(fgu...,fgk), n> k, 

where 

:v- .^-x.dS_f(„r-(„r 
and the summation is extended over all r< > 0 (i •= 1,2,. . . , k) such that 

n + 2r2 H 1- krk = n; ri + r2 H 1- rfc = r, 

(18) 
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are called right truncated Bell polynomials (Charalambides [4]). In accordance with 
(5) and (6) we may write two following alternative expressions for the right truncated 
Bell polynomials Yn.k(fg\, • • •, / # * ) . 

YnAfg\,...,fgk)= E E "' E 
/i-0 / 3 _(2/,-n )+ / f c _ ! = ( 2 / f c _ 2 - / f c _ 3 ) + 

(ii - 27, + /_)!(/, - 2/2 + / 3 ) ! • • • (/*-2 - 2/._,)!/*-i! 

Ы " Ы ' n>*' (19) 

and 

v , , - . v^ n\fn-i, (fc-l)/fc_, 
K-fcC/#i / * > *_ .* . -£ r t . i _<—* -*_;)Hl_,i-,-.r 

. ( I ) " — ( I ) ' - . . . (I)"-, „>, ,20) 
Charalambides [4] introduced the partial right truncated Bell polynomials by the 

following generating function 

STT (n n n \'" - .__.___]_ t9H 
> v in,r;ifc(gl, g2> • • • ? gm)—f = j , (21) 
-—' n! r! 
n - 0 

where flffc(0 = E j ~ i tfj^T-
Using (2) and (21) we obtain the following recurrence relation for Tn,r;Jb if k < n 

If] n , 

Tn,r;k(g\,g2,...,gk) = E (n _ ~^U^~T~~ Tn-kg,r-s;k-l(gi,g2, • • .,9k-l)9k- (22) 

4. HARDY-RAMANUJAN-RADEMACHER PROBLEM 

The partition means a set of nonnegative integers with the given sum n £ N. In 
other words the partition is a representation of n £ N such that 

n = xi+2x2 + \-kxk, keN,k<n, (23) 

where x\, x2,..., xk are nonnegative integers. We shall denote each such represen
tation by {x\,x2,... ,xk}n. The problem is to find all these representations and to 
calculate their number H„ . It is well known (see e.g. Riordan [17]) that 

1 °° 

*« : *) = ( ,- .)( .- . . )•••( .- .») = § * * ; (24) 
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i.e. <p(t, k) is the generating function of Hn • Since finding the Rn ' for moderate 
and large n is not simple, much work has been done to find ways of evaluating the 
Rn

k) (Euler, Oayley [2], Mac Mahon [12], Gupta II. [7] and others). All these ways 
are recurrent in their nature. 

We see from (24) that 

<p(t,k-l) = (l-tk)<p(t,k) (25) 

which implies the recurrency 

«?» - «ff» = fl?"" (26) 

with the initial condition Hn — 1, n > 0. 
Since 

i °° 
______ = \^fkn 

1 - . * < - - ' 
n = 0 

we have 

oo oo oo oo / [Tj \ 

9{t, k) = _" «<*>*" = £ « - - _" /#-««" = £ £ 4--,iJ «" 
n = 0 n = 0 n = 0 n = 0 \ /=0 / 

or 

it] 
Rik) = £ flfcP. (27) 

/=0 

The exact formula for the number of partitions of an nonnegative integer has 
been established by Hardy, Ramanujan and Rademacher (see e.g. Andrews [1]). 
But their formula gives only the number of partitions for any integer n, n E N. 
Theorem 1 exactly gives not only this number but all partitions themselves. 

(k) 

In this paper we give an expression for the direct evaluation of Rn and a way 
to obtain all partitions {x^, .r2,..., Xk}n for any n E N. 

