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EXACT MODELLING OF SCALAR 2D ARRAYS1 

S A N D R O Z A M P I E R I 

In this paper we analyse the problem of modelling a noise free finite 2D scalar array. 
We introduce the concept of unfalsified model and of undominated unfalsified model. We 
give some methods for verifying if a model is unfalsified and we study the properties of 
undominated unfalsified models. We define moreover a special class of models that are 
called coroborated and we give a condition ensuring the uniqueness of the corroborated 
undominated unfalsified model. Finally we show how to obtain such model, when it exists. 

1. I N T R O D U C T I O N 

T h e problem of model l ing finite t ime series by linear dynamica l sys tems is very 

i m p o r t a n t from the appl ica t ion point of view. In general , in the process of modell ing 

one s t a r t s from a set of d a t a and tries to find the dynamica l re la t ions a m o n g them. 

These relat ions mus t be represented by a m a t h e m a t i c a l descript ion, t h a t is called 

mode l . Consequent ly t he first s tep in model l ing is to fix the model set, namely what 

are the relat ions on the d a t a we want to find. The second step consists in finding a 

subset of models t h a t can be considered compat ib le wi th the d a t a which are called 

unfalsified models . Final ly we have to choose one of the unfalsified mode ls . 

Many different modell ing procedures have been developed. One first dist inct ion 

can be done between the ideal case when d a t a are supposed to be exact and noisy 

free and the more realistic case when we have to cope with noisy da t a . T h o u g h the 

first case does not provide a lgor i thms which can be directly used in the appl icat ions , 

it is ma themat i ca l ly and historically i m p o r t a n t , since it gives some light also to the 

solut ion of the noisy case. In the classical paper [1] by K a l m a n many connections 

are shown between this topic and m a n y other famous m a t h e m a t i c a l p rob lems . 

T h e problem of model l ing can be formalized as follows: given a finite ar ray of 

da t a , find a linear sys t em with m i n i m u m McMillan degree whose Markov coefficients 

m a t c h the given a r ray where the ar ray is defined. Th i s is equivalent to ano the r well 

known problem which is the Pade approx imat ion . Ano the r formulat ion of modell ing 

has been proposed by J . C . Wil lems in [2]. In his approach the model has no apriori 

i n p u t / o u t p u t s t ruc tu re and so in the linear discrete case its descript ion is given by a 

1 Presented at the IFAC Workshop on System Structure and Control held in Prague on September 
3 - 5 , 1992. 
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set of difference equations rather than by a transfer function. A more detailed analy
sis of the exact modelling of finite time series is given in [3], where another question 
is investigated: when do the data present evidence of obeying a law? For instance 
consider the finite array (1,1,1,1,1,1,1). It is clear that in this case there is a clear 
evidence that this array obeys some law, while if we have the array (0, 0, 0,0,0,0,1), 
then such evidence does not exist. This question is solved introducing the concept of 
corroboration which is based on the idea of considering only the generic behaviour of 
the models. By this new idea it is possible to construct an algorithm with many good 
properties. It can be seen that the concept of corroboration can be interpreted as 
the data compression of the model. More precisely a model is considered acceptable 
if it provides an efficient description of the data. 

In this paper we will deal with the problem of modelling finite 2D arrays. This 
case is remarkably more complicate as we will show in the sequel. This is the reason 
why we will consider only the scalar case. There exist few papers on 2D modelling in 
literature even in the classical input/ output framework. All the algorithms proposed 
present disadvantages and the problem can be considered open. An interesting 
algorithm has been proposed by Sakata in [4, 5]. Even if this algorithm presents 
some limitations, it is very efficient and so very suitable for the real applications. 
This algorithm is the direct extension of the Berlekamp Massey algorithm to the 2D 
case. In this paper we will formulate the 2D modelling problem and analyze it from 
various points of view. We will try to extend the concept of corroborated model to 
the 2D case and we will give a condition which guarantees the uniqueness of the this 
model. Finally we will propose a procedure providing the corroborated model of a 
2D array, when it exists. This algorithm is an extension of the Sakata algorithm. 

2. BEHAVIOURAL THEORY OF DYNAMICS 

In this paper we will follow the behavioural approach to dynamical systems for 
describing models. According to this approach, introduced by Willems in [2], there 
is no a priori distinction between inputs and outputs and the external data are 
characterized only by a family of laws describing what signals are allowed. 

