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SECOND-ORDER APPROXIMATION OF THE ENTROPY 
IN NONLINEAR LEAST-SQUARES ESTIMATION 

Luc PRONZATO AND ANDREJ PAZMAN 

Measures of variability of the least-squares estimator 9 are essential to assess the qual
ity of the estimation. In nonlinear regression, an accurate approximation of the covariance 
matrix of 0 is difficult to obtain [4]. In this paper, a second-order approximation of the 
entropy of the distribution of 8 is proposed, which is only slightly more complicated than 
the widely used bias approximation of Box [3]. It is based on the "flat" or "saddle-point 
approximation" of the density of 6. The neglected terms are of order 0(tr*), while the clas
sical first order approximation neglects terms of order 0(ff2). Various illustrative examples 
are presented, including the use of the approximate entropy as a criterion for experimental 
design. 

1. INTRODUCTION 

Consider a (regular) nonlinear regression model with normal errors 

/ y = V(0) + e, m 

{ s ~ Af(0,<r2W), (i) 

where y £ 7lN is the vector of observations, 9 the true value of the m-dimensional 
vector 9 of the model parameters, 0 £ O with 0 an open space, and where a2W is the 
variance matrix of e (the case W = I thus corresponds to independent observations 
with constant variances). We are interested in the case where i](.) is a nonlinear 
(but smooth) function of 9. In the absence of prior information on 9, one classically 
uses the maximum likelihood (here generalized least-squares) estimator of 9, given 
by 

9 := 9(y) := argmm\\y- r)(9)\\w , 

with \\a\\w denoting aTW~1a. In what follows we assume that to any y corresponds 
a finite 9(y) (see Example 2 for a discussion). 

Measures of the variability of 9 are of general importance to evaluate the quality 
of the estimation, such as the entropy, given by 

ent(h) :=- J (log h(9 \ 9)) h(9 \9)A9 = -E,-[log h(9(y) \ 9)], (2) 
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where h(9 \ 9) is the probability density of 9 when 9 is the true value of the param
eters, and where the expectation E§ is taken with respect to y. When the model is 
linear in 9, n(9) = F9, then 

ent(h) = -Uogdet[a-2FTW-1F]+j\og2Tr+j, (3) 

which is closely related to the variance matrix of 9, var(9) = a2(FTW~1F)-1. 
However, in the nonlinear situation such a relation does not exist. Moreover, as 
shown below, the suggested second-order approximation of the entropy of 9 is simpler 
than the second order approximation of var(9) given by Clarke [4], and only slightly 
more complicated than the widely used bias approximation of Box [3]. One of the 
reasons why such an approximation for the entropy was not derived before could be 
the lack of a good approximation of the density of 9. Our approach is based on the 
"flat" or "saddle-point approximation". 

The approximation of the entropy is derived in Section 2. Various examples 
are treated in Section 3 to illustrate the validity of this approximation (including 
one-parameter models, the two-parameter model of Michaelis-Menten and the four-
parameter model used by Clarke [4] to illustrate the feasibility of his second-order 
approximation of moments). In each case we compare the approximated entropy to 
the standard first-order approximation (given by (3) with F = dn(9)/d9\§) and to 
the entropy (2) evaluated by numerical integration or simulation. In linear models, 
designing a D-optimal experiment corresponds to minimizing the entropy (3). In the 
nonlinear case, the design of the experiment could thus be based on the approximated 
entropy, as suggested in Example 4. 

2. THE SECOND-ORDER APPROXIMATION 

Equation (2) can also be written as 

ent(h) = - J {}ogh(9(y) \ 0)) f(y - n(9)) dy , 

where /(•) is the (normal) probability density of the error vector e. The second-order 
approximation is obtained by using the Taylor expansion for log h(0(y) | 9) at the 
point y= J](9), 

ent(h) = - / \\ogh(Š\Š) + 
8\ogh(9(y)\9) 

є 

»(«) 
l g T ð 2 logA(0( î / ) |0 ) 

2 дудут 

dyT 

e + 0(\\e\\3)\f(e)de 

= - \ o g h ( ě \ 9 ) - ° : d 2 ^ h ^ ^ 

n(») 

Wц + er(h) > (4) 
дyiдyj 

•7(9") 
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where er(h) denotes the error of the second-order approximation of the entropy. 
In Appendix B, we show that it is of order of magnitude 0(aA) provided that the 
integral (2) exists and that h(9 \ 9) has continuous 4-th order derivatives. 

