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EXTERIOR ALGEBRA AND INVARIANT SPACES 
OF IMPLICIT SYSTEMS: 
THE GRASSMANN REPRESENTATIVE APPROACH1 
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01850/01// 
The matrix pencil algebraic characterisation of the families of invariant subspaces of an 

implicit system S(F, G) : Fz = Gz F, G € K m x n , is further developed by using tools from 
Exterior Algebra and in particular the Grassmann Representative g(V) of the subspace V 
of the domain of (F,G). Two different approaches are considered: The first is based on 
the compound of the pencil C'd(sF — G), which is a polynomial matrix and the second on 
the compound pencil sC'd(F) — Cd(G), d = dim V. For the family of proper spaces of the 
domain of (F, G), m > d, new characterisations of the invariant spaces V are given in terms 
of the properties of g(V) as generalised eigenvectors, or invariance conditions for the spaces 
A'V, p=],2,...,d. 

1. INTRODUCTION 

The natural operator associated with Generalized Autonomous Dynamic System 
S(F,G) : Fz = Gz, F, G 6 l m x n is the matrix pencil sF - G. Singular sys
tems Se : Ex = Ax + Bu (\E\ = 0), as well as proper systems (\E\ ^ 0), are 
special cases of the S(F, G) descriptions. Matrix pencil theory [3] provides a uni
fying framework for the study of algebraic, geometric, dynamic and computational 
aspects of S(F,G) systems [12], [7]. For proper systems, a matrix pencil approach 
for the study and classification of the fundamental invariant subspaces [24], [23] has 
been developed in [8], [6]. Extending the standard geometric theory concepts and 
results [24], [23] to the case of Singular systems, has been an active research area 
[12], [14], [7], [2], [15], [16], [17], [20] and references therein. 

The different types of invariants subspaces of a given dimension associated with a 
linear system may be seen as elements of a certain Grassmannian and the characteri
sation of such families of invariant spaces in terms of possible dimensions and related 
parameterisation issues is an important topic. Exterior algebra tools [4], [18], [9] are 
central in providing a representation of the Pliicker embedding of a Grassmannian 
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into a projective space [5]; these tools have been deployed by Karcanias and Gian-
nakopoulos [10] to introduce new sets of invariants for families of linear systems. The 
new invariants introduced through the exterior algebra machinery are the Pliicker 
matrices and the associated canonical Grassmann representatives and provide com
plete sets of invariants for the corresponding families of systems [10]. The character
isation of invariant spaces in terms of Strict Equivalence (S'E)-invariants of matrix 
pencils, provides the means for the characterisation of invariant subspaces also in 
terms of the tools provided by Exterior Algebra. The aim of this paper is to provide 
the. framework and the tools for the Exterior algebra characterisation of families 
of invariant subspaces of singular systems. The results provide alternative algebraic 
characterisations of such families, which is closely related to pararneterisation issues. 

The starting point of our investigation is that for the implicit system S(F,G) : 
Fz = Gz, F, G G E m x n the subspaces V, dim V = d, of the domain of (F, G) may be 
classified by the invariants of the restriction pencil (F,G)/V = sFV — GV [8], [12], 
which in turn lead to the definition of different notions of invariant spaces based 
on the relationship of the images of FV, GV, [14]. The algebraic characterisation, 
based on sFV — GV pencil and the geometric based on the properties of V with 
respect to (F,G) lead in a natural way to two different approaches for the exterior 
algebra characterisation of the subspaces of the domain of (F, G). The first is based 
on the properties of Grassmann Representative g(V) with respect to the compound 
of the sF -G pencil [19], Cd(sF -G), whereas the second relies on the properties of 
g(V), as well as the exterior space APV, p = 1,2,..., d with respect to the compound 
pair (Cd(F), Cd(G)). The essence of both characterisations is that they characterise 
the different families of invariant spaces as eigenvectors of the new compound oper
ators, or as invariant exterior spaces with respect to the (C'd(F), Cd(G)) pair. An 
implicit assumption behind the present characterisations is that we consider spaces 
V for which d = dimV < m and such spaces are referred to as proper. The study 
of nonproper spaces, d > m, requires alternative means and not the Grassmann 
Representative g(V) and it is not considered here. The framework established by 
the Exterior Algebra characterisation provides tools for studying issues, such as the 
pararneterisation of families of invariant spaces; this new framework has also the 
advantage that it is closer to the spirit of the determinantal assignment problems 
[10]. 

Throughout this paper we adopt the following notations. If V is a vector space, 
then V denotes a basis matrix of V. If T(s) = sF — G is a matrix pencil [3], 
\J»r = {V\T,V00T'HOT, MTT} denotes the set of S'E-invariants of T(s) and $x 
denotes the root range of T(s), (i.e., set of distinct eigenvalues). In particular, 
V\T = {(s - A.)T' | i € f}, VooT = {sgi | i S ft} denote the set of all finite, oo ele
mentary divisors (fed, ied) and 7icT = {e. | i € p, £i = • • • = e9 = 0, 1 < eg+i < 
••• < ep}, HrT - {Vi — • • • = Vh = 0,1 < i]h+i < • < " . } denote the sets of 
column, row minimal indices (cmi, rmi), respectively of T(s) and i € p, is used for 
i = 1,2, . . . ,p. E, C, E(s) denote the field of real, complex numbers and rational 
functions, respectively and E[s] denotes the ring of polynomials over E. E n , Cn 

and En(s) denote the n-dimensional vector space over E, C and E(s) respectively. 
If T is a field, or ring, then Tmxn denotes the set o f m x n matrices with ele-
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ments from T. Rmxn[s] denotes the set of 771 x 77 matrices with elements from R[sj. 
Qk,n denotes the set, of lexicographically ordered, strictly increasing sequences of it-
integers from 1, 2 , . . . , 77. If {xi\,..., x,k] is a set of vectors of a vector space V, 
u = (i],...,ik) 6 Qk,n, then i n A • • • Ax,fc = x^A denotes the exterior product of 
these vectors [19]. If V is a vector space, then ArV denotes its rth exterior power 
[4], [18]. If H £ fmXn and r < min{m, 71}, then by Cr[H] denotes the rth compound 
matrix n. p[H] denotes the rank of n and Mr(H), Nt(H), K(H) denote the right, 
left null space and range space, correspondingly. If a set is either o, or consists only 
of zero numbers, it is denoted by (0). 

