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CONTROL OF NONHOLONOMIC SYSTEMS 
VIA DYNAMIC COMPENSATION1 

ALESSANDRO DE LUCA AND MARIKA D. DI BENEDETTO 

The problem of controlling nonholonomic systems via dynamic state feedback and its 
structural aspects are analyzed. Advantages and drawbacks with respect to the use of static 
state feedback laws are discussed. In particular, nonholonomic constraints are shown to 
yield possible singularities in the dynamic extension process. Nevertheless, these singular
ities can be avoided by the proper design of a discontinuous external control law achieving 
stabilization of the transformed linear system. This is illustrated through simulations for 
a unicycle. 

1. INTRODUCTION 

Analysis and synthesis of control strategies for nonlinear systems with nonholonom
ic constraints are the subject of extensive research. These systems are typical of 
mechanical applications such as wheeled mobile robots (rolling constraints) [4, 12, 
13, 15], free-space manipulators (conservation of angular momentum) [19, 23] and 
redundant manipulators subject to a given inverse kinematic control [8]. 

From the theoretical point of view, the control of nonholonomic systems presents 
interesting aspects. First of all, the control problem is a true nonlinear one since a 
nonlinear nonholonomic system is not linearly controllable. Moreover, controllabili
ty in the nonlinear setting — which is strictly related to the nonholonomic nature of 
the system — does not imply stabilizability by smooth time-invariant feedback [3]. 
As a consequence, a combination between feedforward (off-line planning) and feed
back laws of a more general kind (e.g. discontinuous [1, 5] or periodic time-varying 
control [6, 17, 20]) is necessary. 

A nonholonomic vector constraint for a system with state i £ ^ , a n open subset 
of E", is often written in the Pfaffian form 

c(x)x = 0, (1) 

where c(x) is a p x n matrix of smooth functions, having full row rank for all x. All p 
constraints in (1) are assumed to be non-integrable; if some of these constraints were 
integrable (holonomic), then the state-space dimension could be reduced accordingly. 

1 Work supported in part by ESPRIT III Project # 6546 (PROMotion) 
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When the state x coincides with the set of generalized coordinates q of a mechanical 
system, the problem is considered at a kinematic level and x are physical velocities. 
When the full dynamic model is considered [2], then x = (q,q) = (xi,X2) and 
a differential first-order kinematic constraint of the form J(q)q = 0 can still be 
written in the form (1) as 

[J(*l) ° l [ i i j = ° " (*) 

However, we note that second-order kinematic constraints may fit also in the same 
framework. For example, in [16] underactuated robot arms with no gravity are 
considered and their dynamic model is partitioned as 

S8J[£H:fc8]-[.l 
where the p joint variables qu have no explicit control input. Since the Coriolis and 
centrifugal terms can always be factored as c(q,q) = S(q,q)q, the second set of p 
dynamic equations in (3) takes again the form (1) with 

[Su(q,q) -*.(«)] [ j ] = 0 . (4) 

Under the full rank assumption, we can always express an admissible x as a linear 
combination of n — p vector fields n,(x), j = 1, • • • ,n — p, which are a basis for the 
kernel of the matrix c: 

c(x)[m(x) ••• nn_p(x)] = c(x)n(x) = 0. (5) 

Depending on the structure of the control system and assuming linearity in the input, 
equations of motion can be derived as 

m 

x = T^ff. (X)UJ = g(x)u, m<n — p (6) 

for systems with no drift, and 

x = f(x) + g(x)u, (7) 

in the more general case of systems with drift. In (6), the columns of g(x) have to 
be specified as linear combinations of the vector fields n,(x), j = 1 , . . . , n — p, with 
coefficients taken in the space of analytic functions of x. In the following,-we set 
for simplicity m = n — p, i.e. full control on the null space of c(x). Moreover, we 
assume that / and <7,'s are analytic, /(0) = 0, and rank g(x) = m, for all x 6 X. 

In both (6) and (7), the system vector fields induce only motion in the subspace 
of the tangent space characterized by the columns of the matrix n(x). In particular, 
for systems with drift, 

f(x) + Y^gi(x)v.i <= spann(x), (8) 
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for any admissible input u = ( u i , . . . , u m ) , although, in this case, state equations 
are not derived only from the satisfaction of the nonholonomic constraints. 