In Theorem 1 we have shown that the common term cin(a, k) in 

(£6„* n ) =JTan(«,k)z\ (28) 
\ n = 0 / n = 0 

can be calculated by the expression 

[i_-__] [ i ^ i - . ] [ i_-] 

-(«.*)« £ £ ••• £ 
lx-0 / _ = ( 2 / , - n ) + / f c _ 1 = ( 2 / f c _ 2 - / f c _ 3 ) + 

(_0n-_/i  

'k-^n - 2/, + /2)!(/, - 2/2 + 10 • • • (/,_3 - 2.)t_2 + h-iWk-2 ~ -A-i)! ' 
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•6 0
> + / l- n6 1

+ / 2- 2 / l6 2
1 + / 3- 2 / 2-- . .^r 2 / f c ' 1 6fc f c" 1> (29) 

where /1J2.• •-JJfe-i are nonnegative integers, /0 = n, (a)+ = max{a,0}, [x] is the 
integer part of x. 

It is easily seen that the summation by /1J2, • > • > /fc-i in (29) is such that 

( n - 2 J i + /2) + 2 ( / i - 2 / 2 + /») + ••• 

. . ( _ - 2)(/ ,_3 - 2/fc_2 + h-\) + {k - l)(/fc_2 - 2lk-\) + klk-\ = n. (30) 

For A; > n (23) reduces to 

X!+2x 2 - l hn_„ = n (31) 

and (29) becomes 

n - l ( / i - D + ( / „ _ 2 - l ) + 

«»(«)=_: E ••• E 
/ 1 = 0 / 2 = ( 2 / 1 - n ) + / n _ 1 = ( 2 / n _ 2 - / n _ 3 ) + 

/„_!!(n - 2/i + /2)!(/1 - 2/2 + .3)! • • • (/„-2 - 2/n_i)! 

6« + / l _ n 6 n + / 2 _ 2 / 1 ^ 1 + / 3 - 2 / 2 . . . 6 / n - 2 - 2 / n _ 1 6 ^ _ 1 ] ( 3 2 ) 

where l\, l2,... , / n_i are nonnegative integers, /o = n. The summation in (32) by 
-i. _*i • •• Jn-i is s - c h that 

(n - 2/i + /2) + 2(/j - 2/2 + /3) + • • • + (n - l)( /n_2 - 2/n_i) + n/n_! = n. (33) 

Denoting {(n-2/ i+/ 2 ) , ( / i -2 / 2 +/ 3 ) , • • •, (/fc_2-2/fc_i), /fc-i}n = {x{, x2,..., xk-\, xk}n 

and {(n-2 / i + / 2 ) , (h - 2 / 2 + /3) , • • •, ( /n-2~2/n_i) , / n- i}n = {*_,-_,.... ~n-i , -?„}n 

we thus have proved the following 

Theorem 2. The numbers Hn ' of solutions of equation 

xi + 2x2 H H A;xfc = n, _ < n, n £ N, 

and the number Hn of solutions of equation 

xi + 2x2 + h nxn = n, n € N, 

where __,__,•••, xfc> xk+\, • • •, #n are nonnegative integers may be represented as 

[__-__] [i^_+-] , [!_-] 

*?>= E E •• £ 1, k<n, (34) 
.1 =0 /2=(2/1-fc)+ / fc_1-(2/„_2-/ fc_3)+ 
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and 
n - l (/l-l)+ C n - 2 - l ) + 

«» = £ £ £ i- <») 
/ i - . 0 . 2 = ( 2 / i - n ) + / n _ 1 = ( 2 / n _ 2 - / n _ 3 ) + 

Partitions {£?_, #2, •••, £fc}n, k < n, are obtained from all sets {l\,h, • • • ,h-i}, 
k < n, in (34) or (35) by formula 

{(» - 2/, + h), (/, - 2/2 + l3),..., (/__._ - 2/__1)) /___}„, * < n. (36) 

Formulas (34) and (35) interpret the well known expressions 

R W = __ 1 (37) 
/ i+2/2+-+fc/ f c=n 

and 

Rn= _ r *> (3 8) 
/ i + 2 / 2 + - + n / n = n 

which indicate only that summation in (37) and (38) is performed over all partitions 
like n = /_ + 2I2 4- • • + klk, k < n, but the problem of finding these partitions still 
remains. 