2. PROBLEM STATEMENT AND PRELIMINARY RESULTS 

The aim of this section is to provide a short introduction to the main definitions 
and properties of the algebraic (matrix pencil) and geometric characterization of 
subspaces of a Singular system, which are essential for studying the parameterization 
of the various families of subspaces we intend to study. Consider the Singular system 
described by 

Se : Ex = Ax + Bu (2.1) 

where E, A 6 E n x n , B £ M.nxl, £ < n and p(B) = £. Now, let £ < n. If 

(At, fit) is a pair of a left annihilator, inverse of B (i.e., At G R( n - '> x n , p[N] = 

n - £, NB = 0, B^B = 1(). It is readily shown [8], [6] that Se is equivalent to 

NEx = NAx (2.2) 

u = B^{Ex-Ax}. (2.3) 

If V £ M." is a vector space and V is a basis matrix of V, then the solution of Se, 
which are restricted in V, are defined as the solutions of the V-restricted differential 
system 

At E V v = NA V v, x = Vv (2.4) 

whereas the control input that generates x(t) G V is defined by the equation (2.4). 
The nature of strict equivalence (SE) invariants [3] of the V-restriction pencil Rv(s) = 
sNEV — NAV characterizes the properties of the solution space of (2.4). The de
scriptions (2.2) and (2.4) are Generalized Autonomous Dynamic systems of the type 

S(F, G) : Fz = Gz, F, G 6 l m x n (2.5) 

Throughout this paper, we denote F = NE, G = NA, m = n — £, and T(s) = 
sF — G, the pencil associated with this system. The pencils sF — G is said to be 
Strict equivalent to the pencil sF' - G', iff P(sF - G) Q = sF' - G', where P and 
Q are square nonsingular matrices over a field T. Thus, the class of .S'E-pencils is 
characterized by a uniquely defined element which has the canonical form, known 
as the Kronecker canonical form (KCF), i.e. 

P(sF-G)Q = sFk-Gk= (2.6) 

= diagjoft,,,, L£{g+1),...,L£(p), L\(h+l),.. .,L\(i), Dq{1),..., Dq{li), si - Jj , 
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where P and Q are square nonsingular matrices over T, L^ = s[/{;0] — [0,^] £ 
l?x(f+1)[s]) £ — Si, or i]j, Dq(i) = s Eg(i) — I, i £ ft corresponds to ied of sF - G, 
Eg(i) is a matrix of order g,-, whose elements in the first super diagonal are 1, whereas 
the remaining are zero; si — J is the normal Jordan Form, which is uniquely defined 
by the set of fed (s — A;)", i E. r. If V G K'1 is a vector space, then for the triple 
(F, G;V), the set of S'F-invariants and root range of the V-restriction pencil Ev = 
sFV - GV are denoted by $y = {X>Av, oooV, Hrv, Hcv) and <J>v, respectively. If 
the restriction pencil Rv(s) is transformed by the transformation Pk and Qk to the 
Kronecker canonical form (2.6), then it is written as 

Pk (sF - G) VQk = (sF - G) [V, K,, Voo, Vx) (2.7) 

where (sF - G) Ve, (sF - G) V„, (sF - G) Voo and (sF - G) V\ correspond to the 
cmi, rmi, ied and fed partitions, respectively. Thus, V can be decomposed as 

v = v£ e v„ e Voo ® vA (2.8) 

where V£, V,,, Voo and V\ are the subspaces spanned by Ve, Vv, V^ and V\, respec
tively [8] and these subspaces are called ((F,G)-column minimal indices subspace, 
((F, G)-cmis), (F, G)-row minimal indices subspace ((F, G)-rmis), infinite-(F, G) el
ementary divisors subspace (oo — F, G)-eds), (F, G)-finite elementary divisors sub-
space ((F, G)-fed), respectively where (F, G)-fed may be decomposed to o and finite 
nonzero eds Vo and Va, a y£ 0 respectively. Finally and (F, G)-eds V for which 
$v/ = {A, A*}, A, A* E C, or <&v = {X,eR\J {oo}} is called {A, A*}, or (A)-simp/e 
(E,G)-eds. 

If V G Rn is a subspace of the domain of (F, G), then the fundamental properties 
of V with respect to (F, G) may be expressed as relationships between the images 
FV, GV. Then the following families of spaces can be defined [12], [14]: V is called 
and (F, G)-invariant subspace ((F,G)-is, if FV C GV, a (G, F)-invariant subspace 
(G, F)-is if GV C FV and a complete (F,G)-is (c - (F,G)-is) if FV = GV. The 
relationships between the different families of invariant subspaces are summarised 
by the following two results [14]. 

T h e o r e m 2 .1 . Let V e i " be a subspace of the domain of (F, G). Then, 

(i) V is an oo - (F, G)-eds, iff TV C GV, Nr(G) n V = 0 and there is no proper 
ace V C V for which F V = GV. 

(ii) V is a o - (F,G)-eds, iff GV C FV, Nr(F) n V = 0 and there is no proper 
subspace V C V for which F V = GV. 

(iii) V is a nonzero - { F , G)-eds, iff FV = GV, Nr(F) n V = 0 and Nr(G) n V = 0. 

Theo rem 2.2. Let V G E" be a subspace of the domain of (F, G). The following 
statements are equivalent: 

(i) V is an (F, G)-cmis 

(ii) V is an (G, F)-cmis 
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(iii) If dim v = d, there exists a polynomial vector x(s) = [xo,x\,..., Xd-i] ed-\(s) = 
Xded-\(s), e.d-\(s) = [l,s,... ,sd~i]t of degree d — 1 such that Xd is a basis, 
matrix for v and (sF - G) x(s) = 0. 

(iv) There exists a basis [x0, x\,..., Xd-\] of v such that 

Fxd-\ = 0, Fxd-2 = Gxd-\,...,Fx0 = Gx\, 0 = GxQ 

(v) GV = FV and there exists a basis matrix Vc such that the restriction maps 
Jo, Jo defined by 

GVC = FVCJ0, FVc = GVcJ
t
0 

are simple Jordan blocks associated with the zero eigenvalue. 

A vector X(s) = Xded-i(s) is called a right annihilating vector, Xd is a cyclic 
basis, and lZ{Xd} is the Supporting space of x(s). Note that the family of (F, G)-
cmis is a subfamily of the complete - (F, G)-is family. A characterisation of the 
(F, G)-is, (G, F)-is, c — (F, G)-is families in terms of invariants is given in [14]. 

Remark 2 .1. The theorems of rmis is dual to those for cmis. This duality is of 
the transposed type i.e., ^(s) (sF - G) = 0 is equivalent to (sFt - G*)/?(s) = 0. 

Some further families of invariant subspaces characterised by the above general 
notions of invariants spaces are introduced below [14]. 

Corollary 2 .1. Let v be a subspace of the domain of (F, G). The following prop
erties hold true: 

(i) v is a finite - (F,G)-eds ((F,G)-feds i.e., v = v„ © v0, iff GV C FV and 
Afr(F)nv = 0. 

