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MODEL REDUCTION METHODS 
FOR CHAOTIC SYSTEMS 

T O M T. HARTLEY, HELEN K. QAMMAR AND LARRY D. MURPHY 

A survey of possible model reduction methods is given for chaotic and other nonlinear 
systems. Problems specific to the model reduction of nonlinear systems are also presented. 
This area is important for providing relatively low order models of nonhnear phenomena 
for analysis, control design and control evaluation. 

INTRODUCTION 

The essential problem to be addressed in this paper is the model reduction of nonlin
ear systems with a particular emphasis on dissipative chaotic systems. This problem 
is significant in at least two areas of study. One is the extraction of the essential 
dynamics of a system from a given set of higher order equations based on physical 
principles. For example, spatially distributed systems whose dynamics are described 
by partial differential equations are inherently infinite dimensional in state space and 
it is often of interest to extract a set of low order ordinary equations that describe 
a particular phenomenon. Considerable effort has been applied to problems of this 
sort through the use of truncated modal expansions, or spectral methods ([18,21,5]). 
One notable example is the Lorenz equations which were obtained via a truncated 
modal expansion [16]. 

The second area of application for the model reduction of nonlinear systems is in 
the area of control systems design. Although there are many classical control design 
methods that use a very low order controller (one or two states) [15], many of the 
modern control designs based on state feedback usually require an observer which 
has the same number of states as the particular system to be controlled [8]. This is 
difficult when the system to be controlled is spatially distributed and thus requires 
an infinite order observer. Thus the real difficulty with the modern design approach 
is that the necessary compensator must have as many states as the particular system 
model. 

With respect to the control of nonlinear systems, many techniques are available. 
Some techniques operate on a small perturbation model at an operating point, that 
is, a locally linearized system. The reason for this is that the linear control tech
niques are well understood, and some are sufficiently robust as to allow fairly large 



456 T.T. HARTLEY, H.K. QAMMAR AND L.D. MURPHY 

perturbations [4]. Other techniques seek a low order model that maintains its nonlin
ear nature to test a given control design over a large range of operating points. This 
approach is often used for evaluating aircraft and aircraft engine controllers [19]. 
Thus, controller design for nonlinear systems requires both reduced order linearized 
systems and reduced order nonlinear systems. 

The approach taken in this paper is somewhat general in nature. The viewpoint 
will be that of the control system designer and the focus is on what this designer's 
requirements are for a reduced order system. First, general considerations in the re
duction process are highlighted and discussed. Many qualitatively important results 
are discussed with some quantitative results given for selected examples. The last 
section gives an overview of the currently useful methods for the model reduction of 
chaotic systems and gives specific examples of the application of these methods. It 
should be understood that much more work is required in this area. 

1. GENERAL ISSUES IN THE MODEL REDUCTION OF CHAOTIC SYSTEMS 

It is important to note that model reduction of chaotic systems depends on the 
desired characteristics the control designer is trying to preserve. In this section we 
discuss three different characteristics which then lead to a discussion of different 
model reduction methods. 

A . Preservation of a t tractor stability 

Consider a system whose asymptotic solution lies on a chaotic attractor. The con
trol designer may only require that the reduced order model exhibit a stable solution 
which may or may not have the same chaotic nature as the original system. Fur
ther discussion of the subtleties of this requirement are probably best facilitated by 
considering possible Lyapunov spectra (LCE's). 

Consider a chaotic attractor with the Lyapunov spectrum (+, 0, —,—,—,..., —). 
Model reduction using a standard singular perturbation approach would eliminate 
the fast states (large negative LCE's) and keep only the more important slow states. 
Although 'fastness' of a given state cannot necessarily be mapped into a large neg
ative Lyapunov exponent, it does appear to be a reasonable assumption. Unfortu
nately, the elimination of a very fast state can be destabilizing for a chaotic system 
because the fastest states significantly contribute to the attractor having a negative 
divergence. The arbitrary elimination may yield a positive divergence, for example 
a (+, 0, —£, —) spectrum becomes (+, 0, —e) where e is small, and thus the system 
is unstable. As the later examples will show, although singular perturbation can be 
effective in reducing the order of a chaotic system, its use requires some caution. 