A dynamical system is described by a triple E = (T, W, B), where T is the time set, 
W is the signal set and B is a subset of WT, called behaviour, which describes what 
trajectories of WT can occur. In this paper we will be concerned with dynamical 
systems with T = N2, W = 1 ? and B = ker R(a\, <r2), where 

R(cr\,<T2) = ^2Rija\aj
2, (1) 

ij 

Rij € E n X ? , is a polynomial operator that acts on a signal w € (1R')H as follows 

R(<T\,<T2)W = ^2 Riftr\<r{w (2) 
ij 

and <T\,<T2 are the usual shift operators acting on the two directions of N2, i.e. 
acting on w as follows <r\w(t\,t2) = w(t\ + l,t2) and <r2w(t\,t2) = w(t\,t2 + 1) 
for all (t\,t2) 6 N2. A detailed description of the properties of these systems can 
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be found in [6, 7]. It can be shown that the set of all behaviours that admit the 
previous representation, coincides with the set of all the linear, shift invariant and 
closed (w.r. to the pointwise convergence) subspaces of (M?)H , the space of all the 
signals. One important property of the previous representation is the following: if 
we have two behaviours B\ = keriij and B2 = ker R2, then we have that B\ = B2 if 
and only if the polynomial row module generated by the rows of R\ coincides with 
the polynomial row module generated by the rows of i?2. 

We shall recall now some properties of systems in the scalar case q = 1. For the 
representation of this systems we need column matrices only. In the sequel we will 
use the notation ker(pi,. . . ,pn), where p\,... ,pn are polynomials in z\, z2, to mean 

ker 

P l ( ^ l , ^ 2 ) 

lPn(<T\,<Г2) 

We need to introduce now some concepts of Grobner basis theory [8]. Let <T be an 
admissible total ordering in N 2 , i.e. a total ordering compatible with the monoid 
structure in N 2 and such that (0, 0) is the smallest element in N 2 . Given a polynomial 
p in E[zi,z2] we define its degree degp as the maximum of the support of p w.r. 
to the total admissible ordering <?• If 1 is an ideal in IR[zi,Z2]> we define deg J 
as the set of the degrees of all the polynomials in J and M(l) as the set of all the 
minimal elements of deg J w.r. to the usual partial ordering in N 2 . We say that a 
set G — {ffi, • • -,gm} of generators of J is a Grobner basis of J , if 

M(l) C deg G, (3) 

where degG = {degg\,.. .,deggm}. Consequently we have that 

deg J = deg£ + N2 :={degg + t : geGjeN2}. 

If in a Grobner basis G each polynomial is in a reduced normal form w.r. to the 
ideal J or, equivalently, if the support of each polynomial g in Q is included in 
A(J) U {deg g}, where we define 

A(J) := N2 \ deg J , 

then G is said reduced Grobner basis of J [8]. Note that, if G is a reduced Grobner 
basis, then we have that 

M(l) = deg G-

It can be shown that Groobner bases and reduced Groobner bases always exist and 
that the reduced Grobner basis of an ideal is also unique. Moreover there exist 
algorithms providing Grobner bases or the reduced Grobner basis of an ideal J from 
any set of of generators of J . 

The behaviour B = ker(p\,..., pn) is fixed by the ideal J generated by p i , . . . , p„. 
Consequently if g\,..., gm is a Grobner basis of J , then ker(<7i,..., gm) is an equivalent 
representation of B. This representation has also the following operative advantage. 
In fact, it can be seen that B and KA(Z) are isomorphic vector spaces in the sense that 
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for every WA G ffi *• s there always exists a unique w e B such that W\A{1) = WA-
This means that A(Z) is a good subset of N2 where the initial conditions can be 
fixed. Consequently B is finite dimensional if and only if A(J) is a finite subset of 
N2 and its dimension coincides with the number of points in A(X). It can be shown 
that, starting from a Grobner basis, it is possible to find A(J) and whole trajectory 
w e B starting from the initial conditions W|A(X)- If B has finite dimension d, then 
it admits the following state representation 

(T\X = M\X 

a2x = M2x , (4) 
iv = Cx 

where M\, M2 are commutative matrices in Rdxd and C is a row matrix in E l x d . 
The state a; is a signal in (Md)H that is completely fixed by its value in the time 
instant (0,0). Moreover z(0,0) is directly computable from IC|A(I)- Consequently 
for all w e B here exists a unique x(0, 0) e l d such that 

w(i, j) = CM\ M3
2 x(0,0). 