(ii) v is a nonzero - (F, G)-eds ((F, G)-nzeds) i.e., v = va © vTO, iff FV C GV 
and Nr(G)C)V = 0, 

Definition 2 .1 . [7], [14], [21], [17], [16], [15]. Let F, G G M m x n . We may define the 
following sequences: 

V(G, F) := {T° = E n , Tk+X = G'x(FTk), k>0} 

V(F,G) := {S° = 1 " , Sk+1 = F'^GS1*), k>0} 

C(F,G) := {rC° = 0, hCk+l = F~\GKk), k>0} 

C(G, F) := {C° = 0, Ck+1 = G~\FCk), k>0}. 

V(G, F), V(F, G) are nonincreasing and converge to subspace T*, S*, respective
ly, in at most n steps and the T* and S* are the supremal (G, F)-is, (F, G)-is in 
E", respectively. C(G,F) and C(F, G) are nondecreasing and converge to subspaces 
IC*, C* respectively in at most n steps and K*, C* are the supremal (F, G)-is and 
(G, F)-is, in Mn, respectively. 
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Theorem 2 .2 . [14]. Let 1 " = V£ * V, $ V«, © VA be an invariant decomposition 
of Rn with respect to (F,G). Then 

(i) 7* = v£ © VA 

(ii) 5* = v£ © vTO © VA 

(iii) W* = 7* n 5* = V£ e VA is the supremal c - (F, G)-is of E" 

(iv) K* = V£ 8 Voo 

(v) £* = V£ 8 Vo, where V0 is the o - (F, G) eds 

(vi) 72.* = V£ = 7* n/C* = S* DC* = K*C\C*. 

A subspace V G E n of the domain of (F, G) for which the restriction pencil does 
not have nonzero rmi is called a partitioned-(F, G)-is (p-(F, G')-is) [14], [7]. Clearly, 
all invariant subspac.es of the type considered above are elements of the general 
family of p - (F, G)-is. 

Consider the spaces 7*, S*, K* and n* given in the Definition 2.1 and Theo
rem 2.2. If we put NE and NA instead of F and G, respectively in their related 
sequences, we will obtain the following sequences, 

7 ° = E n , Tk+l = (NA)~lNETk = A~\ETk + n(B)) 

S° = 1 " , Sk+l = (NE)~lNASh = E~l(ESh +n(B)) 

K° = 0, Kh+l =(NE)~]NAKh = E-l{AKk +n(B)) 

C° = 0, Ch+1 = (NA)~lNECk = A~x(ECk +n(B)) 

it is clear that the subspaces 7*, S*, K* and n* define supremal (A, E, B) is, supre
mal almost (E, A, B)-is, supremal almost reachability subspace and supremal reach
ability subspace for Singular systems, respectively [20], [15], [17]. 

Problem Statement. The problem in this study is to provide a characterization, 
based on Exterior Algebra, of the various types of feedback invariant subspaces, i.e. 
7*, S*, K*, and n* and their subspaces for the case of S(F,G); the results then 
may be specialised to the case of singular systems. 

3. BACKGROUND FROM EXTERIOR ALGEBRA 

The present approach uses the notions of a Compound matrix, decomposability of 
multivectors and the geometry of the so-called Grassmann variety [5] in an essential 
way. Some background notation and standard results [18], [19] related to the above 
mentioned notions are summarized below. 

C o m p o u n d matr ices . [18]. Let A 6 7 m x n and 1 < p < min{m, n}, then the 
pth compound matrix of A is the (m) x (n) matrix whose entries are the minors 
det{.4[a|/?]}, defined for the a G Qv,m, /? S QP,n, sets of rows, columns which are 
arranged lexicographically in a and /?. This matrix will be denoted by CP(A). Some 
of the basic properties of compound matrices are: 
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a) IL4 G Tnxm, 1 < p < n and also A is nonsingular, then 
(i) \Cp(A)\-^=Cp(A-% (ii) CP(A*)~{CP(A)\\ (i") cP(^) is also 
nonsingular. 

b) Bmef.-CaucJiy Theorem: If A G Tpxn, B G Tnxk and 1 < p < min{m,n,jfe}, 
then CP(AB) = CP(A)CP(B) 

c) If A G Tpxn and the p rows of A are denoted by a\,...,a* in succession 
(1 < p < n), then CP(A) is an ('')-tuple and it is called the Grassmann product 
or skew-symmetric product of the vectors a\,...,a*. The usual notation for 
this (")-tuple of subdeterminants of A is a * A - A a p and it denotes a row 
vector. Similar definition can be given for the exterior product of the columns 
of A. 

Definition 3.1. [4],[18]. Let V be a linear vector space over a field T and let 
dimy = p. A vector z G Ar, r < p is called decomposable, if there exist vectors 
vi G V, i G f such that z = t>iA • •• Avr. 

Let U be a linear vector space over a field T and let dim/7 = n > m. The 
Grassmannian G(m,U) is defined as the set of m-dimensional subspaces V of u; 
G(m,U) actually admits the structure of an analytic manifold which is known as 
the Grassmann manifold. The following important results hold true [18]. 

Theo rem 3.1. Let xA = X i A - A x m , zA = Z]A---Azm be two non-zero de
composable vectors of u and let VX,VZ G G(m,U) be the associated subspaces. 
Necessary and sufficient condition, for Vx = Vz is that xA = azA, where a G T\ {0}. 

Corollary 3.1. A nonzero decomposable vector c G AmU, may be written as 
c = vA = V\ A • • • Avm and uniquely defines V — sp{u,- | i G m} G G(m,U). 

Let y G G(m,U), then any non-zero decomposable element x i A - - A x m , x,- G 
y, i G m is called a Grassmann representative (GR) of y. The Grassmann repre
sentatives all differ only by non zero scalar factors so that we shall denote anyone 
of them simply by g(V). Note that although the vector space A r y is generated by 
decomposable vectors, not every vector in this space is decomposable. If Bv is a 
basis for V, Ar Bv, is the induced basis of Ar and {£w}, w G Qr,p are the coordinates 
of z G Ar// with respect to Bv, then z is decomposable, if any only if {£w} satisfy a 
set of quadratic equations known as Quadratic Pliicker Relationships (QPR) [5], [18]. 
An alternative test for decomposability, which also allows the reconstruction of the 
subspace, when the multivector is decomposable, has been given in [11]. 