A slightly different problem arises if we consider a system with Lyapunov spec
trum (+,0,0, . . . ,0 ,0 ,—,—,. . . ,—,—). The multiple zero exponents indicate multi
ple flow directions on a high dimensional toroidal structure. Clearly it should be 
possible to eliminate these flow directions from the system and maintain attractor 
stability as they essentially add nothing to the divergence. Elimination of the flow 
directions will certainly change the qualitative and quantitative nature, for example 
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the fractal dimension, of the model's behavior. The question that arises is how im
portant is it to preserve the qualitative nature of the chaotic attractor for control 
applications. 

For spatially distributed chaotic systems represented by partial differential equa
tions, the problem is clearly more difficult. There are theoretically an infinite number 
of Lyapunov exponents, although it would seem that nature would limit the number 
of positive ones to be a finite number. Model reduction techniques for such systems 
may use a combination of singular perturbation and elimination of flow directions 
(or center manifolds). The problem of mapping the flow directions, as denoted by 
the LCE's, into the system states is still present. A further problem is that the 
qualitative nature of the model is now dependent on a particular spatial location. 

B . P rese rv ing a t t r a c t o r n u m b e r and s t r u c t u r e 

Many systems have multiple attractors or repellers, each having their own dimension 
and basin of attraction. The specific model reduction technique for such systems will 
depend on which attractors (repellors) as well as the size of their respective basins 
should be kept in the reduced order model. For the case where the controlled system 
may easily travel across basin boundaries, preservation of multiple attractors and 
basin size would be important. Clearly, the model reduction process requires some 
decision about what one wants the results to do. 

Another problem is the preservation of the bifurcation structure of the system, 
that is the type of attractor that exists as a given parameter is changed. Since a good 
control design should be somewhat robust to small parameter variations, a reduced 
order model should, in some sense, reproduce some of the bifurcation structure of 
the true plant. The dimension of the attractor that exists for a given parameter is 
perhaps not as important as having a similar type of bifurcation occur at the given 
parameter value. 

C. Preserving of t ime series prediction 

A reduced order model which closely follows the system state(s) to be controlled 
would be desirable. This property is especially desirable in adaptive controllers 
which use an n-step ahead prediction. Long term prediction of a chaotic trajecto
ry is inherently impossible because of sensitivity to initial conditions. Short term 
prediction has been somewhat successful through the use of very large order models 

The question that arises is which metric of a chaotic attractor could be used to 
develop a reduced order model with the desired characteristic trajectories. Tradi
tionally, chaotic attractors have been characterized by their dimension or their LCE 
spectrum. Although preservation of fractal information or correlation dimension 
may result in a useful reduced order model, it is not clear that this corresponds 
to good time series prediction. For example, many completely different structural 
attractors can have the same dimension. This is also the case if we preserve the sig
nificant aspects of the LCE spectrum or alternatively the average divergence of the 
system. Note that neither the divergence nor the fractal dimension of the attractor 
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give a good idea of the size of the attractor in state space, or reduced state space. 
Perhaps more heuristic methods are needed. Some suggestions for a characteristic to 
be preserved are the average value, the root-mean-square (RMS) value, the variance, 
some other norm of the states, or the state vector and interstate correlation. For 
example, states that have very small RMS values could be replaced by their constant 
average value, thus reducing the order of the model. Also, states that are strongly 
correlated with other states could be replaced by these other states, since they are 
the "same" in nature. 

A totally different approach is available from the classical control literature. This 
will be called preservation of frequency response, and will only be applicable to 
systems that can be separated into a dynamic linear forward path with a single 
static nonlinearity in the feedback path. The idea is to reduce the order of the linear 
forward path while maintaining its frequency response characteristic with respect 
to the describing function of the static nonlinearity [11,12,9]. The problem is that 
all systems cannot be easily decomposed into this form. The benefit is that many 
systems can be decomposed into this form, and that readily available linear model 
reduction methods are available for the dynamic linear forward path system. An 
example of this is given in the next section. 