5. APPLICATIONS 

Formulas (10)2 (11) and (12) may be applied in mathematical statistics when es
timating parameters of discrete probability distributions. Let, for example, X = 
(X\,..., Xn) be a sample where Xi, i = 1, 2 , . . . , n, are random variables with prob
ability density function (for notations see Voinov and Nikulin [21]) 

f(x;0) = \ « ' X E A \ (39) 
[ 0 otherwise, 

where X = {0 ,1 ,2 , . . .} , a(x) > 0 for any x G X, tl>(9) and B(9) are bounded, 
positive, differentiable functions on X, ®, Q = {0 : 0 < $ < p], p is a. radius 
of convergence of a functional series J2x=o (l(x)'ll)X(^)• The complete sufficient for $ 
statistic T = YA=I %* is distributed as 

[ tiqxm, 1 = 0 , 1 , . . . 
. ( . ; • ) = { B W . (40) 

0, otherwise, 

where 

( 00 \ n 00 

X.«(^*w = £*(*, »)̂ w-
_=0 / 1=0 

All minimum variance unbiased estimators of parameters of (39) depend on coef
ficients b(t,n). One may evidently use for their calculation formulas (10), (11) and 
(12). 
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Let g(s) be an analytic function of s in the vicinity of s = 0 such that 0 < g(Q) < 1, 
g(l) — 1, i.e. g(s) is the probability generating function. 

If 
J - - I 

x= 1,2,... ( («W)'U.>o, 
then using Lagrange's expansion one may define a probability distribution as follows 
(Consul and Shenton [5,6], Johnson and Kotz [10]) 

p { x = x} = 7 (ff ' { g { s ) ) ' \ ' --».-,..• (41) 
U = 0 

Since g(s) is an analytic function in the vicinity of s = 0, we may write 

oo 

g(s)= £ bmsm, 6 o > 0 . 
m = 0 

Then 
/ oo \ * oo 

&wr = £ b»>*m = !>*(*)**. (42) 
\ m = 0 / fc=0 

Inserting (42) into (41) gives 

p { X = , } = — ^ i f l , , , i , a , . . . (43) 

To calculate ajr_i(a:) defined by (42) one may use formulas (10), (11) and (12). 
Formulas (10)-(12) together with Lagrange's expansion may also be used for 

quantiles evaluation as it was shown by Voinov, Neymann and Nikulin [20]. 
Let y — g(z) be an analytic function on an open set G and for each a E G 

b — g(a). Then Lagrange's theorem gives 

0 0 - ' > n - l V - 1 T d 
= a + __; 

n-\ 
z — a 

^ n \ l d . - - l [\g(z)-b 

If y - 9(z) = Er=o ak(z ~ a)k then 

(y-Ь)n. (44) 

Í
_ N n / o o \ n o o 

The series (44) reduces to 

' ^ n - i ( - n ) 
= «+XÎ2^P(t'-»Г- (45) 

П = l 
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Let F(x) = Ylk*=oPk(x — xo)k be a distribution function and P be a given confi
dence level, 0 < P < 1. Then solution xp of equation F(x) = P in accordance with 
(45) is 

*P = so + £ ; g n " L
y ; U)(P-Po)n, Po = F(x0), (46) 

n _ l 

where the coefficient qk(—n) is defined from relation 

( oo \ ~ n / oo \ ~ n oo 

Y,Pk(x-*o)k-1) = 2 f t + i ( - - - o n = ][>(-n)(_-_<>)*. (47) 
fc_0 / Vfc-O / fc_0 

Using formulas (10)-(12) with cv = — n one may calculate quantiles xp by formula 
(46). 

Let a probability generating function h(t) = f(g(t)) be specified, where f(x) = 
x±n and a generaliser g(t) is an analytic function. Then, as pointed out in the intro
duction, the problem of deriving the probabilities and moments of the corresponding 
generalized distribution is a problem of expanding,h(t) into a power series. When 
solving this problem one may evidently use formulas (5)-(7) or (10) — (12) of Sec
tion 2 of this paper. We would like to emphasize here that one may make an other 
generalization considering f(x) = xa, where o; is an arbitrary complex. It is clear 
that probability generating functions like f(x) = xa include a = ±n as a particular 
case. 

