MA REPRESENTATION OF ℓ_{2} 2D SYSTEMS

Paula Rocha

Abstract

In this paper we study the representation of 2D systems with ℓ_{2} signals. Starting from a (deterministic) 2D AR model, we investigate under which conditions there exists an alternative description of the MA type. Such a description is further used in order to obtain 2D state space model for the given system.

1. INTRODUCTION

In the behavioral approach a system is characterized by the way that it interacts with the environment through its, so-called, external variables. These variables are all considered to be at a same level, since there is no a priori division into inputs and outputs. The system laws can then be expressed by means of relationships between the external variables; this yields a set of admissible external signals known as the system behavior. A system for which all the admissible signals are square summable sequences over \mathbb{Z}^{2} is called an $\ell_{2} 2 \mathrm{D}$ system.

An interesting class of 2 D systems is associated with the class \mathbb{B}^{q} of linear, shiftinvariant, closed 2D behaviors in q variables. Representation results of such behaviors have been derived in [5] and [6]. Particularly, \mathbb{B}^{q} coincides with the family of 2D AR behaviors (that can be described as the kernel of a polynomial operator $R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ in the 2D shifts and their inverses).

In this paper we consider ℓ_{2} systems obtained by imposing a square summability condition to the trajectories of the behaviors in \mathbb{B}^{q}. These systems will be called $\ell_{2} \mathrm{AR}$ systems. We are concerned with the existence of suitable descriptions for such systems. Namely, we investigate whether or not it is possible to represent an ℓ_{2} AR behavior \mathcal{B} as the image of a polynomial operator $M\left(\sigma_{1}, \sigma_{1}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ acting on an ℓ_{2} space, instead of representing it as a kernel. (Such an image representation is also called an MA description). In this case \mathcal{B} can be generated as the output behavior of a 2D quarter-plane causal FIR filter driven by free ℓ_{2} inputs. Such a description is of particular interest for the construction of state space realizations.

We will show by means of an example that ℓ_{2} MA representations cannot always be obtained. However, it turns out that a broad class of ℓ_{2} AR systems allows for such representations.

2. PRELIMINARIES

We start by introducing some basic definitions and results that will be useful in the sequel.

We consider discrete 2D systems $\Sigma=(T, W, \mathcal{B})$ in q variables, with trajectories defined over the domain $T=\mathbb{Z}^{2}$ and taking their values on $W=\mathbb{R}^{q}$. The set $\mathcal{B} \subseteq\left\{w: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{q}\right\}=:\left(\mathbb{R}^{q}\right)^{\mathbb{Z}^{2}}$ specifies which are the admissible system signals, and constitutes the system behavior. We remark that in this characterization of Σ the system variables are stacked together in a q-dimensional vector w instead of being split into inputs and outputs. Thus we do not impose an input-output structure in the signal components.

The behavior \mathcal{B} is said to be shift-invariant if it is invariant under the 2D shiftoperators and their inverses. These are, as usual, given by $\sigma_{1} w(i, j)=w(i+$ $1, j), \sigma_{2} w(i, j)=w(i, j+1)$, with the obvious definitions for σ_{1}^{-1} and σ_{2}^{-1}. Here we consider the class \mathbb{R}^{q} of linear, shift-invariant behaviors in q variables which are closed subsets of $\left(\mathbb{R}^{q}\right)^{\mathbb{Z}^{2}}$ in the topology of pointwise convergence. For this class of systems the following representation result holds.

Proposition 1. [4]: The behavior \mathcal{B} belongs to \mathbb{B}^{q} if and only if there exists a polynomial matrix $R\left(s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right)$ such that $\mathcal{B}=\left\{w: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{q} \mid R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)\right.$ $w=0\}=: \operatorname{ker} R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$.

We refer to the equation $R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right) w=0$ as a (deterministic) autoregressive (AR) equation, and to the elements of \mathbb{B}^{q} as AR behaviors.

If the polynomial matrix $R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ is (factor) left-prime the corresponding behavior $\mathcal{B}:=\operatorname{ker} R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ can alternatively be represented as the image of a polynomial operator $M\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ acting on $\left(\mathbb{R}^{p}\right)^{\mathbb{Z}}$ (cf. [6]). Thus $\mathcal{B}=\left\{w: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{q} \mid \exists v: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{p}\right.$ s.t. $\left.w=M\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right) v\right\}$, meaning that the trajectories in \mathcal{B} can be obtained as the outputs of the 2 D quarter-plane causal FIR filter M driven by the input v.