Note that in (4) and in the sequel we take the sum over subscripts that appear 
twice in the same term. 

The second-order derivative can be developped to obtain 

82logh(9(y)\9) 

дyiдyj 

d2iogh(e\ě)\ ídek(y) 

d\ogh(9\ě) 

WІ 
д ,(y) 

+ 

ч(«) 

д2

 k(y) 

дyj 
ч(ë); 

дyiдyj 
WІ 

ч(«) 

The computation of the derivatives of 9(y) has been considered in papers dealing 
with the second-order approximation of moments (cf. [3, 4]). A more straighforward 
method is presented in Appendix A. Substituting for the second-order derivative of 
h(9(y) | 6) from the previous expression into (4), we then get from Appendix A 

ent(h) = - log Л(í? І 0") -
a2 d2 log h(6 | 0)1 

M 

a28\ogh(9\9)\ 
Mka

lZSeMb~
l + er(h) (5) 

with 

Mt. 

dea .- dOideAg' (6) 

(the first term is the Fisher information matrix for a = 1, and the second one is the 
affine connection in the sense of Amari [1]). 

By substituting the classical (asymptotic) normal approximation for h(9 \ 0) into 
(5) one obtains the first-order approximation of the entropy which was mentioned 
in the introduction. 

A much better approximation of h(6 \ 9) is given by the flat or saddle-point 
approximation [6, 5] 

<(í' * - w££&m-> [-i"p<ý«'<»» - <«*] (7) 

where 

Qitf, 9) := Miá(9) + (Va(9) - r}a(9))W;h
l(I - P(9))b 

д2щ( ) 



190 L. PRONZATO AND A. PAZMAN 

The saddle-point method is known to yield accurate approximations of densities in 
general (cf. e.g. [8]). Moreover, the density q(0 | 6) is exact in any model with a zero 
intrinsic curvature (in particular when the number of design points is equal to m, 
see Example 4). It is "almost exact" in models with a zero Riemannian curvature 
(see (10)), including all one-parameter nonlinear models. On the other hand, this 
approximate density can be used only if the intrinsic curvature is not too large when 
compared to a and if there is no overlapping of the model (there are no restrictions 
on the magnitude of the parameter-effect curvature). However, in such cases least-
squares estimation will fail to give a reasonable answer (see (Pazman, 1990) for a 
discussion on the properties of q(0 \ 0)). 

Proposi t ion 1. The entropy of the density q(§ \ 0) is equal to 

ent(q) = ent2 + er(q), 

where the error term er(q) is given in Appendix B and where ent2 is the second-order 
approximation 

ent2 = enh + ^M^M^R^H + Uh
aij) - Td

aiT
a

dj - T^] • (8) 

Here ent\ denotes the first-order approximation of the entropy, 

enh = - - logdet[«7-2M] + y log(27r) + ^ , (9) 

Rajbi is the component of the Riemannian curvature tensor at 8 [1, 7] 

Rajbi{e)-~d9je;w {I-p{e))dWi"d0aWW {I-p{e))dwfb>
 (10) 

Tai is the affine connection in regression models [1] 

rd
ai:=Z*aiMc-d\ 

and Uaij is defined by 

- ,- . . g'o.w i w-i^m\ (n) 
a,}'" d6ad$id9j \g

 ed aeb \g-
 [U) 

Note that Rijhk = 0 in flat models (which include all one-parameter nonlinear models 
and also the Michaelis-Menten model of Example 4). 

Proof . From the expression (7) for the density q(0 \9), we have 

logg(0 | 6) = logdet Q(9,9)-1- logdet M(0) - ~ | | ^ ) ( » ? ( < ? ) - v(0))\\w 
m i o m , 9 

« - y »°g 2 i T - y log<72, 



Second-order Approximation of the Entropy in Nonlinear Least-squares Estimation 191 

which can be derived term by term. We have 

_ 5 £ _ _ = _ _ W ^ a - - K W W . (12) 

_ g - = -M-H»,-^WM. 
This gives 

' = 2(X_j + l_y )MaV - 2_i M"1 (_$ + _£ )MdV , (13) 
. 2 l ogde tM(g) 

dOidOj 

with 
_ « ._ _ _ _ _ _ . ! - y - i _ _ _ _ ) ! 

and U and Z respectively given by (11) and (6). Since 

^we-d\r-p(e))de=o, (14) 

we have 

_ # _ ) - « % _ _ W l , _ ^ ) ~ ; . » -(..**(•) 