Another interesting application of this results is connected with the famous Faa 
di Bruno's formula for the nth derivative of a composite function h(x) = f(g(x)), 
where / and g are differentiable n times scalar functions of scalar variables, reads 

where k\ + 2k2 H \- nkn = n and k = k\ -\ \- kn,ki,k2,..., kn are nonnegative 
integers. If g^ ~ gr and /^r) EE fr, then (48) coincides with the expression for 
the Bell polynomial Yn(/.7i, /.72, • • •, /<7n), which can be represented by (15) as was 
shown in Section 3. 

From (15) and (48) we obtain 

n _ l ( * t - l ) + ( * n _ 3 - l ) + 

'<("V)=£ E - E 
* i - 0 fc3=(2*i-n)+ fc„_i_(2fc„_2-fc„-3)+ 

n1j(n-fei) 
(n - 2*1 + k2)\(kl - 2k2 + k3)\ • ••(*„_2 - 2fcn_i)!fcri_i! 

This formula makes it possible to evaluate Mn!(.c) directly for any n. Formula 
(49) evidently solves the problem of the substitution a power series into a power 
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series. Thus, formulas (7) and (10) easily permit work with power series. One may 
evaluate arbitrary powers of a power series, substitute a power series into a power 
series, derive the inverse function for any analytic, function (see formula (45)). 

Consider now the problem of directly evaluating the Bernoulli and Euler numbers. 
Bernoulli numbers are defined by generating function 

fc = 0 

Since 
e * - l 

0 0 Í_ 

t -'tli-чtì {}~~)-<(k + í)\ 

we h ave 

, r . 

vfc=0 

т - 1 

Łj(* + l)ľ 

E — 
[k <*+щ 

fc=0 

=Eß*îî = E «"(-!)'*• 
fc = 0 

Using formula (10) we obtain from (50) 

fc-l (il-l)+ ( ' f c - 2 - l ) + 

* = E E E 
/ l = 0 / 2 = ( 2 / i - f c ) + /fc_! = ( 2 / „ _ 2 - / _ - 3 ) + -

(-\)k-l*k\{k-h)\  
(k - 2/j + /*)!(/, - 2/2 + h)\ • • • (/fc-2 - 2/__1)!/*_1! 

/ fc_i j v fe-2/j+Ia / j \ /i 

2! 3! 
1 

(k+ï)\ 

(50) 

(51) 

Consider Euler numbers defined by the generating function 

oo k 

Since 

we have 

ш=_>•*.• | í | < 1 / 2 -
fc=0 

00 t2k 

___. /2fc \ « /2fc » 

E(Ь)ÎJ -Eв»7ш=E«»иr' 
fc,2fc 

\fc=0 v " " ' " / fc=0 

Using (10) and (52) we obtain from (53) 

(2*)! fc=0 

fc-l (/i-l)+ (ifc-2-l) + 

«*~E E E 
/ , = 0 / 2 = ( 2 / , - f c ) + / f c _ , = ( 2 / f c _ 2 - / f c _ 3 ) + 

(52) 

(53) 
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(-1)*-'Ҷ2_)!(_-/-)! 
(k - 2l\ + /2)!(/i - 2/2 + lz)\ • • • (/fc_2 - Њ-\)\lk.\\ 

2!j V(2Ar)! 
(54) 

Consider in conclusion the problem of evaluating the cycle index Cn(t\, t2,..., tn) 

of a symmetric group. It is known (see e.g. Riordan [17]) that 

<_.,_,....,)- E i^&YCiT••&)'''(55) 

i f c l + 2 f c 2 + . . . + r i j f c „ - : n * i - fcn- v i y V - / V n J 
where k\,ki,. •. ,kn are nonnegative integers. 

This problem is nothing new. Nevertherless, we consider it with a view to indi

cating another sphere of applications of partitions.- Using (15) we may rewrite (55) 

as follows 
U - l ( / l - l ) + ( * n - 2 - l ) + 

cn(t\,...jn) = j2 E ••• E 
/ 1 = 0 / 2 _ : ( 2 / 1 - n ) + / n _ ! = ( 2 / n _ 2 - / n _ 3 ) + 

n! 

(n - 2/t + / 2 ) !(/, - 2/2 + / 3 ) ! • • • (/„__ - 2/ n _i) ! / n _i ! 

ř x »-2f1+f3 / ť v f i - 2 f a + f , / ť n x ř , 
(56) 
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