Based on such a representation the following state space model for \mathcal{B} is easily derived.

$$
\begin{align*}
\sigma_{1} x_{1} & =A_{11} x_{1}+B_{1} v \\
\sigma_{2} x_{2} & =A_{21} x_{1}+A_{22} x_{2}+B_{2} v \tag{1}\\
w & =C_{1} x_{1}+C_{2} x_{2}+D v .
\end{align*}
$$

This resembles the well-known separable Roesser model, with the difference that here the "output" consists of the whole system variable w and the "input" is an auxiliary variable v (called the driving-variable).

3. REPRESENTATION OF ℓ_{2} AR SYSTEMS

In this section we investigate existence of ℓ_{2} MA representations for $\ell_{2} A R$ systems. This guarantees the possibility of realizing at $\ell_{2} \mathrm{AR}$ systems by means a state-space model of the form (1) with ℓ_{2} state and ℓ_{2} driving-variable.

Definition 2. $\Sigma_{2}=\left(\mathbb{Z}^{2}, \mathbb{R}^{q}, \mathcal{B}_{2}\right)$ is said to be an $\ell_{2} \mathrm{AR}$ system if $\mathcal{B}_{2}=\mathcal{B} \cap \ell_{2}^{q}$, with \mathcal{B} an AR behavior and $\ell_{2}^{q}:=\left\{w: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{q}\left\|\Sigma_{(i, j) \in \mathbb{Z}^{2}}\right\| w(i, j) \|^{2}<\infty\right\}$.

Thus, the behavior of an $\ell_{2} \mathrm{AR}$ system Σ_{2} can be specified as the kernel of a polynomial operator $R\left(\sigma_{1}, \sigma_{2}, \sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ acting on ℓ_{2}^{q}. This operator is called an $\ell_{2} \mathrm{AR}$ representation of Σ_{2}, and we denote $\Sigma_{2}(R)$ (and $\mathcal{B}_{2}=\mathcal{B}_{2}(R)$).

A first representation is given in the next proposition.
Proposition 3. If \mathcal{B}_{2} be an ℓ_{2} AR behavior, then there exists a (factor) left-prime polynomial matrix $R\left(s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right)$ such that $\mathcal{B}_{2}=\mathcal{B}(R)$.

Proof. Let $E\left(s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right)$ be an arbitrary representation of \mathcal{B}_{2}, i.e. $\mathcal{B}_{2}=$ $\mathcal{B}_{2}(E)$. Then E can always be factorized as $E=F R$, where F has full column rank and R is a (factor) left-prime polynomial matrix of size $g \times q$. So, $\mathcal{B}_{2}=\{w \in$ $\left.\ell_{2}^{q} \mid F(R w)=0\right\}$. This means that $w \in \mathcal{B}_{2}$ if and only if $R w \in\left(\operatorname{ker} F \cap \ell_{2}^{g}\right)$. Using the fact that F has full column rank, it is possible to show that ker $F \cap \ell_{2}^{g}=\{0\}$. Hence $w \in \mathcal{B}_{2}$ if and only if $R w=0$, i.e. $\mathcal{B}_{2}=\mathcal{B}_{2}(R)$.

Given an $\ell_{2} \mathrm{AR}$ system $\Sigma_{2}(R)$ the ℓ_{2} MA representation problem can be formulated as follows. Find a polynomial matrix $M\left(s_{1}^{-1}, s_{2}^{-1}\right)$ such that the system behavior $\mathcal{B}(R)$ coincides with the image of the operator $M\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$ acting on a space ℓ_{2}^{p}, for a suitable integer p (i.e. $\mathcal{B}(R)=\left\{w \mid \exists a \in \ell_{2}^{p}\right.$ s.t. $\left.w=M a\right\}$). This image will be denoted by $\mathrm{im}_{2} M$ in order to make a distinction with the image of M viewed as on operator on $\left(\mathbb{R}^{q}\right)^{\mathbb{U}^{2}}$ (which is simply denoted by im M).

The example below shows that the foregoing problem is not always solvable.
Example 4. Let $\Sigma_{2}=\left(\mathbb{Z}^{2}, \mathbb{R}^{2}, \mathcal{B}_{2}\right)$ be an ℓ_{2} system in two variables such that $\mathcal{B}_{2}:=\mathcal{B}_{2}(R)$ and $R\left(s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right):=\left[s_{2}-1-\left(s_{1}-1\right)\right]$. So, $\mathcal{B}_{2}=\mathcal{B} \cap \ell_{2}^{2}$, with $\mathcal{B}:=$ $\left\{w: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} \mid w=\operatorname{col}\left(w_{1}, w_{2}\right)\right\}$ and $\left.\left(\sigma_{2}-1\right) w_{1}=\left(\sigma_{1}-1\right) w_{2}\right\}$. Since the polynomial matrix R is left-prime, \mathcal{B} has an image representation, namely $\mathcal{B}=\operatorname{im} M\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$, with $M\left(s_{1}^{-1}, s_{2}^{-1}\right):=\operatorname{col}\left(s_{2}^{-1}\left(1-s_{1}^{-1}\right), s_{1}^{-1}\left(1-s_{2}^{-1}\right)\right)$. Thus $B_{2}=\operatorname{im} M \cap \ell_{2}^{2}$. However it can be shown that $\mathcal{B}_{2} \neq \operatorname{im}_{2} M$, and that moreover there does not exists another operator \bar{M} such that $\mathcal{B}_{2}=\mathrm{im}_{2} \bar{M}$.