4. EXTERIOR ALGEBRA CHARACTERIZATION OF MATRIX PENCIL IN
VARIANTS 

In this section some general results on the characterization of matrix pencil invariants 
using exterior algebra are derived, which provide the necessary background of the 
present characterization. The analysis in this section follows that developed in [10] 
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for general rational vector space and polynomial bases. Let A(s) £ E m x n [ s ] , m>n 
and p = rank1(s)04(s)). We may define 

,l'a = colsp1(.}{/l(V)} and Cp(A(s)) = [...Pi(s)...] (4.1) 

Proposi t ion 4 .1 . [10]. Every nonzero Pi(s) is a GR of Xa. Furthermore, if 
Pi(s), pj(s) ^ 0 are two GRs, then pi(s) = Xij(s)pj(s), A,,(s) <= l ( s ) \ {0}. 

Proposi t ion 4.2 . Let (j>(s) be the gcd of all the entries of Cp(A(s)). Then, there 
exists a coprime vector p*(s) such that any nonzero vector p.(s) may be expressed 
by 

Pi(s) = \i(s)^(s)p*(s), \i(s)eR[s]\{0}. (4.2) 

Now, let A(s) = sF - G, p = rank1( s )(sE - G) and define 

Xr = rowsp1(s){.sE - G}, Xc =: colsp1 ( s ){sF - G} (4.3) 

Calculate Cp(sF - G) and define 

Cp(sF - G) = «.(*) = : [ . . . , щ(s),...] (4.4) 

By Proposition 4.1, every nonzero v}(s) is a GR for Xr and every nonzero Ui(s) is a 
GR for Xe, and thus, for some a,(s), /?,-(«) £ ! { s } \ {0} we have that if <f>(s) is the 
gcd of all entries of Cp(sF - G), then 

vt
i(s) = ai(s)(j>(s)v*(sy, ui(s) = /3i(s)<f>(s)u*(s) (4.5) 

where v*(sy, u*(s) are coprime vectors. For the (4.6) descriptions we have 

Proposi t ion 4.3 . For the pencil sF — G we have: 

(i) The zeros of (j>(s) are the roots of fed's of sF — G. 

(ii) If u*(s) (v*(sy) is constant vector => fl nonzero rmi (cmi) 

(iii) If u*(s) (v*(s)*) is nonconstant polynomial vector => 3 rmi (cmi) which are 
nonzero, and 

degKon = jr£i, degK(Sn = 5 > ; 
!=1 1=1 

Furthermore, since the number of cmi = n - p =: -KC and the number of rmi = 
m — p=: ->rr

 w e have: 

p t t t 

*«+£* *£(*. + -). Tr + E ^ = £(% + 1)-
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Propos i t ion 4.4. Let Dd(s,s) be the greatest common divisors (gcd) of all the 
minors of order d of the matrix sF — sG and let p = rankn(.){sE — sG}. There 
exists a homogeneous matrix Ad(s,s) and a polynomial <Td(s,$) such that 

(i) Cd(sF-sG) = Dd(s,s)Ad(s,s); 

(ii) Dd(s,s) = st,(d><jd(s,s), where s''(d) is the gcd of all the entries of Cd(sF- sG) 
with respect to s. 

(iii) Pd = Yfi=l U where p; - p, _, = /,; and {td\d = 1,2,... ,p, td ^ 0} = {qi \ i G 

A}, Ooo = {*'M*"€/.}-

(iv) Dd(s, 1) is the product of all fed's obtained until the r/th step and D,,(.s, 1) = 
<p(s). Thus, 

c 

D,(.s,i) = rj(.s-A,;r:. 

R e m a r k 4 .1 . By considering the conditions of Proposition 4.3 and Proposition 
4.4 it is clear that we can find the SE-invariants by the compound matrices for 
d= 1,2,... of sF-sG. 

We can demonstrate the above properties in terms of an example. 

Example 4 .1 . Consider the pencil 

Then 

s -s 0 0 0 " 

sF - s 
0 

0 

_ 0 

0 š 

0 0 

0 0 

0 

0 

ś 

0 

s 

s 

n 
' 0 S.S 0 0 — S.Ś 0 c 0 0 0 0 

0 0 0 S.Ś 0 0 š 2 0 0 0 0 

C2(sF --$G) = 
0 
0 

0 

0 

s.š 

0 

s 

0 

0 

0 

—š 

0 c 
5.Š 0 

0 

0 

0 

0 

Ś 2 

0 

0 
0 0 0 0 0 0 c 0 Ś 2 ss 0 ' 
0 0 0 0 0 0 c 0 0 0 p 

• 0 0 0 c ss2 0 0 š 3 
0 0 

C3(sF - ŚG) = 
0 

0 

0 

0 

0 c 

0 c 

s.Š2 

0 

s2.Ś 

0 

0 

0 

- ś -

0 

' - s ś 

0 

2 0 

Ś 3 

0 0 0 c 0 sś2 0 0 — s ' 0 
C4(sF -G) = [ ГjO 0 - - 1 ] 

Pi = 0, p2 = 0, p 3 = 1, p4 = 3 and thus p 2 - Pi = 0, P3 - P2 = 1 = g t, p 4 - p 3 = 
2 = 72, deg[(7,i(sF - G)] ^ 1, sum of the degrees of cmi is n - p = 5 _ 4 — 1 - ^ 
Thus, £, = 1. 
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5. EXTERIOR ALGEBRA BASED CHARACTERIZATION OF INVARIANT 
SUBSPACES 

In this part the invariant subspaces of (F,G) domain, F, G £ ffimxn described 
in Section 2, are characterized by using exterior algebra. We adopt two different 
approaches; the first is based on the properties of the compound of the pencil sF — G 
and the second on the properties of the compound of the matrices F and G. In both 
of the approaches considered here we examine the case where the invariant subspaces 
V have dimension d < m. The reason for this is that under this assumption the GR 
of y may be used for the characterisation of the nature of V; in the case where d > m, 
the GR characterisation of V is not a suitable representation and alternative tools 
are needed. All spaces of the domain of (F,G) for which dimV < m, will be called 
proper spaces of (F, G). The different elementary invariant families of subspaces 
may be characterised as follows: 

Proposition 5 .1 . If V is a p — (F, G)-is with dimV = d, d < m, which contains a 
proper (F, G)-cmis, V, there exists a constant nonzero vector a € E*, k = Q) such 
that 

(i) a is decomposable 

(ii) Cd(sF-G)a = 0. 

Remark 5:1. If condition (i) and (ii) of Proposition 5.1 hold true, then V always 
contains a proper (F, G)-cmis V , but V is not necessarily a p — (F, G)-is. 