Viceversa, if MUM2 G Mdxd are two commuting matrices and C G Rlxd and if we 
define the subspace B of RH as follows 

B:={we MH2 : 3x e l d , w(i, j) = CM\ M{ x, V(t, j) G N2}, 

then it is easy to see that B = ker(pi , . . . , p„) for some suitable polynomials p\,... ,pn. 
In this case we can say only that B is a finite dimensional vector space of dimension 
less than or equal to d. 

3. UNFALSIFIED AND UNDOMINATED UNFALSIFIED MODELS 

In this section we will present a method for modelling a scalar finite 2D array by a 
system of multidimensional difference equations. Given a set / C N2 and a 2D scalar 
array wj G M. , we say that B is an unfalsified model of wj if there exists w G B such 
that w\j = iv j . By this definition we say what 2D systems can be accepted as models 
of wj. Between two unfalsified models B\ and B2 such that B\ C B2 we consider 
a better model B\, since it is more falsifiable and so more powerful in describing 
the system generating wj. In some sense it has more predictive power. According 
this idea we say that B is an undominated unfalsified model of wj if it is one of the 
minimal elements in the set of all the unfalsified models w. r. to the partial ordering 
C or, in other words, if for every unfalsified model B' such that B' C B, We have 
that B' = B. Finally we will say that B is the most powerful unfalsified model if 
it is the smallest unfalsified model, i.e. if for every unfalsified model B' we have 
that B C B'. In general a modelling procedure must choose an unfalsified model 
starting from the data wj. If there exists the most powerful unfalsified model, then 
this can be considered the best candidate to be the model of the data. It is easy to 
see that when I ^ E2, then the most powerful unfalsified model does not exist ( this 
is true also in the ID case ). An important issue is how to choose a model in the set 
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of all the undominated unfalsified models. Therefore we will analyze in detail the 
properties of these models in order to characterize their properties. 

We need to introduce some notation. Let / be a subset of N2 and ffij be the 
set of all the scalar arrays with support in / . Moreover let M[z\, z2] be the ring of 
polynomials in zi and z2. Consider the following form 

{•,•}/ : M[z\,z2]x If —• R 

such that for any u>/ G K7 we have that 

(p,wi)i := ^2 P(iJ)w(iJ), 
(ij)e.i 

P= Y, P(i.i)zl4 
(<J)€/ 

is any polynomial with support included in I, while 

(p,w,)j : = 0 

otherwise. It is easy to see that this form is linear in M.1 but not necessarily in the 
other argument. In fact we have that if p, q are polynomials with support included 
in / , then (p+q, WJ)I = (p, wi)i+(q, Wi)j, but in the other cases it is not necessarily 
true. If I = N2, then we will write the bilinear form (•, •) instead of (•, •)$2. Given 
i»l £ l ' , we define the set of polynomials 

A(wj) := {p G E[zi, -2] : (zj1 z?p, w,), = 0, V (»,, i2) 6 N2} (5) 

and we call its elements annihilators of wj. Note that if J C / and wj is the 
restriction of wi to the set J, then we have that (p,wi)i = 0 implies (p,wj)j = 0 
and consequently 

A(wi) C A(wj). 

If p is an annihilator of wj and h is any polynomial, then the polynomial hp is an 
annihilator for wj. On the other side if p and q are annihilators of wi, then it is 
not necessarily true that p + q is an annihilator. This is true if / = N2 and so in 
this case A(wi) is an ideal for all w/ 6 E 7 . It is easy to see that w G ker(pi , . . . ,p„) 
if and only if the ideal generated by p i , . . . ,p„ is included in A(w). The following 
proposition generalizes this useful dual characterization of the unfalsified models. 