Associated with (6) or (7), an output characterizing the quantities to be controlled 
is defined as 

y*h(x), (9) 

where y G IRm and h is assumed to be analytic. 
Most contributions on motion planning and control for nonholonomic systems 

have addressed systems of the form (6) [12, 13, 15]. This is due to two main reasons: 
first, in view of the above mechanical analogy, nonholonomy usually involves only 
first-order kinematic constraints so that velocity inputs are assumed to be available 
for control; second, controllability results for this class of nonlinear systems are much 
stronger than in the general case. More precisely, for system (6), the concepts of 
accessibility and controllability coincide and the rank test of [22] for accessibility is 
satisfied if, and only if, the associated constraint (1) is nonholonomic. Instead, for 
system (7), only a sufficient test exists for proving small-time local controllabili
ty [21], which in turn is only a sufficient condition for controllability. 

The interest in analyzing the case in which a drift is present, as in (7), arises 
from the need of handling the rather common kinematic situation of acceleration 
inputs (as for the Hilare mobile robot [13]) and for including dynamic feedback 
compensation in the planning and control synthesis. Some structural properties and 
solutions of the control problem for nonholonomic dynamical systems have already 
been considered in [1, 2, 4]. Some preliminary results on dynamic feedback are given 
in [7]. 

In this paper, issues related with the use of dynamic state feedback laws (see 
e.g. [9]) are analyzed for both (6) and (7), in the presence of the nonholonomic 
constraint (1). First, in Section 2, control objectives which can be achieved by 
using static state feedback input-output linearization are reviewed. Then, Section 3 
illustrates in particular: (i) what are the advantages of using dynamic extension for 
solving the tracking and stabilization problems; (ii) what are the relations between 
the nonholonomic nature of the system and the singularities possibly arising in 
dynamic extension procedures [10]. In Section 4, it is shown that the preliminary use 
of a dynamic linearization technique allows the design of a singularity-free feedback 
stabilization scheme, based on the linear equivalent model. Simulation results for a 
unicycle show the feasibility of the proposed control approach. 

2. CONTROL VIA STATIC STATE FEEDBACK 

Consider the driftless system (6). Under the full rank hypothesis for g, it is possible 
to find a change of coordinates z = <f>(x) and an invertible static feedback u = (3(x)v, 
both globally defined in X, such that (6) reduces to the form 

^ = Vl< A (10) 
z2 = rj)(z)v, K ' 

with Z\ G lRm, z2 G IR"-m [14]. Matrix ip(z) can take special forms, e.g. the 
chained form of [15]. Note that no row of i/>(z) can ever be zero, since this would 
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contradict the assumption that system (6), viz. (10), is subject exactly to p = n - m 
nonholonomic constraints. Moreover, if some rows of ip(z) were constant, i.e. 

zx = v 
Z2\ = i>2\V (11) 
222 = 02a(~>, 

by replacing the coordinates z2\ by z2\ = z2\ — i>2\
z\, the equations would become 

i\ = v 

'h\ = 0 (12) 
222 = *!>22(z\,h\,Z22)v, 

leading again to a contradiction. 
Choosing z\ = <j>\(x) as the output, the form (10) shows that (6) can be input-

output linearized by regular static state feedback so that the control of y = <)>\(x) is 
achieved using well-established linear results. Being the diffeomorphism <j)(x) leading 
to (10) not unique, different sets of m outputs can be easily controlled in this way; 
however, a given output function may still not be compatible with a linearizing 
coordinate transformation. 

Example . Consider the kinematic equations of a unicycle [15]: 

X\ = COSX3U\ 

x2 = sina;3«i (13) 

^3 = "2, 

where x\, x2 and x3 denote, respectively, the two position coordinates of the contact 
point and the orientation of the unicycle. This is a special case of the car-like model, 
where in addition the turning rate u2 is upper bounded by a positive function that 
goes to zero with the rolling rate u\ [13]. The two vector fields (j\ and _</2 in (13) 
span the kernel of c(x) in the non-integrable rolling constraint 

c(x)x = x.\ sin«3 — x2 cosais = 0. (14) 

By choosing as new coordinates 

z\ = x3 

z2 = x\ cos2:3 -I- x2s\\\x3 (15) 

z3 = x.\ sin x3 — x2 cos x3 

and performing the regular static state feedback 

'? J]». ("? 
system (13) takes a chained structure, a special form of (10), i.e. 