Theorem 5 .1. There exists an (F, G)-rmis V with dimension d, d < m iff there 
exists a constant nonzero vector a 6 l ' , k = (£) such that 

(i) a is decomposable 

(ii) Cd(sF — G)a = (3(s) where /?(s) = Bed(s), B is a full column rank, constant 

matrix and ed(s) = [ s d , s d - \ . . . , 1]*. 

Theorem 5 .2 . There exists an (F, G)-ieds V with dimension d, d < m, iff there 
exists a constant nonzero vector a G M*, k = ("-), such that 

(i) a is decomposable 

(ii) Cd(sF — G) a = j3 ^ 0, /3 constant decomposable vector over 1PL 

Theorem 5 .3 . There exists an (F, G)-feds V with dimension d, d < m iff there 
exist constant, nonzero vectors a and /? such that 

(i) a is decomposable 

(ii) Cd(sF -G)a = /3<j>(s), 0^0 decomposable, deg <j>(s) = d. 
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R e m a r k 5.2. A result similar to that described by Theorem 5.3 may be given for 
subspaces expressed as direct sums of (F, G)-feds and (F, G)-ieds. The only difference 
is that in part (ii), of Theorem 5.3 we substitute the condition deg^(s) = d with 
deg4>(s))<d. 

The above results provide an exterior algebra based characterisation for the dif
ferent families of elementary invariant spaces based on the properties of the GR 
a = g(V) of the space V and the properties of the Cd(sF — G) matrix. In the 
following we examine some alternative characterisation where a = g(V) is used in 
relationship to (Cd(F), Cd(G)) pair of exterior maps. Those two approaches are not 
equivalent since in the first case we deal with the polynomial matrix Cd(sF — G), 
the pencil compound, whereas in the second case, with the compound pencil is 
sCd(F) — Cd(G). The alternative characterisations based on the compound pencil 
are considered next. 

Theo rem 5.4. Let v G E n be a subspace of the domain of (F, G), d = dim V < m 
and let A dv = g(V) be a GR of v. v is an co — (F, G)-eds, iff there exists an integer 
v, 1 < v < d, such that the following conditions hold true: 

(i) CV(F) A" V # 0, and Ct(F) A'v = 0 for i = v + 1 , . . . , d. 
(ii) Cd(G) g(V) ± 0 and thus also Cj(G) A> v ? 0 for all j = 1,2,... ,d - 1. 

(iii) A"v is strongly (CV(F), G„(G))-invariant i.e., 

G 1 / (E )A"vCG,, (G)A 1 / v . (5.1) 

and every decomposable vector of A" V is mapped to a decomposable vector 
of the images of CV(F) and CV(G). 

(iv) There exists no integer p., 1 < p < d and no decomposable vector a 6 A^V 
which is an eigenvector of the (C^(F), C^(G)) pair for a nonzero, finite eigen
value. 

The dual statement of the above results characterises the 0 — (F, G)-eds. Thus 
we have: 

Theorem 5.5. Let V 6 I " be a subspace for the domain of (F, G), d = dim V < m 
and let Ad V = g(V) be a GR of v. v is a 0 - (F, G)-eds, iff there exists an integer 
v, 1 < v < d, such that the following conditions hold true: 

(i) CV(G) Av V # 0 and Ct(G) A'" v = 0 for i = v + 1,...,d. ' 
(ii) Cd(F) g(V) # 0 and thus also Cj(F) A> V ? 0 for all j = 1,2,. . . , d- 1. 

(iii) A" v is strongly (CV(G), G1/(JF))-invariant, i.e., 

G t , ( G ) A " v C C l , ( ; O A , / v (5.2) 

and every decomposable vector for A" v is mapped to a decomposable vector 
of the images of CV(F) and CV(G). 

(iv) There exists no integer p, I < ft < d and no decomposable vector a G A" V 
which is an eigenvector of the (C^(G), G/J(E)) pair for a nonzero finite eigen
value. 
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Remark 5.3. Note that conditions (5.1) and (5.2) imply that if V is a basis matrix 
of y then 

(5 .1) <=* Cv(F)Cv(V) = Ctl(G)Cv(V)Av (5.3) 

(5.2) ^=> CV(G)CV(V) = CV(F)CV(V)AV (5.4) 

The property that every decomposable vector of the image of CV(F), CV(V) is 
mapped to a decomposable vector of the image CV(G), C„(V) (case of (5.1)) is 
necessary and sufficient for the decomposability of the A_v map [22]; this notion of 
decomposability of A„ (Av) means that there exists A £ W,dxd (A~£ Edxd) such that 

4 , = CV(A) (5.5) 

Av = C„(A). (5.(5) 

The decomposability of A„, Av maps is not always true and this is the reason for 
the strong invariance notion used in Theorem 5.4 and 5.5. 

For the case of nonzero-(E, G)-feds (fixed, finite non zero spectrum spaces) we 
have the following result. 

Theorem 5.6. Let V € W" be a subspace of the domain of ( F, G), d = dim V < m 
and let AdV = g(V) be a GR of V. V is a nonzero-(F,G)-feds iff the following two 
conditions hold true: 

(i) Cd(F) g(V) -i 0 and Cd(G) g(V) -. 0. 
(ii) g(V) is an eigenvector for the pair (Cd(F), Cd(G)), that is there exists A, A ^ 0 

such that 

Cd(F)g(V) = XCd(G)g(V). (5.7) 

Corollary 5.1. Let V £ E" lie a subspace of the domain of ( F, G), d = dim V < m 
and let AdV = g(V) be a (ill of V. The following properties hold true: 

(a) y is an (F.G)-feds, iff Cd(F)g(V) ^ 0 and 

Cd(G)g(V) = \Cd(F)g(V), A G K (5.8) 

(b) y is an (E,G)-nzeds, iff Cd(G)g(V) # 0 and 

Cd(F) g(V) = A Cd(G) g(V), A e 1 . (5.9) 

R e m a r k 5.4. By the properties of the Bilinear strict equivalence of matrix pencils 
[13], that is invariance of minimal indices and covariance of elementary divisors, it 
follows that if for a pair (F,G), V is an elementary divisor subspace, ((F, G)-eds), 
that is y = y ^ (f)Va (BVo, there exists a bilinear transformation b = {a, b, c, d) (ad — 
be jL 0) such that 

b o (F, G) = (F', C) = (a.F - cG, bF - dG) (5.10) 

with V being a nonzero (F', G")-feds. In fact, this property holds for any generic 
bilinear transformation. 

From the above remark and Theorem 5.6 we have: 
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Corollary 5.2. V £ R", d = dim V < m is an (F, G)-eds of the domain of 
(F, G), iff for some generic bilinear transformation b = {a, b, c, d], g(V) = AdV is a 
eigenvector associated with a nonzero eigenvalue of the (Cd(F'), Cd(G')) pair, where 
(F',C) is defined as in (5.10). 