Propos i t ion 1. Let p i , . . . , p n be polynomials and wi be an array in K7. Then 
ker(pi, ...,pn) is an unfalsified model of wi if and only if for all the polynomials in 
the ideal ( p i , . . . , p„) generated by p i , . . . , p „ we have that (p,wi)i = 0 

P r o o f . (=>) Trivial. 
(<^) We want to construct a w e ker(p! , . . . , pn) such that w\i = wi. For this purpose 
let {s,}£lj be a sequence of points in N2 covering all N2 and Ik := {*i, • • •, *fc}- F° r 

all k we construct recursively Wk € l l 7 t such that (p, Wk)ik = 0 for all 
p G (p i , . . -,pn) as follows. Suppose that we have already found Wk-\- Let Wk\ik-, — 
Wk-\. We have to fix the value of Wk(sk). If Sk G / , then let Wk(sk) = wi(sk)- If 
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Sk & I and if there exists a p £ l such that {sk} C supp p C h, then let Wk(sk) 
be the only value such that (p,Wk)rk = 0. In all the other cases let Wk(sk) be an 
arbitrary value. We show now that if p G X, then (p, Wk)ik = 0. If supp p & h, then 
(p,wk)jk = 0 by definition. If supp p C h-\, then (p,wk)jk = (p, wk-i)/k_. = 0 by 
induction. If supp p $£ jt_i and supp p Q h, then s^ G supp p and so there exists 
a G M such that q := p + ap G X is such that supp g C //t_i. This implies that 

(P> W/b)/k = («, Wk)h - a(p, wk)jk = 0. 

Let w be the unique element in EN such that w\jk = Wk for all k. Then by construc
tion we have that W\J=WJ. Moreover ifqeX, then (z\lzl

2
2q, w) = 0 for all (J'I , i2) GN2. 

In fact supp z\2z2
2q Q h, for some k and so (z\2z2

2q,w) = (z\*z'2q,Wk)jk = 0. 
Therefore we have that X C A(w) and by the previous observation this implies that 
w G ker(pi , . . . ,pn)-

 D 

An immediate consequence of the previous proposition is the following corollary. 

Corollary 1. Given wj G M.1, we have that ker(pi , . . . , pn) is an unfalsified model 
of _>/ if and only if (pi, •. • ,p„) C A(wj), where ( p i , . . . ,p„) is the ideal generated 
by p i , . . . , p „ . 

The previous results do not allow to verify operatively if a model is unfalsified. 
This is possible if the set / is finite and admits the following representation 

/ = { z G N 2 : x <T k} =: A(k), (6) 

for some i £ N 2 , where <T can be any admissible total ordering. 

P ropos i t ion 2. Let {g\,.. . ,gm} be a Grobner basis of the ideal X generated by 
_ii • • •) 9m w. r. to the total admissible ordering <T- Let moreover / = A(k) for some 
k G N2 and wj G M.1. Then ker(gri,... ,gm) is unfalsified model of wj if and only if for 
all s G / n deg I there exists i G { 1 , . . . , m} such that s — deg g, = r = (r\, r2) G N2 

and (zTlzr
2
2gi,wj)i = 0 . 

P roo f . (=>) Trivial. 
(<=) Let p be any polynomial in the ideal X generated by g\,...,g„. If degp ^ /, 
then (p,wj)j = 0. If degp G /, then we will show that (p,wj)j = 0 by induction 
on the degp, using the fact that <T must be a well ordering. Since {g\, • • -,gm} is 
a Grobner basis, then there exists i G { 1 , . . . ,rn} and r = (r : , r 2) G N2 such that 
degp = deggi + r and (z\lz2

2gi, WJ)I = 0. Since Aegz\lzl?gi = degp, then there 
exists a £ l such that the degree of the polynomial q := p + az\l zT

2 gi is less then 
degp. By induction we have that (q,wi)j = 0 and so 

(P,wj)i = (q,wI)i-a(z\1z2
2gi,wj)i =0. Q 

It is immediate to prove the following corollary. 
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Corollary 2. In the same hypothesis of Proposition 2 we have that ker(#i , . . . , gm) 
is an unfalsified model of wj if and only if {g\,..., gm} C A(wj). 

The previous corollary suggests an operative procedure verifying if a model 
ker(pi , . . . ,pn) is unfalsified by a sequence wj, if / admits a representation (6). Ac
tually first we have to compute a Grobner basis {gi,... ,gm} of the ideal ( p i , . . . ,pn) 
and then we have to verify the conditions (z\z>2gi, wj)j — 0 for every (i,j) contained 
in the finite sets A(k — deg gi). For the other values of (i, j) the conditions are 
satisfied by definition of (•, •)/. 