+(r|в(t») - ih( ))W-d

l(Ide - P_.(0)) 
d%(9) 

'doadobdOi' 

From 
_ _ _ _ _ _ _ _ _ _ _ Q - i r f l .-,________ ,,., 

we have 

G> 2 iogdetQ(M)| 

_ d2logdetM(fl)| _ [_____ w-ldPde(0)d2t1e(e) , 

dBidOj If I _w_ c<i a_t- dead0b

 ab 

By straightforward calculations, we then obtain 

f_^___)^_1__^__) _____)] I _ _ Z C M - i _ d , x a t 

Further, using (14) we obtain 

д i 

________-_______! _ 

(iб) 

= 0, (17) 

MidOj 
= Шц. (18) 
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Taking into account the results in (12-18) we obtain the required derivatives of log q, 

d\ogq(6 | 0)1 

д i 
= ZaiM;h\ (19) 

d2\Qgq(e\0)\ _ l _____te_M__l\ , 7 c M - l 7 a M - , x a b M - l 1 M 

~~mdě~~\s - 2 — d ě ^ F j — l + Z i J M c d Z a b M a b --X..AÍ.. - - - - % . 

— V*J fl/T-1 — Yah M~l _ 7* fl^-1^'7d 

= XS AfaV - X#Ma6 - za.M-Hz*- + ̂ ) M a 

+z?.Mc-d
1za

d.M-1 + C/̂ -M-1 - Ijlf.. • 

From the definition of the projector P(0), it follows that 

zьм-xza gVWl ^ - t p ^Kg) 

Hence we have 

Xhi M~l 7h M~l7d M-1 - d 2 ? l T ( g ) l w - l f r p^ _________ I iTf"1 

XaiMa6 - z a i M a c z c . M d 6 - " |Off7 |- W ( / - P ) a~~07t- M a f t ' 

and similarly 

yabM-i,7cM-i7dM-i_ d___(_l\ . d2T/(0)| . 

We thus have from the definition of the Riemanian curvature tensor (10) 

dHll%f6\ = «**"? ~ KiM-JZ\M^ + Vl^M-J - -LMy , (20) 

which, together with (5), completes the proof. • 

3. EXAMPLES 

Through all this section we consider the case of independent observations. 

Example 1. Consider the following one-parameter model, 

v(e,x) = 9 + e2 + x93, een, 

with the two design points __ = 1,_2 = 1-2 and with 0 = 1 . We compare the 
value ent2 (8) of the second-order approximation of the entropy with its first-order 
approximation ent\ (9) and with the value entq obtained by the numerical evaluation 
of the integral — f_logg(0 | 0)g(0 | 0)d0. Figure 1 presents the differences | entq — 
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enti | and | entq — ent2 | as functions of a2. This clearly illustrates that | entq — ent\ 
is of order 0(a2), while | entq — eni2 | is of order 0(a4). 

Fig. 1. | entq — ent\ \ (dashed Une) and | entq — ent2 \ (full line) as functions of a2 

(Example 1). 

Example 2. Consider the model [3] 

i)(0,x) = exp(—6x), 

with fixed design {x\,..., xp}. A specific feature of this example is the fact that 
when 9 tends to oo the response remains finite, so that the expectation surface 

£ = {(?/(Mi lxp))
T\6eii} 

is bounded. As a consequence, some samples y give estimates with extremely large 
values (or even 9(y) does not exist). For small values of a2, the probability of 
such an event is negligible, as it is the case in the numerical example considered by 
Box [3]. However, this is not the case for larger values of a2, and it raises some 
theoretical problems. Note for instance that the bias is infinite for any a > 0, as 
it is mentioned by J .D. Sargan in the discussion of [3]. The same difficulty is met 
with the entropy (2). Theoretically it is always infinite, although, in practice, if we 
neglect the probability for 6(y) to be infinite, the approximation suggested in this 
paper can be used, with the same limitations as for the approximation of the bias 
suggested by Box [3]. 

To be able to deal with such problems due to a bounded expectation surface, it 
seems reasonable to reconsider the distribution of y in application. For instance, 
here, as suggested in the discussion by J .D. Sargan, a lognormal distribution for y 
is more realistic from the experimental point of view (which yields a linear model 
with normal errors after a transformation of variables). 
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Example 3 . Consider the Richard's function used in [4], 

.7(0, x) = 4 - 3 log 11 + e x p ( - ^ - Џ.) 

with the same eleven design points as in this paper, X\ = — 2.15, #2 = —1.5,13 = 
-0.85,-54 = -0.08, x5 = 0.52, x6 = 1.1, x7 = 2.28, a* = 3.23,x9 = 4,.c10 = 
4.65,x\\ = 5. The value 9 is taken equal to the estimate 9 of [4], 

9 = (1.6415, -2.3920,1.7678,8.5540)T . 