The results so far indicate the following parametrization. 

Remark 5.5. The family of elementary divisor type of subspac.es V of the do
main of (F,G), F, G £ ! m x n , which have dimension d is defined by the family of 
decomposable vectors a £ W, [i = (",) which satisfy the following properties: 

(i) At least one of the conditions Cd(F)a / 0, Cd(G)a ^ 0 is satisfied 

(ii) a is an eigenvector of (Cd(F), Cd(G)) or of (Cd(F')), (Cd(G')) pairs, where 
(F', G") = b o (F, G) as defined by (5.10) and b generic. 

For the family of (F, G')-cmis we have: 

Theorem 5.7. Let V £ R" be a subspace of the domain of (F, G), d = dim V < m 
and let g(V) = AdV be a GR of V. V is an (F, G)-cmis, iff the following conditions 
hold true: 

(i) Cd(F)g(V) = 0 a n d Cd(G)g(V) = 0. 

(ii) A'V is a strongly complete (C1(F)_±Ci(G))-K for all i = 1, 2, .. ., d- 1; further
more, the restriction maps Am, -<4(i) defined on any basis V of V by 

Ci(F)Ci(V) = Ci(G)Ci(V)A(i) 

C,(G)C,(V) = Ci(F)Ci(V)A{l) 

are nillpotent for all i = 1,2,..., rf — 1 and for i = d — ] they are of rank one. 

R e m a r k 5.6. From the above result it follows that if d < m, then any (F,G)~ 
cmis has a GR g(V) which is a constant vector in Mr{sCd(F) — Cd(G)}. Every 
vector satisfying Cd(F)g(V) = 0, Cd(G)g(V) = 0, however, does not necessarily -
characterise an (F, C)-cmis. 

We may close this section by giving a final result relating the pencil invariants to 
the properties of the dimension of the various invariant families discussed in Section 
2. 

Corollary 5.3. Consider the singular system Se and the autonomous dynamic 
system S(F,G) related to ,S'e as shown by (2.5) and let V £ Rn, dim V = p. If we 
define 

Cp(sF - sG) V = Pìl*) (5.11) 
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then 
pl(s, S) = ai(s, s) Dp(s, s)p*(s, s)< (5.12) 

where a,(s, s) € M[s, s] \ [0], Dp(s, s) is the gcd of all the entries of Cp(sF - sG) and 

(i) If V = T* is the supremal (A,E,B)-is, then dim(T*) = deg{o^(s, 1)} + 
deg{p*(s,l)} + n-p. 

(ii) If V = S*, is the supremal almost (E, A, B)-is, then deg{Dp(s, s)}-deg{Dp(s, 1)} 
> 0 and dim{c<>*} = deg{Dp(s, s)} + deg{p*(s, 1)} + n - p. 

(iii) If V = K*, is the supremal almost reachability subspace, then dim{/C*} = 
deg{Dp(s, s)} - deg{D„(s, 1)} + deg{p*(s, 1)} + n - p. 

(iv) If V = TV", is the supremal reachability subspace, then dim(7v*) = deg{p*(s, 1)]+ 
n-p. 

The proof of this result readily follows by the Propositions 4.2 and Theorem 4.4. 
The approach suggested here may also be used to characterize the dimensions of the 
above supremal invariant subspac.es which are contained in a given space of E n . 

6. CONCLUSIONS 

A new characterisation of the different basic families of invariant subspaces of the 
domain of the paid (F,G), or subspaces associated with a matrix pencil sF — G 
has been given using tools from Exterior Algebra. This new characterisation is not 
completely equivalent, in its present form, to the algebraic characterisation based 
on matrix pencils, since it makes no distinction between individual values of c'mi, 
or partitioning of the greatest common divisors into Segre characteristics associated 
with a zero; this however, is not necessarily a disadvantage, because very frequently 
we are just interested in the nature of the invariant subspace, rather than the exact 
partitioning of the different invariants associated with the space. The two approaches 
considered here, based on the compound of the pencil Cd(sF — G) and the pencil 
compound sCd(F) — Cd(G) provide new characterisations for families of invariant 
subspaces based on the properties of the Grassmann representative g(V) with respect 
to these two operations. A limitation of the present approach is that it deals only 
with the proper subspaces of (F,G), i.e. those for which d < m. The extension 
of the results to the case d > m is well as the use of the new characterisation into 
parameterisation problems is currently under investigation. 

APPENDIX: PROOF OF RESULTS 

P r o o f of Proposition 4.1. Let U(s) be a unimodular matrix M[s] such that A(s) U(s) 
= [A(s) : 0], where A(s) is of full column rank p and calculate Cp(A(s) U(s)) = 
Cp[A(s) : 0]. By Binet-Cauchy Theorem, [18], Cp[A(s) U(s)] = Cp(A(s))Cp(U(s)). 
Since U(s) is nonsingular, Cp(U(s)) is nonsingular and 

Cp(A(s)) = [p(s): 0}Cp(U(s))-1 



15 
Exterior Algebra and Invariant Spaces of Implicit Systems. . . 

where p(s) = Cp(A(s)). If we denote the first row of Cp(U(s))~l by (An(s), •. •. 
Air(s)), where T = ("), we have 

Cp(A(s)) = (Xu(s)p(s),XlT(s)p(s))). (a-1) 

Thus, since p(s) is GR of A'a, every nonzero p,(s) are GR of Xa- Now, let two 
different nonzero columns pf(s) = Ai,(.s)p(s), pj(s) = Xij(s)p(s) of Cp(A(s)). By 
setting A,j(s) = Ai,-(s)/Aij(s), the result follows. D 

P r o o f of Proposition 4.2. According to the equation (a.l) pt(s) — X\i(s)p(s)-
If <f>(s) is the gcd of all vectors p,(s) ^ {0}, there exists a nonzero polynomial A.(s) 
and a coprime vector p*(s) such that p,(s) = A;(s) <p(s)p*(s). D 

P r o o f of Proposition 4.3. Consider the equation (2.6) and factorise it as 

P(sF-G)Q = diag{Z,„(s),.L£(s), sH - K, 0} = 

= diag{/, I, sH - K, 1} diag{L„(s), L£(s), I, 0} 

where L^(s) and Le(s) have rmi and cmi blocks, respectively and sH — K consists 
of fed and ied blocks. By the definition of Le(s), there exists an unimodular matrix 
U(s) such that 

diag{L„(.s), Lc(s), I, 0} U(s) = diag{L„(s), /, 0}. 