The condition imposing the set / to have the form (6) is rather restrictive and can 
be weakened in two different ways. First, it can be seen that the condition / — A(k) 
in Proposition 2 and Corollary 2 can be substituted by the following two: 

/ f l A ( I ) D A(Jb)nA(Z) m 

in deg 1 C A(/fc)ndeg I , *• > 

where T is the ideal associated to the model B. 
On the other side, if the model B is finite dimensional, then it can be represented 

by a state model (4). Therefore B is an unfalsified model of wj if and only if there 
exists x(0, 0) G Hd such that 

w(i,j) = CM[M{x(0,0) 

foral l( i , j ) £ / . These conditions constitute a system of linear equations with x(0, 0) 
as unknown. The model B is unfalsified if and only if this system has solution. In 
this case the only condition imposed on the set / is just its finite cardinality. 

Now we can see what is the reason why the problem we want to solve is much 
more difficult in the 2D case than in the ID case. In fact by the previous proposition 
we have that the research of unfalsified models of wj reduces to the research of ideals 
in the set A(wj) of the annihilators of wj. Because of the structure of A(wj) we 
see that if p 6 A(wj), then the principal ideal (p) generated by p is included in 
A(wj). Therefore the principal ideals can be trivially extracted from A(wj) and 
consequently it is also trivial to find all the unfalsified models in the ID case, since 
the ring of the polynomials in one variable is a principal ideal domain. In the 2D case 
the situation is different since the polynomial ring in two variables is not a principal 
ideal domain any more. Moreover we have that p\,.. .pn £ A(wj) does not imply 
that the ideal (p\,.. .pn) generated by p i , . . .pn is included in A(wj). This is true if 
{p\,.. .pn} is a Grobner basis and this is a condition which is difficult to manipulate. 

We will try now to give some characterizations of the undominated unfalsified 
models of a 2D scalar array wj. We will find first that the undominated unfalsified 
models of wj correspond to the maximal ideals in A(wj). 

Propos i t ion 3. Let p\,... ,pn be polynomials and wj be an array in E7 . Then 
ker(pi, . . .,pn) is an undominated unfalsified model of wj if and only if the ideal 
generated by p i , . . . ,p n is a maximal ideal in A(wj) 

P r o o f . (=>) Suppose that the polynomial p is such that the ideal (p ,p i , . . . ,pn) 
generated by the polynomials P,Pi, • • • ,Pn is included in A(wj). By Prop. 1 this 
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implies that ker(p,Pi, • • -,Pn) is an unfalsified model of wj and so ker(p,Pi, • • -,Pn) — 
ker(pi , . . . , p„) since ker(pi , . . . , p„) is undominated. This implies that (p, Pi, • • •, Pn) 
= (pi, • --,Pn) a n £ l ^ a t (pi, • • -,P„) is a maximal ideal in A(wj). 
(<*=) Suppose that ker(p,Pi, - •. ,p„) is an unfalsified model of wj. By Prop. 1 this 
implies that (p,Pi, • • • ,Pn) C A(wj) and so (p ,p i , . . . ,p„) = (pi , . -- ,Pn), since 
(Pi, • • • ,Pn) is a maximal ideal in A(wj). Consequently we have that 
ker(p,pi , . . . ,p„) = ker(pi , . . . ,p„) and that ker(pi , . . . ,pn) is undominated. • 

As previously mentioned, there may exist infinitely many different unfalsified 
undominated models of an array tuj. We want now to study under what kind of 
conditions the undominated unfalsified model is unique. For this pourpose it is 
useful the following lemma. 

Lemma. Suppose that ker(pi , . . . ,p„) and kev(q\,.. • ,qm) are two undominated 
unfalsified models of wj. Then ker(pi , . . . , p„) = ker(gi , . . . , qm) if and only if there 
exists w G ker(pi , . . . , pn) n ker(gi , . . . , qm) such that w\j ^ wj. 

