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PITMAN EFFICIENCIES 
OF VGOODNESS-OF-FIT TESTS 

JAN BEIRLANT AND LÁSZLÓ GYÖRFI 

Pitman efficiencies are used to describe the problem of choice of the number of classes 
in Z/p-goodness-of-fit tests (p > 1) based on histogram density estimates. We consider the 
case where the number of classes increases with the sample size. 

1. INTRODUCTION 

Let A'i,A r2,... be i.i.d. real valued random variables. Consider the problem of 
testing the simple null hypothesis Ho that the x,- 's are distributed according to some 
distribution /»o with a continuous distribution function Eb> versus a simple hypothesis 
Hi. Without loss of generality we may assume that fio is the uniform distribution 
on [0,1], otherwise one transforms the data by F0- Let fi\ be the distribution of x,'s 
under H\. 

Let fin be the empirical distribution for the sample A"i,x2, • • -Xn: 

, , x _ #ji]XijzA, i<i< n) 
Hn(A) — 

and let Vn = {An,j,j = 1,2,...} be a uniform partition of [0,1] of interval size 
hn > 0 (kn = \/hn is integer). 

In this paper we consider the Lp-goodness-of-fit test statistics: 

k„ 

4:» = X>n(^)-M^.j)r-
7 = 1 

In case no confusion is possible we abbreviate Jj*£ to Jn. The case p = 2 corresponds 
to a x2-statistic, while p = 1 was studied by Gyorfi and van der Meulen [4] and 
Beirlant, Gyorfi and Lugosi [1], These authors introduced these statistics in the 
context of Lp-errors for the histogram density estimator 

fn(x) = Hn(An,j)/hn (x € Anj). 
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Indeed, 

Jn = K~' / 1/n-lF 
JO 

The aim of this paper is to prove some new results with respect to the Pitman 
efficiency of any pair of tests induced by two different values of p, hence providing 
some new insight in the number of classes to be taken relatively from one Lp-test 
with respect to another. This note can also be considered as an addition to the work 
of Quine and Robinson [6] who performed this same program for the L2-test and 
the likelihood ratio test for uniformity. 

2. MAIN RESULT 

The Pitman efficiency is defined along a sequence of neighboring alternatives, as
suming that 

Hi(A) = HQ(A) + VUT(A) 

where vn > 0 and vn —* 0 as n —• oo, and r is a signed measure with density g. 
Obviously 

-([0,1])= / g(x)dx = 0. 
Jo 

The technique in the sequel is based on a Poissonization argument developed in 
Beirlant, Gyorfi and Lugosi [1] and Beirlant and Mason [2] as a generalization of the 
work of Morris [5]. When using this technique N will denote a Poisson(n) random 
variable independent of the data, and n n be the empirical Poisson measure: 

fin(,4) = # { i ; X . € A, 1 < i < - V } , 

leading to the auxiliary test statistics 

kn 

Jn = n-r ] T \Un(AnJ) - 7iii0(AnJ)\r. 
j = i . 

Furthermore let us introduce sequences of normalizing constants Ei>n, Vi<n, I = 
0,1 such that if nhn —* oo and hn —• 0 as n —> oo, we have under Ho 

Jn - E0,n v m 1} j 

\AM 

and under Hi_n 

izjfifi. Z N(O, i). 
Vv l , n 

In the sequel N stands for a standard normal random variable. 
In the same way as in Beirlant, Gyorfi and Lugosi [1] or in Beirlant and Mason 

[2] one can prove the following result: 
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Theorem 1. Assume that for some 6 > 0, fQ \g(x)\4+6dx < oo. If /in —+ 0 and 

nhn —> oo as n —• oo, and vn = 0(hn n~l) then under Ho and Hijn respectively 

Jn ~J±n Z N(0,1), (/ = 0,1) 
V Vl,n 

where 
r Vl>n 1 hm — - = 1 

and 
Eltn-E0>n c(p) 2 / r - l1 2/ N J . n \ hm — = ---Z i/fo v/nn / ^ (x)d . r + o(l), 

n-oo yVo.n 2 JO 

where 

>/Var(|N|P) 

The limit results mentioned in the preceding theorem now can be used to derive 
Pitman efficiencies of the Lp-tests under consideration for sequences of alternatives 
considered in the introduction. To this end, as in Quine and Robinson [6] we will 
suppose that the number of cells k = k(n) will be induced by a function k which, 
when taken as a function of the continuous variable x, is regularly varying, that is 
that for some q, k(ax)/k(x) —• aq as x —> oo, for all a > 0. We consider then tests of 
the hypothesis Ho using Jn chosen in such a way that that the power of the size a 
test under Hi)T. tends to 0 (a < /3 < 1) as n tends to oo. Let J'n be another statistic 
and n' a sequence such that the power of the size a test based on J'n, under Hi>n' 
also tends to f3 as n' —* oo. Then if the limit of n'/n exists and is the same for all 
such sequences n', we call it the Pitman efficiency of Jn with respect to J'n and write 

PE(Jn,J'n) = \imn'/n. 