We must note that diag{L^(s), /} is of full column rank. Then the pth compound 
ofP(si^-o)oU(s) is 

Cp[P(sF-G)QU(s) = det(sH - K)[\(s), 0] 

where 0 ^ l(s) Cp[dia.g{Ln(s) (s), I}]. By Binet-Cauchy theorem and the properties 
a, b and c of the compound matrices we have: 

Cp[(sF-G)] = det(sH - K)C;1(P)[\(s); 0]Cp[gt!(s)]-1 . 

If we define det (sH - K) =: <j>(s), the first row of Cp[QU(s)]~1 by (/?i(s),.. .,/3t(s)) 
and Cp[P]~l l(s) = u*(s), we will obtain Ui(s) = /?,(s) <}>(s) u*(s). It is clear that 
u*(s) is coprime, or constant by the definition of l(s). Since QU(s) is unimodular, 
Cp[QU(s)]~1 is also unimodular and the gcd of (/?i(s),.. . ,f3t(s)) is 1. This implies 
that the gcd of all the entries of Cp[sF — G] is (j>(s). Consequently (i) and (ii), or 
(iii) hold by the definitions of <f>(s) and u*(s) (v*(s)*) respectively, (iv) follows from 
(ii) and (iii). D 

P r o o f of Proposition 4.4. The proof follows from the definitions of fed and ied 
[3]. n 

P r o o f of Proposition 5.1. If V is a partitioned — (F, G)-'\s, which contains a 
proper (F, G)-cmis, V, then sFV — GV has m x d dimensions, m < d and there 
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exists u(s) 6 ~Ld[s] such that (sFV -GV)v(s) = 0; thus, pMs){sFV -GV} < d and 
Cd[sFV - GV] = 0. By the Binet-Cauchy Theorem we have 

Cd[(sF - G) V] = Cd[sF - G] Cd(V) = 0 

Thus, if a = Cd(V), part (i) and (ii) follow. Reversely the deconiposability oCn- and 
the above condition implies that Cd[(sFV — GV)] = 0 and thus Pw(,,)(sFV — GV) < r/; 
the last condition also implies that M(\sFV — GV} 7̂  {0} and thus we also have 
rmi, which are not necessarily zero. The implies that V contain a V'(F, G)-cmis. • 

P roof of Theorem 5.1. (Necessity) Let V bo a basis of an (F, G)-c.mis V. By 
equations (2.6) and (2.8), we obtain 

Pk(sF-G)VQn = 

Thus, 

where ed(s) = [sdsd~1,..., \]1. By Binet-Cauchy Theorem. Cd(Pk(sF - G)V,,) = 
Cd(Pk) (Cd(sF-G) Cd(VQk). Since Pk is nonsingular Cd(Pk)~l exists and Cd(sF-
G)Cd(Vk) = Cd(Pk)~lAcd(s). Since VQk and A are of full column rank, we can 
define Cd(VQk) = a, Cd(Pk)~lA = B and also Bed(s) = /3(s). Thus, part (i) and 
(ii) follow. 

(Sufficiency) Since a is decomposable, there exists a constant matrix V such 
that « = Cd(V). By (ii) and the Binet-Cauchy Theorem Cd(sF - G)Cd(VQk) = 
Cd((sF — G) V) = [3(s) and thus consequently /?(.s) is decomposable. Thus, there 
exists a polynomial vector j(s) of minimal degree d such that jf(s) (sF — G) V = 0 
or (Vt(sFt-Gt)y(s) = 0. Thus, there exists a (Ff, G')-cmis V* with basis V1 which 
is a dual of (F, G)-rmis V and this completes the proof. • 

P r o o f of Theorem 5.2. (Necessity) Let V be a basis of the (F, G)-ieds. By the 
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equations (2.6) and (2.8), we have 

Pk(sF-G)VQk = 

Thus, Cd[Pk(sF-G) VQk] = [0, . . . , 0, (~l)d,..., 0]'. By the Binet-Cauchy theorem 
Cd[Pk(sF-G) VQk] = Cd(Pk) Cd(sF-G) Cd(VQk). Since Pk is nonsingular, Cd(Pk) 
is nonsingular, and thus, Cd(sF - G)Cd(VQk) = Cd(Pk)-l[0,... ,0, (~l)d,... ,0]'. 
Now, let us define Cd(VQk) = a, Cd(Pk)~l[0,..., 0 ( - l ) d , . . . , 0]* = : /?. It is obvious 
that a is decomposable and /? is constant; thus, necessity is proved. 

(Sufficiency) Assume (i) and (ii) hold true. By the decomposability of a, there 
exists a full column rank, n x d, constant matrix V such that a = Cd(V). Then, by 
the Binet-Cauchy Theorem, Cd(sF - G) Cd(V) = Cd[(sF - G) V] and by (ii) 

Cd[(sF-G)V] = p^0. 

This equation implies 

(a) P%(»)[(sF - G) V] = d and 

(b) all the nonzero minors of (sF — G) V are unimodular. 

Thus, there exists a nonsingular matrix U, such that 

(a.2) 

U(sF-G)V=[M^]. (a.З) 

By the Binet-Cauchy Theorem Cd[U(sF - G) V] = Cd(U) Cd[(sF - G) V]. Since 
|U| ^ 0, \Cd(U)\ -i 0 (a.3) yields 

Cd[(sF -G)V] = cd(U) -([T])= ß. (a.4) 

Let a(s) be the first column of Cd(U) l . Then, the equations (a.2) and (a.4),lead 
to Cd[(sF - G) V] = a(s) \M(s)\ = (i # 0. Since /3 is constant a(s) and \M(s)\ 
are constant and consequently M(s) is unimodular. Since the left hand side of the 
equation (a.3) is of the first degree polynomial matrix and M(s) is unimodular, we 
can write M(s) as M(s) = M + sMi, where M is nonsingular and M\ is singular. 
Thus, we may write 

" M + sMi 
0 

(sF -G)V = U' (a.5) 
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a n d GV = -U~l f ^ 1 , FV = -GVM-XMX (a.6) 

thus, GV is of full column rank and there exists a singular matrix A such that 

FV = GV A. By the equation in (2.9), sp V = V and it is an (F,G)-ieds. 

P r o o f of Theorem 5.3. (Necessity) Let V be a basis of the (F,G)-feds. By the 
equations (2.6) and (2.8), we obtain 

Pk(sF - G) VQk = 
sI-A 

0 
\sl -A\ = <f>(s). 