P r o o f . One way is trivial. Suppose that there exists w € ker(pi , . . . ,p„) n 
ker(gi , . . . ,gm) such that w\j = wj. Then ker(pi , . . . ,p„) n ker(gi , . . . , qm) is un
falsified and so ker(pi , . . . , p„) = ker(pi , . . . , p„) O ker(gi,. . •, qm) = ker(qi,..., qm) 
since both the models are undominated. n 

4. ONE ALGORITHM FOR THE EXACT MODELLING OF FINITE 2D 
SCALAR ARRAYS 

If 7 is a finite subset of N2, then it is easy to see that there always exist finite 
dimensional undominated unfalsified models. However in general also minimal di
mension undominated unfalsified models may be infinitely many. Therefore one way 
to proceed could be finding a procedure providing one of the minimal dimension un
dominated unfalsified models from the 2D array. This is the method used for solving 
the classical partial realization problem in the ID case. In the behavioural context 
this method is analyzed in [3], where it is shown that this modelling procedure lacks 
of many desirable properties. The proposed solution is based on the concept of cor
roboration. According to this idea, we have to reject an unfalsified model, if the 
data doesn't present an evidence of obeying the laws of that model. For instance 
consider the finite array (1,1,1,1,1,1,1). It is clear that ker(z— 1) can be considered 
a good model, while if we have the array (0,0,0,0,0,0,1), then there is no evident 
reason to consider ker(27) a model of the array, even if it is a minimal dimension 
undominated model. The reason why ker(z7) is a bad model is that the generic data 
compatible with this model would admit unfalsified models of smaller dimensions. 
Therefore if the data had been really generated by that model, we would have been 
very lucky to have data for which this model is a minimal dimension unfalsified 
model. It seems more realistic to say that there is no model that is evident from 
the data. A more convincing interpretation of the concept of corroboration bases 
on the data compression that must be provided by a good model. More precisely, if 
we consider an array and a model of it, then it is clear that in order to generate the 
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array we need the parameters of the model and the initial conditions. If the sum of 
the number of parameters of the model and of the number of initial conditions we 
need is less than the number of the elements of the array, the model with the initial 
conditions provides a convenient description of the data and so a data compression. 
It is easy to see that, if we are given an ID array wj £ W1, where / = { 0 , 1 , . . . , N}, 
then a model B = kerp, p £ ffi[z], provides a data compression if and only if 

degp + A ( p ) C / , (8) 

where A(p) := N \ (degp + N), or equivalently, if and only if 2 d e g p - 1 < TV. 
In the 2D case the problem of finding the minimal dimension undominated un-

falsified models of a finite array is still unsolved and seems a very hard problem. 
In this section we will propose an algorithm providing the minimal dimension un
dominated unfalsified model only under a condition that seems the 2D version of 
the corroboration condition in the ID case. This condition is expressed below. 

Fix a total ordering < T in N2. Given an ideal J , consider the sets M(l) and 
A(J) defined above. Consider moreover the set 

E(J) := M(l) + A(J) = {m+S:me M(l), 6 £ A(J)} . (9) 

Note that, given a set of generators for J , the sets M(l), A(J) and E(J) are effec
tively computable by Grobner basis algorithms. 

We say that the unfalsified model B = ker(pi , . . . ,pn) of a 2D array wi £ W is 
corroborated, if 

E(J) C / , (10) 

where J is the ideal generated by p i , . . . , p n . We give now a result ensuring the 
uniqueness of the corroborated undominated unfalsified model. Note that (10) seems 
to be a good extension of the condition (8) to the 2D case. 

Propos i t ion 4. Fix a total admissible ordering <T and let / = {x £ N2 : x <T k} 
for some k £ N2. If wj is any 2D array in I j , then there exists at most one 
corroborated undominated unfalsified model of wj. 

P r o o f . Suppose that ker(pi , . . . ,p„) and ker(<?1,..., qm) are two undominated 
unfalsified models of wj and that E(J) and E(/7), where J and J are the ide
als generated by p i , . . . , p n and by q\,...,qm respectively, are included in J We 
have to show that ker(pi , . . . ,p„) = kex(q\,... ,qm). It is not restrictive to as
sume that {p i , . . . ,Pn} and {q\, • • • ,qm} are Grobner bases w.r. to <T and that 
the leading power coefficients of all the polynomials are unitary. We will construct 
w £ ker(pi, . . . ,p n ) n ker(gi,.. .,qm) such that w\j = wj. Suppose that we have 
assigned w in A(u) with UT > k. We want to show that there exist v\ £ M(l) and 
v2 £ M(J) such that 