We compare the quadratic approximation en<2 (8) of the entropy with its linear 
approximation ent\ (9), and with the value entq obtained by numerical simulation, 
i.e. by calculating the mean 

^=-4i>gí(%(,))i0), 

with n = 104, where the j/W's are generated according to (1). The relative errors 
| ent\ - m„ \ / | ra„ |, | ent2 - mn \ / \ ra„ | and the observed (relative) standard-
deviation of ra„, denoted by s„ /m„, are given in Table 1 for two different values of 

Table 1. Relative errors of the first and second-order approximations (Example 3). 

*'* | ent\ - m„ | / | ra„ | | en<2 — mn | / | m„ | s„/m„ 

3.3993 x 10- з l * J 

0.02 
6.9 x 10- 3 

0.10 
1.8 x 10- 3 

2.3 x 10- 2 

2.5 x Ю-з 
8.5 x Ю-з 

' * ) : est imated value of a2 in [4] 

For the same value of a2 as the one used in [4], the relative error of enti is 
only of 0.69 % (resp. 0.18 % for en.2), while the relative error on the first-order 
approximation of the matrix var{§) taken from [4] reaches 40 % for some of its terms. 
This can be explained by the fact that the entropy summarizes the variabilities on the 
different components of 9 which may compensate each other. Note, however, that the 
error in en.2 is about four times smaller than the error in ent\. Approximately the 
same improvement is indicated in [4], when comparing the first-order approximation 
of var{9) to its second-order approximation. 

Example 4. Designing a £)-optimal experiment in nonlinear regression corre
sponds to minimizing the first-order approximation ent \ (9) of the entropy. It thus 
seems reasonable to use the second-order approximation en<2 (8) as a criterion for 
experimental design. We simply present here a numerical example. We consider the 
Michaelis-Menten model response, 
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with a2 = 1.5 x 10 - 4 , 6 equal to the value § of [2], 

6 = (0.10579,1.7007)T, 

and six design points .",•,. = 1,...,6 in [0, 2]. The results are given in Table 2, 
where k 0 x denotes k replications of the design point x. We first compute the 
D-optimal experiment (independent of the value of a2), which is obtained for three 
replications on two design points (line 1 of Table 2). Even when three replications 
on two design points are imposed, the optimal design for the criterion ent2 is slightly 
different (line 2 of Table 2). When this constraint is cancelled, much better design 
can be obtained, as indicated by the third line of Table 2. Note that each design 
in the table only possesses two distinct support points, which corresponds to a zero 
intrinsic curvature, so that the density (7) used to construct ent2 is exact. 

Table 2. Comparison between various optimal designs (Example 4). 

design enti ent2 

{3(8)0.6297,3 0 2} 
{3 0 0.6829,3 0 2} 

{4ø0 .6538 ,2ø2} ( ф ) 

-1.056 
-1.052 
-0.996 

-0.3583 
-0.3674 
-0.4315 

(•). locally optimal for ent2 

APPENDIX A 

Derivatives of 6(y) 

The function 9(y) is defined implicitly by the normal equation 

which can be written 

Ш - * * = • - _ - - * « - I . " - . (Al) 

Denote the left-hand side of (Al) by Fi(0,y). From the implicit function theorem 
we then have 

where 

д i(y) 

дya 

дFi( ,y) 

дFĄ ^Y^дF^ ^y) 
дУí J в=в(y) 

-гд2щ( ) J Í „W + ( Ч . W T « . W - ^ 

dFÁ0,y) _ w-idJÉĎ-. 
~~dy~~ ~ ~Wab 99j 

(A2) 

(AЗ) 
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Consequently, since 9(r)(9)) = 9, one has 

д i(y) 

and 

ÕУa 

дêi(У) 

Ч(») 

3 д j L- ab ' 

дya 

Wal 

д j(y) 

ч(в) 
ðyб 

= MПl. 