Z\ = V\ 

h = v2 (17) 
23 = *2»1-
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Hence, control of the orientation (z\) and of the position in the instantaneous for
ward direction (22) as physical outputs can be achieved independently and with 
any prescribed linear error dynamics. Moreover, nonlinear smooth state feedback 
can always be used for stabilizing the unicycle to the constant desired equilibrium 
manifold M = {z\ = z\d,z2 = z2d}, parameterized by 23 itself. 

However, no smooth feedback control can stabilize simultaneously also 23 to 
23d [3]- Indeed, for controlling z\, z2, and 23 one could design a suitable trajec
tory z\d(t), z2d(t) such that the unicycle 'lands' close to the desired value 23d on M. 
Any such trajectory can be tracked in closed loop using appropriate v\ and v2 and 
control (16). Once the manifold M is reached, open-loop control [15], discontinu
ous [1] and time-varying feedback control [20], or a combination of the two [18] can 
be used for adjusting 23 to the desired value 23d. 

Assume that the reference state is Xd = 0 (viz. Zd = 0), and that a nonlinear 
static state feedback control has already achieved z\ = z2 = 0. In terms of the 
original state variables, we start then at time t = t0 in 

x\(t0) = 0 

x2(t0) = -z3(to)^0 (18) 

x3(t0) = 0. 
A possible switching strategy to complete the motion, i.e. to reach 2 = 0 at time 
t0 -f A, is the following: 

MO = {VO,-v,o} 
v2(t) = {0,Ksign(230o)),0,-Vsign(23(*o))}, 

where switchings between different values of the external control t; occur at time 
intervals of A/4 and the amplitude V is given by 

y = MgMi. (20) 

When applying (16) with v given by (19), the unicycle will never rotate about itself 
without rolling at the same time. Hence, this open-loop design of the external input 
v also applies to the car-like situation [13]. 

In the above example, we note that any perturbation (disturbance) occurring 
during the open-loop control phase will lead to a final error in 23 (and, in general, 
on both z\ and z2). Therefore, we would like to pursue alternative control designs 
where the maximum amount of feedback information is used. On the other hand, the 
recently proposed design of time-varying (periodic) controllers, although of appealing 
theoretical relevance, is still rather difficult to be carried out even in this simple case. 
Furthermore, the above example shows the limit of static control laws. If the position 
of the unicycle is chosen as the output to be controlled, then y = (x\,x2) and from 
(13) it follows that the input-output behavior cannot be decoupled nor linearized by 
static state feedback1. In this case, dynamic feedback may be useful for obtaining 
the desired linear input-output behavior as shown in the following section. 

'If this were possible, we could reach the desired position (xid,x2d) in the plane with linear 
error dynamics and then simply rotate to reach the desired orientation. This strategy, however, is 
not allowed in the car-like case. 
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3. CONTROL VIA DYNAMIC STATE FEEDBACK 

Extending the class of control laws to dynamic state feedback of the form 

£ = j(x,0 + Hx,Ov, e e l " 
u = a(x,t) + p(x,Z)v, 

has been shown to help in designing controllers based on feedback equivalence to 
linear systems [11]. Indeed, the class of systems that can be input-output linearized 
via dynamic feedback includes all those systems (with or without drift) which are 
right-invertible [9]. Moreover, if (6) or (7) are controllable, their dynamic extensions 
obtained by adding an integrator on each of the input channels also are control
lable [22]. 

In this section, we consider systems of the general form (7). Note that, even if 
the original system is without drift, the application of a dynamic extension leads 
to an extended system having a drift term, provided that the functions a(x,£) and 
7(21, £) are not zero. A drift term can also be introduced by a static state feedback 
of the form u = a(x) + (5(x)v, if the function a(x) is not identically zero. It is shown 
next that a major problem in using dynamic feedback for linearizing nonholonomic 
systems consists in the occurrence of singularities in the dynamic extension process. 