Specifically, we choose vn = v(n) such that 

i- E\ n — Eon L 

hm —' • 6 > 0 
n - + 0 ° y/Voji 

and we take n' such that the same limit relation holds with the same constant b 
when using the other test based on J'n and when k(n) is replaced by k'(n'). Here the 
role of J and J' is played by considering two different values of p. With the method 
of proof used in Section 2 of Quine and Robinson [6] the following result now follows 
from Theorem 1: 

Theorem 2. Under the conditions of Theorem 1 and assuming that both k(n) and 
k'(n) are regularly varying sequences of numbers of intervals with indices of regular 
variation q and q' in [0,1], then 

m ^ ^ g j g ' ) * (l<P„P2<oc) 
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if q = q' and k'(n)/k(yi) •—> c G (0, oo), and 

PE{W >&§=«> 
if k'(n)/k(n) -> oo. 

Since for any a > 1 one obtains that 

one finds that 

2 a / 2 / a + 1 

E(\N\*) = t^r1 

c(p) = P 
/v^r(P+i/2) . 

V TO 
For large p, using Stirling's formula one gets 

c(p) ~ p2~ p / 2 (p -> oo). 

Finally Lemma 1 in the Appendix states that c(p) has a unique maximum at p = 2. 
Figure 1 provides a graph of this function, showing that for any test Jn using a value 
P2 different from 2 one has to choose k'(n)/k(n) —* c2(p2)/2 < 1 as n —* oo in order 
to have Pitman efficiency 1 with respect to the x2 t e s t -

43 60 80 

Fig. 1. 
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3. PROOF OF THEOREM 1 

It is shown in Theorem 3.1 in Beirlant and Mason [2] that 

In — £o,n V 

if hn —> 0 and nhn —> oo with 

kn 

ЛҶ0,1) 

i = i 

and 

Eo,n = n~p £ Eo (\ñn(Anj) - щю(AnJ)\p) 

kn 

V0,n = n-2pV*r(\N\»)nPY^fl

p(Anj) = n"'X~ 1Var(|.V r

D). 

i = i 

From Lemma 2.2 in Beirlant and Mason [2] it follows that 

E0 (\Un(Anj) - rHlo(Anj)\p(rHio(Anj))-p<2) - E(\N\P) = 0(1/y/h) 

as n —*• oo so that then 

E0,n = YlE(\Ny/no(Anj)/n\p^ +0 (±(nhnr
p/2hn-A 

= E(\N\p)hn'+
p'2n-pl2 + O ^(nhn)-pl2hp

n-
x\ 

= E(\N\p)h-l+p'2n-pl2 + O (-^(rihn)-p/2hp

n-A 

= • EXn + bn. 

The proof of the given limit result under Hi>n asks for a little bit more care. Again 
the technique used in the proof of Theorem 3.1 in Beirlant and Mason [2] can be 
applied given that the following conditions are satisfied: 

max m(Anj) -> 0 (1) 
j = i , . . . , * „ 

n . m i n Vi(Anj) -> oo (2) 
j — I , . . . , * „ 

fcn 

.max HP(Anj)/J2iip(Anj) - 0. (3) 
' ' - ' " i = i 

First, using Holder's inequality we obtain that 

max ft\(Anj) = hn + vn max / g(x)dx 
j = \,.,kn ' J = l,-,knJAn} 
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= hn + 0(n-'l2h\ll
2-^)(Kj\2(x)dx^ 

= hn + 0(n-l'2hn'
A) = o(\) ( n - o o ) . 

Next, to prove (2) remark that 

n min f.i\(An ;) > nhn ( 1 — ----- max / g(x) dx J . 
j-l,...,*-. y hn j = i,...,kn JAn:J J 

Now, using Holder's inequality again, we obtain 

r i / r1 \ 1/<4+6) 

^i/>/(-)dxi < ^ i - * ( / / - w d , ) 
= 0 (n - 1 / 4 - 1 /^^- 1 / 2 ) 

which tends to zero as n —» oo, hence finishing the proof of (2). The proof of (3) 
goes along similar lines. 