ч(9) 

Taking the derivative in (A2), we obtain 

дЩy) 

дуадуь 
v(9) 

' <*» l»_í(y)iy_-(f) 5 ^ | 

+м, 

_, dG i t (g,y) 
ij dyb 

_, a ^ i W l _ť_(») 

1(9) 
^•5flt | f Sy6 

where Gij(0, y) denotes the right-hand side of (A3). At 9 = 9, y = rj(9) we have 

dGik(9,y)\ 

(A4) 

dGik(6,y)\ = dGik(9,v(9))l 88j(y) 
dyb \t=t(y),y=„(e') d6i \t dV> + дyь „(«) " •"" ">(*) 

2 , 

Finally, after some simple algebraic manipulations we obtain from (A4) 

d%(y) Wab = -MГ^ZІM-1 

dyadyb 

APPENDIX B 

Error of approximation 

If the density h(9 \ 0) has continuous 4-th order derivatives with respect to 6 and 
is such that the integral (2) exists, then for any (small) 8 > 0 the error term in (4) 
depends of a according to the inequality 

er(h) \< l + | l o g A ( í | t f ) | ' + | Ľ 
02 log h(6(y)\ 9) 

дyiдyj 
4(9) 

8 + G(aA). 

P r o o f . In order to simplify the notations, we denote 

4>(e) := h(9(e + -.(*)) | 9). 
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We also define 
Sr := {z £ -JlN : \\z\\w < r} . 

For any <5 > 0, (not depending on a), there exists a positive number r(a, S) which is 
large enough to ensure that 

L 
L ПN-ST, 

nN-sң<TiS) 

(\ogф(є))f(є)dє 

L 

f(є) dє < 8, 

< 8, 

< 8 , i,j = 1, Si€jf(e) de 

From the Taylor formula for log</>(e), we obtain 

(B1) 

(B2) 

(BЗ) 

/ (\og<f>(e))f(e)de = \og</>(0) [ 

, 1 9 2 l o e *(£ ) | / 

/ (e)de 

"4! JSrt,it) дXiдXj 

д4\ogф(X) 

fokdX, \x=He) 

£iejeke,f(e)de, (B4) 

where ip(e) is such that tp(e) G sr(<.,«) f° r a n y £ 6 Sr(<7,<5)- Since gx-gr^ASA is 

continuous, it is bounded on the compact set t>r(i,i)- The densities /(e) and /i(t9 | (9), 
both functions of <r, are more concentrated when a decreases. We can therefore take 
sr(M) C <Sr(i,<5) for c < 1, and the same bound can be used for g-~~x^A ax o n 

sr(<r,«) a n c l sr(i,<5)- Consequently, the last term in (B4) is of the order of magnitude 
0(a4). From (B1-B4) we obtain 

H - ' °««°> -T^H -
l + | l o g * ( 0 ) | + j E «9-log*(e) 

deidej 
6 + 0(а4) 

for any fixed <5. 

(Received January 4, 1993.) 

R E F E R E N C E S 

[1] S. Amari: Differential-Geometrical Methods in Statistics. Springer, Berlin 1985. 
[2] D. Bates and D. Watts: Relative curvature measures of nonlinearity. J. Roy. Statist. 

Soc. Ser. B 42 (1980), 1-25. 



198 L. PRONZATO AND A. PÁZMAN 

[3] M. Box: Bias in nonlinear estimation. J. Roy. Statist. Soc. Ser. B 33 (1971), 171-201. 
[4] G. Clarke: Moments of the least-squares estimators in a non-linear regression model. 

J. Roy. Statist. Soc. Ser. B 42 (1980), 227-237. 
[5] P. Hougaard: Saddlepoint approximations for curved exponential families. Statist. 

Probab. Lett. 5(1985), 161-166. 
[6] A. Pazman: Probability distribution of the multivariate nonlinear least-squares esti

mates. Kybernetika 20(1984), 209-230. 
[7] A. Pazman: Small-sample distributional properties of nonlinear regression estimators 

(a geometric approach) (with discussion). Statistics 21 (1990), 3, 323-367. 
[8] N. Reid: Saddlepoint methods and statistical inference. Statist. Sci. 5(1988), 213-238. 

Luc Pronzato, Laboratoire IЗS, CNRS-URA 1376, Sophia Antipolis, 06560 Valbonne. 

France. On leave from Laboratoire des Signaux et Systèmes, CNRS-ESE, 91192 Gif-

sur- Yvette. France. 

Andrej Pázman, Departmєnt of Probability and Statistics, Faculty of Mathєmatics and 

Physics, Commeníus University, Mlynská dolina 84215 Bratislava. Slovakia. 