Propos i t ion 1. Suppose that system (7), (9) has no zero-dynamics (in the sense 
of [11]), locally around the origin. Then, either 

(i) system (7), (9) is input-output decoupable around the origin by dynamic ex
tension; 

or 
(ii) system (7) is associated with a nonholonomic constraint. 

Proof . The proof is by contradiction. Suppose that (i) holds and let S e be the 
extended input-output decoupled system obtained from (7), (9) by the application 
of one of the existing dynamic, extension algorithms. Let ne be the dimension of its 
state space and {rf,;"6., • • • ,rm} its vector relative degree. Since.the zero-dynamics 
is left unchanged under the addition of integrators on the input channels and invert-
ible static state feedback [11], the absence of zero-dynamics for (7), (9) implies the 
absence of zero-dynamics for the extended system E e . Hence, 

r\ + re
2 + ... + re

m = ne. ,(22) 

Then, after dynamic compensation, the system becomes globally diffeomorphic to a 
controllable and observable linear system and thus is stabilizable by smooth state 
feedback. Suppose now that (ii) also holds. Then, the nonholonomic system (7) 
would be smoothly stabilizable, contradicting the result of [3]. Q 

Most of the existing dynamic decoupling algorithms (e.g. [9]) are based on the 
application of an invertible static feedback and the addition of integrators on selected 
inputs, i.e. on the dynamic extension procedure referred to in assumption (i) of 
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Proposition 1. Regularity conditions [10] are associated with each dynamic extension 
algorithm: these are sufficient conditions for (i) to hold. 

The proof of the above proposition can be easily extended to minimum phase 
systems, that is, systems which possess an asymptotically stable zero-dynamics. 

Corollary 2. Suppose that system (7), (9) is minimum phase. Then, (i) and (ii) 
of Proposition 1 are mutually exclusive. 

As a consequence of the above results, the straightforward application of a dy
namic linearizing control is not feasible. The previous unicycle example can be 
used to highlight the typical nature of dynamic singularities arising in the control of 
nonholonomic systems. 

Example ( reprise) . Consider again equations (13) with 

2/1 = * i , 2/2 = -52. (23) 

The application of the algorithm of [9] yields a one-dimensional dynamic decoupling 
controller of the form 

£ = COSX3V1 + s inz 3 i> 2 

"1 = ( (24) 

U2 = 4 (—sinX3V1 + cos453^2). 

The extended system has re = r2 = 2 and ne = 4, so that, in the new coordinates 

(25) 
Z3 = £cosx3, 24 = £sinx3 , 

it is fully described by two chains of two input-output integrators. For the original 
system (13), no zero-dynamics can be defined in the sense of [11] and Proposition 1 
cannot be used directly. Nevertheless, any motion of X3, obtained with u\ = 0 and 
an arbitrary U2(t), is compatible with the output (23) being constantly zero. Since 
the extended system is completely linear and controllable, in appearance smooth 
feedback stabilization would be allowed. However, the linearizing control law (24) 
has a singularity in £ = 0, i.e. when the unicycle is not rolling because u\ = 0. 
Intuitively, in this situation an infinite amount of energy is required on the second 
input u2 for moving the output y without using the first input ui. 

From the example above, two observations follow: (i) when the output reference 
trajectory is persistently non-zero and sufficiently smooth, then the dynamic com
pensator (24) (properly initialized) can be effectively used as a tracking control law, 
as pointed out also in [7]; (ii) for a typical point-to-point motion, the use of (24) as 
it stands would fail. 

This recognized critical flaw of the dynamic linearization approach may be avoid
ed by using the additional degree of freedom left in the design, namely the free 
initialization (at any time) of the dynamic compensator, together with a suitable 
synthesis of the control input v. This will be illustrated in the next section. 
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4. STABILIZATION DESIGN 

In this section, we illustrate how to construct a feedback stabilizing controller for (13) 
in a point-to-point motion. The proposed approach is based on the preliminary 
use of (24) and takes advantage of the linear equivalent structure of the closed-
loop system. The unicycle is used here to point out this possibility, although, in 
general, each situation would require a case-by-case solution. The final control law 
is discontinuous, but contains as much feedback information as possible. 