With the method of proof used in the proof of Theorem in Beirlant, Gyorfi and 
Lugosi [1] or Theorem 3.1 in Beirlant and Mason [2] one can now check that under 
the given conditions 

VVl.n 

where the expressions for E\tfl and Vi>n will now be specified. 
First, 

*» 
Vt,n = n^Var(|Nr)£<„(^(i) 

j=i 

= n - " V a r ( | ^ | " ) ^ [K + 0(n'1^2^*) f g(x)dx) 
j=l \ JA»,J ) 

which as in the proof of (2) leads to 

Vi,n = n-P/i-1+PVar(|N |^)(l + o(l)) 

as n —> oo, from which we get that 

,. Vl,n , 
hm — - = 1. 

r»-»oo Vo,n 

Secondly, introducing the notation 

ifip(a) = E(\N + a\») 
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one obtains with the help of a straightforward extension of Lemma 2.2(a) in Beirlant 
and Mason [2] that 

kn 

El>n = n " P ^ £ ; 1 ( | i l n ( ^ n ) i ) - n / / o ( ^ n , J ) | p ) 
i = i 
kn 

= n - P ^ E 1 ( | H n ( . 4 n J ) - iHix(Antj) + 7iHi(Anij) - n/.i0(Antj)\
p) 

i=i 
fcn 

= n~P _C ^ ( I M - V i ) - nm(Anj) + nvnT(AnJ)P) 
i=l 

= Ê(^) 
+0(l/y/n)} 

ЫЛn,j) 

p/2 

v: N + 
l-Ч(AПìj) 

vnT(Anj) 

kn 

= £ 
i= i 

p/2 
Ф, 

Џi(Anj) 
vnт(AПj) 

+o 4=n-"/2/c1+p/2 

~ E*l,n + Cn. 

Using the same method as in the derivation of (2) one first shows that 

-£L== = 0(IA/»M 
VVO.n 

as n —)• oo. Next, by Lemma 2 in the Appendix 

* • , - ; , „ = | ( ^ ) ^ ( ^ , ^ ) ) 

- £ ( ^ ^ ) P / % P ( O ) 

- £(^^)P/l^y=5-(^,))-^(o,] 
+v>P(o)_C 

• s(4^)"'*?E(y=s->-o)"i-<-» 
i = 1 \ / 

______y/ł _ ť__л__y/2 
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fc» / / . >. \ p / 2 - 1 

£(ííií^2) „^„^[l + od)]. 2 

Hence 

=5Í* • fS- -^S(^) m -<•> 
£(p) 

2 
^ n \ Æ / flf(.r)2dж + o(l). 

Jo 

Now 

4. APPENDIX 

Lemma 1. The function c : [1, oo) —» (0, oo) has a unique maximum at p = 2. 

P r o o f . Setting h(p) = E(|N|2p)/(E(|Nr))2 we get c2(p) = j ^ . 

g(q) = (^(i^n) /mm = " + j * ^ 1 

where * (z) = r ' (z)/r (z) denotes the logarithmic, derivative of the gamma function. 
We find that 

h'(p) = 2%)(flf(2p)-flf(p)) 

= /»(p)^(p+l/2)r*(£y i)) ' 

On the other hand, the numerator of the expression for the derivative of c2 is equal 
to 

p(2h(p) - 2 - ph'(p)) = p Qa - p (*(p + 1/2) - * (--±A) ) /i(p) - 2 

so that it remains to show that 

as 

PI = >2. 

To this end remark that 

h(p) = exp i / (Ъ(v + 1/2 + p/2) - Чf(v + l/2))d I 
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so that it suffices to prove that 

- £dp/2(_>/2) { = \ exp i - F 2 dp/2(V) du 
2 < l Л Ы 

as 

with 
dq(u) = * ( « + 9 + 1/2) - Ф(u + 1/2). 

As d\(u) = l/u, one immediately checks the equality in case p = 2. From Gauss' 
expression for the logarithmic derivative ty of the gamma function one obtains that 
if u > 0 and u + q > 0 

[l a .u-i/2 ( 1 _,„.,) 
"</(w) = / H -dx, 

M я . t i - 1 / . ť / i _ 

^l—ék 
from which one derives that 

• for any g, d9 isya decreasing function of u, 

• dqi < dq2 if qi < q2, 

• <l'qi >d'q2 if gi <q2. 

From these three properties of dq the result now follows since they imply that 

q *•+ qdq(q) + exp I - / d?(v)dt; j> 

is a decreasing function in q > 1/2. • 

L e m m a 2. As a j. 0 

2 

iMa) = V»p(0) + P ^ ( | ^ V | p ) y ( l + o(\)). 

P r o o f . One easily checks that xp'p(0) = 0 and t/>p'(0) = pE(\N\*>). D 
(Received March 3, 1994.) 
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