A sufficient condition for the existence of an ℓ_{2} MA representation is as follows.
Proposition 5. Let \mathcal{B}_{2} be an ℓ_{2} AR behavior, and let $R\left(s_{1}, s_{2}, s_{1}^{-1}, s_{2}^{-1}\right)$ be a $g \times q$ (factor) left-prime 2D polynomial matrix such that $\mathcal{B}_{2}=\mathcal{B}_{2}(R)$. Then \mathcal{B}_{2} allows for an ℓ_{2} MA if the following condition is satisfied.

$$
\begin{equation*}
\operatorname{rank} R\left(\lambda_{1}, \lambda_{2}, \lambda_{1}^{-1}, \lambda_{2}^{-1}\right)=g \forall\left(\lambda_{1}, \lambda_{2}\right) \in \mathcal{P}:=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C} \times \mathbb{C}| | \lambda_{1}\left|=\left|\lambda_{2}\right|=1\right\} .\right. \tag{C}
\end{equation*}
$$

Proof. Since R is factor left-prime, R^{T} is an irreducible basis (cf. [3]). Let M^{T} be an irreducible dual basis of R^{T}. Then, by (C), M must have full column rank over \mathcal{P} (cf. [3], Lemma 2.5). This implies that there exists a $2 D$ polynomial matrix L such that $L M=N$, with N square, $\operatorname{det} N \not \equiv 0$, and $\operatorname{det} N\left(\lambda_{1}, \lambda_{2}, \lambda_{1}^{-1}, \lambda_{2}^{-1}\right) \neq$
$0 \forall\left(\lambda_{1}, \lambda_{2}\right) \in \mathcal{P}$. Given $w \in \mathcal{B}_{2}$ define a as the ℓ_{2} solution of the equation $N a=L w$. Such a solution always exists since $L w$ is ℓ_{2} and N is a full row rank polynomial matrix without zeros in \mathcal{P}. We now claim that a is such that $w=M a$. Clearly, $L(w-M a)=0$; moreover, since M^{T} is a dual basis of $R^{T}, R M=0$ and hence $R(w-M a)=0$. Combining the two equations in $w-M a$ yields $S(w-M a)=0$, with $S:=\operatorname{col}(R, L)$. Finally, it can be shown that S has full column rank, so that ker $S \cap \ell_{2}^{q}=\{0\}$. This implies that $w=M a$, and therefore $\mathcal{B}_{2} \subseteq \operatorname{im}_{2} M$. The reciprocal inclusion is obvious.

Corollary 6. Every $\ell_{2} 2 D$ system $\Sigma_{2}=\left(\mathbb{Z}^{2}, \mathbb{R}^{2}, \mathcal{B}\right)$ satisfying the conditions of Proposition 5 can be realized by means of a state model of the form (1) with ℓ_{2} driving-variables v and ℓ_{2} state trajectories $x:=\operatorname{col}\left(x_{1}, x_{2}\right)$.

Proof. By Proposition $5 \mathcal{B}=\left\{w \mid \exists v \in \ell_{2}\right.$ s.t. $\left.w=M\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right) v\right\}$. Factorizing $M\left(s_{1}^{-1}, s_{2}^{-1}\right)$ as $M\left(s_{1}^{-1}, s_{2}^{-1}\right)=M_{2}\left(s_{2}^{-1}\right) M_{1}\left(s_{1}^{-1}\right)$ shows that \mathcal{B} can be viewed as the output behavior of two 1D FIR filters acting in series and driven by an ℓ_{2} input v. The desired 2D realization can be obtained based on 1D realization with ℓ_{2} state for M_{1} and M_{2}. For more detail we refer to [6].

An ℓ_{2} AR behavior $\mathcal{B}_{2}=\mathcal{B}(R) \cap \ell_{2}^{q}$ is said to have a maximal degree of freedom if the number of ℓ_{2} free variables in \mathcal{B}_{2} equals the number of free variables in $\mathcal{B}(R)$. (This does not happen, for instance, for the behavior \mathcal{B}_{2} of Example 4.)