Thus, Cd[Pk(sF - G)VQk] = [<j)(s),0,... ,0] ' . By the Binet-Cauchy Theorem 
Cd[Pk(sF - G)VQk] = Cd(Pk)Cd(sF - G)Cd(VQk). Since Pk is nonsingular, 
Cd(Pk) is also nonsingular and Cd(sF-G)Cd(VQk) = Cd(Pk)-\(<t>(s),... ,0]'. De
fine Cd(VQk) = a, Cd(Pk)-

x[<f>(s),..., 0] = P4>(s) and thus, Cd(sF - G) a = p<j>(s) 
i.e. the necessity is proved. 

For the sufficiency, we assume that (i) and (ii) hold. By the decomposability of 
a, there exists a full column rank matrix V such that a = Cd(V). Then, by the 
Binet-Cauchy Theorem and the decomposability of /? we have 

Cd{(sF-G}Cd(V) = Cd(Ul)<j>(s) 

whprp 
H = Cd(Vl), and <j>(s) = \M(s)\. 

The above implies " ^ ^ _ Q) y} _ Q { f / ] M ( s ) } 

or equivalents (#Jfl _ ^ y _ ^ ^ ( - ) Q _ ^ ^ 

where Q G l d x d , |Q| # 0. Since Ux is constant, M'(s) should be written as M'(s) = 
sMQ + Mi; since |M'(s) | = <j>(s) and deg^(s) = d, \M0\ # 0 and thus M'(s) = 
UiR(sI-A) = U((sl-A) with | « / - y l | = <j>(s). Thus, ( sFv" -GV ) is characterised 
only by zero rmi and fed, defined as those of si - A. • 

P r o o f of Theorem 5.4. The conditions of the theorem are based on part (i) of 
Theorem 2.1 which provides a characterisation of the oo — (F, G)-eds V. In fact, 
FV C GV and Mr(G)V = {0} imply that for any basis V of v, then there exists 
A € Mdx such that 

FV = GVA, p(FV)<d, p(GV) = d (a.7) 

Clearly, p(FV) = p(A) = v < d. By the Binet-Cauchy Theorem for i = l,2,...,d 
we have 

Ci(FV) = d(F) d(G) = Ct(GVA) = d(G) d(V) d(A) (a.8) 

and thus since p(FV) = p(A) = i/ we have 

d(F) CU(V) = a ( G ) C„(V) Ci(A) -t 0 (a.9) 
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which proves part (i) and (iii). Note that for i > v + 1, C{(A) = 0 and this implies 
that d(F)A'V = {0}. Part (ii) is a mere restatement of the fact that p(GV) = d. 
Note that FV C GV and tfT(G)C\V = {0} implies that V may contain an (F, o)-feds 
subspace V with non zero frequencies in its spectrum; for this space 

FV = GV'A,A e m"x", \A\ -£ 0, fi = dim V (a.10) 

and thus for i = ft, by the Binet Cauchy Theorem we have 

C,(F)g(V)=\A\C,(G)g(V) (a . l l ) 

which proves part (iv) and completes the proof of the necessity of the above condi
tions. The sufficiency is established by a mere reversion of the arguments. In fact 
condition (iii) implies that (a.8) holds true for some A map and thus FV = GV A, or 
that FV C GV. Part (ii) implies p(GV) = d and thus from part (i) and the previous 
expressions p(FV) = p(A) = u and Nr(F) n V ^ {0} which shows that FV C GV. 
Part (iv) implies that there is no proper subspace V' which is c-(F, G)- is and this 
completes the sufficiency. Q 

P r o o f of Theorem 5.5. This proof is dual to that of Theorem 5.4 and in fact 
follows by a reversion of the roles of F and G. Q 

P r o o f of Theorem 5.6. By part (iii) of Theorem 2.1 we have that if V is a basis 
of V then 

FV = GVA (a.12) 

and p(FV) = p(GV) = d. The latter clearly implies and Cd(F)Cd(V) £ 0 and 
Cd(G)Cd(V) ^ 0 and this proves part (i). By using the Binet-Cauchy Theorem 
(a. 12) implies 

Cd(F) Cd(V) = Cd(G) Cd(V) Cd(A) = \A\ Cd(G) Cd(V) (a.13) 

and from (i), \A\ ^ 0 and this shows that g(V) = Cd(V) is an eigenvector for a 
nonzero eigenvalue. Note that FV = GV also implies that 

GV = FVA (a. 14) 

Cd(G)Cd(V) = \A\Cd(F)Cd(V) (a.15) 

with \A\ ^ 0 and thus #(V) is an eigenvector of the dual eigenvector problem, which 
proves the necessity. The sufficiency follows from the decomposability of g(V) and 
from that (a.13) and (a.15) always imply (a.12) and (a.14) respectively since \A\, \A\ 
as scalars are always decomposable. Thus FV = GV and since Cd(F) g(V) ^ 0, 
Cd(G) g(V) £ 0, V cannot contain an (F, G)-cmis. • 

P r o o f of Corollary 5.1. From Corollary (2.1) and Theorem 5.6, both parts of 
the result readily follow. n 
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P r o o f of Theorem 5.7. By part (v) of Theorem 2.2 we have that if v is an 
(F, G)-cmis, then there exists a basis Vc such that 

FVc = GVcJn, GVC = FVCJ0 

where 

J0 = 

h-i 
0 

Jo = 

0 
h-i 

(a.16) 

(a.17) 

For any basis V of v, V = Vc 

that 

FV = GVA0, GV = FVA0 

where 

^ 0, the above conditions imply 

(a.18) 

A0 = Q~170Q, A0 = QtlQQt~1 (a.19) 

By applying the Binet-Cauchy Theorem on (a.18) and taking into account the prop
erties of Ao, AQ we have 

Cd(F) Cd(V) = Cd(G) Cd(V)\Ao_\ = 0 (a.20) 

Cd(G) Cd(V) = Cd(F) Cd(V) \A0\ = 0 (a.21) 

and this proves part (i). For all i < d we have: 

d(F) d(V) = d(G) d(V) QUo) (a-22) 

Ci(G) d(V) = d(F) d(V) Ci(A0) (a.23) 

which proves the complete —(d(F), C,(G))-invariance of A'v . Since AQ, (Ao) is 

CiCdo)* = o (a.24) 

Thus any compound is also nillpotent with an index /x < k. It is not difficult to see 
that for i = d — 1, then 

C^iШ^Cd-^Q*) 

0 0 

cd-l(oj = qp 

which is a dyad and this proves the necessity. By reversing the steps and using the 
decomposability it follows that FV = GV and that Nr(F) n v ^ {0}, Mr(G) n v < 
< {0}. From the nillpotency of the restriction maps for all i = 1, . . . , d it follows 
that v cannot be expressed as v = Ve © Va, since then, some of these restrictions 
will have at least a compound which is not nillpotent; this completes the sufficiency. 

D 

(Received March 16, 1993.) 
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