u-v\-v2 = t€W. 
Suppose that it is not true. Then for all v\ £ M(l) and v2 £ M(J) we have 
that u — vi g deg J and u - v2 g deg J . This implies that u — Vi € A(;J) and 
u-v2 £ A(J) and so there exist 8\ £ A(J) and 62 £ A(J) such that u = v\ +S2 and 
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u = D2 + 1̂ • Consequently we have that 1u = (v\ + 6\) + (v2 + 62). This can not be 
true since v\+6\ G A(J) C / and v2 + 62 G A ( J ) C / and so v\ + <5i+v2 + 62 <r 2u. 
Since v\ G M(I) and v2 G •M(J'), there exist positive integers i(u) and j(u) such 
that degp,'(u) = v\ and deg qj(u) = v2. Construct the sequence w G IRN fixing 

i \ _ / w / ( u ) if « € / f n v 
M " j ~ I - Ei<TVl Pi(u)(e)w(u -v\+e) otherwise, (li) 

where Pi(u)(t), £ = (^1,^2) € N2 is the coefficient of the term zj;1^2 in the polynomial 
Pi(u)- We have to show now that w G ker(pi , . . . , pn) n ker(gi , . . . , qm). First we 
prove that (p,w) = 0, for every p G J by transfinite induction on u = deg p. It 
is not restrictive to suppose that the leading power coefficient of p is unitary. If 
u < T k then (p,w) = (p,wi)j = 0. Otherwise let q = p - ^ I ' Z ^ P ^ U ) , where 
s = (s i ,s2) = u — degp,(u) G N2. Note that (pi(u)z'1 z2

2,w) = 0 by construction. 
Since q G J and since deg q <T u, then by induction (q, w) = 0 and so (p, w) = 0. 

We prove now that (p, ID) = 0, for every p G 3 by transfinite induction on 
u = cleg p. It is not restrictive to suppose that the leading power coefficient of p is 
unitary. If u <T k then (p,w) = (p,W[)i = 0. Otherwise let q = p — zriz2

2qj(u), 
where r = (rx,r2) = u-degqj(u) £ N2. First note that (z\> zr

2
2qj(u), w) = 0. Actually 

if s = (s\ ,s2) = u- degqj(u), then s - degPi(u) £ N2 and so for all £ G N2 we have 
that 

w(£ + s) = - VJ Pi(u)(d)w(e + s - degp l (u) + d). 
d<Tdegpj(„) 

Consequently we have that 

(z\2zs
2

2qj{u),w) = w(k) + Yl <U(v)(£)w(£ + s) = 
f<Tdeg« j (u) 

= w(k)- Yl 1i(")(£) Yl Pi(u)(d)w(e + s-degPi(u) + d) = 
f<Tdeggi(„) d<Tdegp,(„) 

= w(k)- Y Pi(«)(d) I E <H(u)(eMZ + s-degPi(u) + d) = 
d<Tdegpi(„) i<Tdeg? j („) 

= w(k)+ Yl Pi(u)(d)w(u-degpi(u) + d) = 0, 
d<Tdegpi(„) 

where we have exploited the fact that if t = (<i, <2) <T « — deg qj(u), then 
( z ^ z ^ g ^ , , ) ^ ) = 0 by induction. Since q E 1 and since degg <T u, then by 
induction (g, w) = 0 and so (p, ID) = 0. • Q 

From the previous proposition we can argue that, since the corroborated un-
dominated unfalsified model of a 2D array is unique when it exists, then it can be 
considered the most powerful unfalsified model in the class of all the the models 
satisfying condition (10). 

We give now a procedure providing the corroborated undominated unfalsified 
model of a 2D array, when it exists. This algorithm is based on a procedure proposed 
by Sakata [4, 5] extending the classical Berlekanp Massey algorithm that solves 
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the partial realization problem in ID case. This procedure is characterized by a 
good efficiency and is recursive, namely if a new element of the array is provided 
the computation of the new solution uses in some way the work we have done to 
compute the old solutions. Its limitation consists on the fact that this algorithm 
provides unfalsified models only under particular conditions. 

Let < T be the total degree ordering in N2, i.e. the total admissible ordering such 
that (si, s2) < T (n , r2) if and only if si + s2 < r\ + r2 or if S\ + s2 = r\ + r2 and 
s\ < r\. Suppose moreover that / = {x £ N2 : x < T k} for some k £ N2. If M is 
the set of all the minimal elements in the set deg_4(w/) w.r. to the usual partial 
ordering in N2, then a minimal polynomial set T for wj is a subset of A(wj) such 
that degT = M. It is easy to see that there always exists minimal polynomial sets 
T such that each polynomial / £ T is monic and in a reduced normal form w.r. 
to the ideal generated by T ( or equivalently that the support of / is included in 
A(T) U {deg/}, where A(T) := N2 \ (degJT+ N2), and so we will consider only 
minimal polynomial sets satisfying this requirement. 