It turns out that for ℓ_{2} behaviors with a maximal degree of freedom the sufficient condition of Proposition 5 is also necessary.

Theorem 7. Let \mathcal{B}_{2} be an ℓ_{2} AR behavior given by $\mathcal{B}_{2}=\mathcal{B}_{2}(R)$, with R a $g \times q$ left-prime 2D polynomial matrix. Further, assume that \mathcal{B}_{2} has a maximal degree of freedom. Then \mathcal{B}_{2} allows for an ℓ_{2} MA representation if and only if the condition (C) of Proposition 5 is satisfied.

Proof. Suppose that \mathcal{B}_{2} has an ℓ_{2} MA representation $w=M a$. Then M must be a dual basis of R, and its column rank drops wherever the row rank of R does. So, if (C) is not satisfied there exists $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right) \in \mathcal{P}$ such that every $(q-g) \times(q-g)$ minor of M vanishes at $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$. Assume now, w.l.g., that the first $q-g$ components \tilde{w} of w are free in ℓ_{2}, and denote by P the $q-g$ first rows of M. Then for every $\tilde{w} \in \ell_{2}^{(q-g)}$ there must exist $a \in \ell_{2}^{(q-g)}$ such that $P a=\tilde{w}$. In particular P^{-1} should have an ℓ_{2} impulse response, which is absurd since $\operatorname{det} P\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)=0$.

Example 8. Let $\mathcal{B}=\mathcal{B}_{2}(R)$ with $R\left(s_{1}, s_{2}, s^{-1}, s_{2}^{-1}\right):=\left[\left(1-s_{1}\right)\left(s_{2}-1\right) 2 s_{2} s_{1}-\right.$ $s_{1}-s_{2}$]. Clearly $\mathcal{B}(R)$ has one free variable. Moreover, it is shown in [1] that the 2D transfer function $t\left(z_{1}, z_{2}\right)=\left(z_{1}-1\right)\left(z_{2}-1\right) /\left(2 z_{2} z_{1}-z_{1}-z_{2}\right)$ has an ℓ_{2} impulse response. This implies that the second variable in \mathcal{B}_{2} is free in ℓ_{2}, and so \mathcal{B}_{2} has a maximal degree of freedom. Now, if \mathcal{B}_{2} has an ℓ_{2} MA representation, this must be of the following form:

$$
\binom{w_{1}}{w_{2}}=\binom{\left(\sigma_{1}-1\right)\left(\sigma_{2}-1\right)}{2 \sigma_{1} \sigma_{2}-\sigma_{1}-\sigma_{2}} a
$$

However, if w_{2} is the 2 D impulse there is no ℓ_{2} variable a satisfying ($2 \sigma_{1} \sigma_{2}-\sigma_{1}-$ $\left.\sigma_{2}\right) a=w_{2}$ (since the impulse response of $\left(2 z_{1} z_{2}-z_{1}-z_{2}\right)^{-1}$ is not in ℓ_{2}). This shows that \mathcal{B}_{2} does not allow an ℓ_{2} MA representation.

4. CONCLUSIONS

In this paper we present preliminary results on the solvability of the $\ell_{2} M A$ representation problem for the class of $\ell_{2} \mathrm{AR}$ systems. This problem is of particular interest due to its connection with the construction of state space realizations for that class of systems. The necessity of the condition (C) in Proposition 5 for ℓ_{2} behaviors without a maximal degree of freedom is still under investigation.
(Received February 25, 1993.)

REFERENCES
[1] D. Goodman: Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Trans. Circuits and Systems CAS-24 (1977), 4.
[2] C. Heij: Deterministic Identification of Dynamical Systems. Springer-Verlag, Heidelberg 1989.
[3] B. Levy: 2-D Polynomial and Rational Matrices, and Their Applications for the Modeling of 2-D Dynamical Systems. Ph. D. Thesis, Technical Report No. M735-11, Information Systems Laboratory, Department of Electrical Engineering, Stanford University 1981.
[4] P. Rocha and J. C. Willems: State for 2D systems. Linear Algebra Appl. 122/123/124 (1989), 1003-1038.
[5] P. Rocha and J. C. Willems: Controllability of 2D systems. IEEE Trans. Automat. Control AC-36 (1991), 413-423.
[6] P. Rocha: Representation of noncausal 2D systems. In: New Trends in Systems Theory (G. Conte, A. M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, Vol. 7, 1991.
[7] J. C. Willems: From time series to linear system. Part I. Automatica 22 (1986), 5, 561-580.

Dr. Paula Rocha, Department of Mathematics, University of Aveiro, 3800 Aveiro. Portugal.