Without loss of generality, the desired state is chosen as the origin of the state 
space, Xd = 0. The reference frame in which the motion is described is determined 
accordingly. We assume first that the initial conditions of the unicycle are such that 
X\(0) ^ 0 and that cos£3(0) > 0. In a second step of the design procedure, we will 
show how the more general situation can be reduced to this one. 

Consider system (13) with outputs (23) and apply the dynamic compensator (24). 
Then, the extended system is diffeomorphic to the linear controllable system 

h = 23, 23 = vi, ( 

22 = 2 4 , 2 4 = V2, 

where the new coordinates 2 are defined by (25) in terms of a; and of the compensator 
state £. The validity of this representation is restricted by the assumption that 
t(t) ^ 0 at all times t. Thus, the control design will have to ensure that this 
constraint is never violated. In terms of the new states, the control objective can be 
restated as 

lim z\(t) = 0, (first position component) 

lim z2(t) = 0, (second position component) 

lim ATAN2{24(<),23(<)} = 0, (orientation) 

(27) 

z%(t) + z\(t) ^ 0, 'it, (singularity avoidance). 

The function ATAN2 is the well-known two arguments inverse tangent function, 
using the signs of both arguments to locate the solution in the proper quadrant. 

The control law that we propose will achieve the point-to-point motion of the 
unicycle in a finite time, denoted t. The following external control v(t) is chosen for 
t£[0,t\: 

«i(0 = 0, , . 
v2(t) = -ksign(z2(t) + ^^M), ( 2 8 ) 

where i is yet to be defined, and k > 0 can be chosen such that, at time i; the two 
variables z2 and 24 have reached zero (see e.g. [19]). To complete the design of the 
dynamic controller, we need to specify the initial condition £(0). This is chosen as: 

«»--g^.... <-» 
where £ is an arbitrary positive constant. As a consequence of the previous choices, 

23(0 = 23(0) = - i sign(2! (0)), (30) 
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and hence sign(z3(<)) = — sign(zi(0)). Since £2(t) = z3(t) + z\(t), we note that £(<) 
is bounded away from zero, thus keeping the same sign for all t (the one chosen at 
t = 0). Moreover, 

*i(0 = * i ( 0 ) - | » g n ( * i ( 0 ) ) . . (31) 

Therefore, imposing z\(t) = 0 gives 

- _ _ j0) _ |«i(0)| f 3 2 , 
'-(rignC^O))- ? > 0 - (32) 

To verify that all the objectives have been satisfied, it remains to show that 
sign(cosx3(i)) > 0 so that ATAN2{z4(f),z3(f)} = 0. Since cosx3(t) = z3(t)/Z(t), 
then 

giving x3(i) = 0 (not 7r!). 

A couple of remarks are now in order. 

- If a disturbance occurs, feedback is used to counteract the perturbation; time 
t will not be anymore the final instant, but this does not affect the overall 
behavior. A robust controller is designed so that the variables z2 and z4 

converge to the origin faster than z\. The way Z\ converges to the origin is 
governed by the choice of the constant £, as shown by (32). 

- In a practical approach, the stabilizing terminal controller v2 in (28) is replaced 
by a continuous version yielding arbitrary exponential rate of convergence for 
the variables z2 and z4: 

v2(t) = -kpz2(t) - kdz4(t), kp,kd > 0. (34) 

The gains kp and kd are selected so that the error on z2 = x2 becomes less 
than a small tolerance error e, before time i. 

If the initial state of the unicycle does not satisfy the conditions Xi(0) ^ 0 and 
cos £3(0) > 0, it is still possible to use the above stabilizing control by the preliminary 
application of the following feedback law for both inputs v, for t £ [—to, 0]: 

«i(<) = - s i n 153(0. ( 3 5 x 

v2(t) = cosx3(t). 

The duration <o of this first control phase will be such that x\(0) ^ 0 and cosx3(0) > 
0, so that the previously described control phase can be successfully started. In fact, 
from (24), it is seen that the control law (35) yields a constant £ = £(—to) and that 
the original inputs become 

«i -«- .o ) , - 2 = ^ - W 

It follows that z3(t) + z\(t) = £2(-<o) and the two variables z3 and z4 will vary 
on a circle of radius |£(-£o)|- Therefore, there exists a finite time to such that z3 
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will become of the same sign required for the initial condition of the compensator at 
time zero, i.e. sign(z3(0)) = sign(£(0)) and cosx3(0) will be thus positive. From (25) 
and (26), it follows that the same control (35) leads to a value for zi(0) which is 
different from zero. 