The condition ensuring the uniqueness of the minimal polynomial set is similar 
to condition (10). More precisely define for every finite family of polynomials T the 
subsets 

A(T) := N 2 \ ( d e g / - + N2) 

J2(T) := degT + A(T) 

Note that if Q is the reduced Grobner basis of the ideal J w.r. to an admissible 
ordering < T , then we have that A(Q) = A (I) and E(C?) = E(J) . 

Proposi t ion 5. [4] Fix a total admissible ordering < T and let I = {x £ N2 : 
x < T k} for some k £ N2. Let wi be any 2D array in E 7 . If there exists a minimal 
polynomial set T of a 2D array wi, such that 

H(T) C I, (13) 
then it is unique. 

Given wi, Sakata's algorithm provides the family of all the minimal polynomial 
sets for wi. However we have that a minimal polynomial set is not always a Grobner 
basis, which is a necessary and sufficient condition for a minimal polynomial set to 
give an unfalsified model. In [5] there is an example in which we have that the mini
mal polynomial set is unique, but it is not a Grobner basis. The following proposition 
shows that if there exists the corroborated undominated unfalsified model of a 2D 
array wj, then it can be extracted from a minimal polynomial set. 

Proposi t ion 6. Fix a total admissible ordering < T and let / = {x £ N2 : x < T k} 
for some k £ N2. Let wj be any 2D array in E 7 and T be any minimal polynomial 
set of wj. If there exists the corroborated undominated unfalsified model of wi, 
then there exists a subset T' = {/i, • • •, / m } of T such that k e r ( / i , . . . , / m ) is the 
corroborated undominated unfalsified model of wi. 

P r o o f . Suppose that B — ker(yi , . . . ,gm) is a corroborated undominated un
falsified model of wj and that Q = {»7i, • • •, 9m) is the reduced Grobner basis w. r. 
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to t he admissible order ing <T. Since B is corrobora ted , then E(<7) C / . Moreover 
there exists w G k e r ( # i , . . .,gm) such t h a t iv\j = wj. Define the following subset of 
the min imal polynomia l set T 

T' :={f£T: degg - d e g / £ N 2 , 3g G G). (14) 

We will show now t h a t T' is a Grobner basis . If it is not the case, then there exists 
s = ( s i , s 2 ) G N 2 and / G T' such t h a t (z\lz5,2 f, v>) jz 0. By L e m m a 4 in [4], for 
all g G G we have s - deg g £ N 2 and so s G A ( £ ) . Finally, t ak ing g G G such t h a t 
t = degg — deg / G N 2 , we can argue t h a t deg g + s = deg / + s + t and so, since by 
Corol lary 2 d e g / + s £ I, then E(<7) £ / t h a t is aga ins t the hypothes is . • 

By the previous proposi t ion we can ex t rac t t he cor robora ted u n d o m i n a t e d unfal-

sified model of a 2D array wj, when it exists, from a min imal polynomia l set T in 

the following way: 

1. Let Ti,...,Ti be the subsets of T such t h a t E(J".) C / . 

2. If there exists Ti = {gi, • • • ,gm} t h a t is a Grobner basis, then k e r ( # i , . . . ,gm) 

is t he corrobora ted undomina ted unfalsified mode l of wj. Otherwise by P ropo

si t ion 6 t he cor robora ted u n d o m i n a t e d unfalsified model of wj does not exist . 

In this pape r we propose an extens ion of the concept of corrobora t ion to the 2D 
case. Its connect ions with the d a t a compression is still not completely clear to us 
and it will be the object of our future research. 

Note moreover t h a t if / is a finite subset of N 2 , t hen every cor robora ted undomi
na ted unfalsified model mus t be finite d imensional and this seems too restr ic t ive. 
Present ly we are t ry ing to extend the definition of corroborated mode ls wi thou t 
this res t r ic t ion and to develop a model l ing a lgor i thm providing the cor robora ted 
u n d o m i n a t e d unfalsified model of a 2D array wj in this case. 

(Received March 18, 1993.) 
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