Intuitively, control (35) makes the unicycle rotate so that the angle formed with 
the ai-axis will belong to the interval ( - § , § ) . In the second phase, the control 
law (28) makes the unicycle move forwards (or backwards) to the origin, whenever 
its initial position is in the left (respectively, right) half-plane. As a result, the 
two control phases can be patched together without changing structure, but just 
resetting the compensator state £ and the external inputs vi and V2- We note that 
this automatically leads to a discontinuous control input u\ and «2-

Simulation results with the previous stabilizing dynamic control law are report
ed next for two different point-to-point motions. In both cases, the exponential 
stabilizing controller (34) is used, with gains chosen as 

kp = 25, kd = 10, (37) 

corresponding to a double real pole at —5 for the error dynamics of the second 
component of the output. The final error norm tolerance is set to e = 0.0005. 

0 0.2 0.4 0.6 0.8 

Fig. 2. Unicycle orientation 13 (case 1). 
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F i g . 3 . Driving input u\ (case ]). 

F i g . 4. Steering input u2 (case I). 

In the first simulation (case I), the initial state is 

*i(0) = 5, .-2(0) = 5, x3(0) = ҡß, (38) 

thus with the unicyle in the positive quadrant. The compensator state is initially 
set to £(0) = - 6 . Figures 1-5 show the motion of the unicycle in the (x,y)-
plane, its orientation, the original control input u, and the compensator state. The 
overall motion is very smooth, with the driving input being always negative (the 
unicycle rolls backwards). The sudden change in Fig. 3 corresponds to the reaching 
of the origin. Note that the compensator state in Fig. 5 is bounded away from zero, 
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ensuring in turn bounded control effort. 

0 0.2 0.4 0.6 08 I 1.2 1.4 1.6 1.8 2 

Fig. 5. Compensator state £ (case I). 

In the second simulation (case II), the initial state is 

sвi(O) = - 5 , ar2(0) = 0, ar3(0) = -9тг/20, (39) 

while the initial state of the compensator is set to £(0) = —18. Figures 6-10 refer 
to the associated motion, which is now performed always in the forward rolling 
direction. Since the initial position is on the negative x-axis and the unicycle points 
almost at —90°, the control will not immediately force the system towards the origin, 
allowing simultaneous reorientation during motion. After 0.2 seconds, the unicycle 
is in a more convenient state to be pushed to its final destination with reduced effort. 

Fig. G. Output evolution (case II). 
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0 0.2 0.4 0.6 0.8 

F i g . 7. Unicycle orientation x3 (case II). 
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F i g . 8. Driving input ttj (case II). 
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F i g . 9. Steering input ui (case II). 
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F i g . 10 . Compensator state £ (case II). 

5. C O N C L U D I N G R E M A R K S 

In this paper , the quest ion whether it is possible to use dynamic compensa t ion for 
achieving t racking and s tabi l iza t ion of nonholonomic nonlinear sys tems has been 
invest igated. Firs t , the relat ion between the presence of nonholonomic const ra in ts 
and t h a t of s ingulari t ies in the dynamic extension process has been establ ished. 
T h e n , for a unicycle example , i t has been shown t h a t dynamic compensa t ion can 
nevertheless be used by fully exploi t ing the degrees of freedom of the control scheme, 
in par t icu lar the proper ini t ial izat ion of the dynamic pa r t of the controller. 

T h e proposed stabi l izing control law shows discontinuit ies due to the re-initializ
a t ion of the dynamic compensa to r s t a te "on the fly", wi th t he s ame control s t ruc tu re 
being preserved. T h e overall s tabi l iza t ion design is s impler t han t h a t of t ime-varying 
feedback control laws since it takes full advan tage of the linear equivalent sys tem 
under feedback linearizing dynamic control . Moreover, the proposed control scheme 
conta ins as much feedback information as possible, thereby present ing obvious ben
efits of robustness wi th respect to open-loop solut ions . 

(Received March 23, 1993.) 
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