2. AVAILABLE METHODS AND EXAMPLE APPLICATIONS 

This section presents four specific methods for obtaining reduced order models of 
chaotic systems for control system design. The strengths and weaknesses of each 
method with regard to preservation of system properties are discussed. 

A. Singular per turba t ion 

Singular perturbation is the most used method for the model reduction of high order 
PDE models via modal truncations. It can be applied directly to a given ODE with 
the reservation discussed above. Here we present an idealized example which shows 
the theory of singular perturbation as applied to the modified Lorenz system of [20]. 
The equations of the modified Lorenz system are as follows: 

w = g(x — w) 

i - 1 0 ( j , _ _ ! _ ) 

y = (R- *)(*¥-) -y 
i = 2 / ( _ t _ ) _ f 

with g being a very large positive constant and R = 28. The modifications to this 
system were made so that after singular perturbation was performed, one would 
obtain the original set of Lorenz equations. 

When singular perturbation is applied to a fast state, fi, the deferential equation 
for that state is multiplied by a small positive constant e and set equal to zero. 

£_ = 0. (2) 
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Choosing w as the state to be removed in Eq. (1) yields, 

- = 0 
9 

(3) 

and results in 

w = x. (4) 

Substituting Eq. (4) into Eq. (1) results in the original Lorenz equations. Letting 
R ~ 28 and </ = 100 the fourth order system and the reduced third order system 
exhibit similar chaotic oscillations. This similarity can be quantified by the LCE 
spectra (0.909, 0, -14.6) versus (0.919, 0, -15.5, -90) and their Lyapunov dimen
sion, 2.062 versus 2.059. 

B . Linear-nonlinear decoupling 

This approach essentially requires the decoupling of a dynamic linear part in a 
forward path and a static nonlinear part in the feedback. When this is possible, a 
good reduced order model can be obtained by reducing the linear part using standard 
linear model reduction techniques and closely preserving its frequency response. This 
approach is applied below to the infinite dimensional time delay system of [11]. 

This system qualitatively represents the dynamics of a supersonic inlet entering 
buzz mode. The equations are 

edx(t)\dt = -x(t) + ax(t - T) [1 - x(t - T)] (5) 

with £ = 0.2, a = 4.1, and T = 1. A block diagram of the system in presented 
in Figure 1. Although the state space representation of this system will be infinite 
dimensional because of the time delay, T; the asymptotic attractor has a dimension 
of only 4.6. A fifth order reduced model of the linear plant is obtained in [11] and 
is given below. 

u=0 

^ O 
+ 

л fc 
-sт X 

J * єs+l 

o 

x z -x 
o 

x z -x N o n l i n e a r i t y N o n l i n e a r i t y 

F i g . 1. Block diagram for infinite dimensional system of part B. 
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F i g . 2. Plots for the time delay system of Figure 1. (a) Time domain for the full system; 
(b) Time domain for the reduced order system; (c) Phase plane for the full system; 

(d) Phase Plane for the reduced order system; (e) Absolute value of the fft for the full 
system; (f) Absolute value of the fft for the reduced order system. 
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f( , = - 2 0 a ( s 3 - 1 5 s 2 + 90s -210 ) 
,(S) (s4 + 15.56s3 + 120s2 + 480s + 840) (s + 5) ' ^' 

Figure 2 compares this time response and a phase plot for the original system 
of Figure 1 and the reduced order model of Equation 6. Both the original infinite 
dimensional system and the fifth order approximation display qualitatively similar 
time series behavior. 

Interesting, the reduced order model does preserve some simple statistical met
rics. For the original system, the mean value of the output is 0.667 with standard 
deviation 0.243; and for the approximate system the mean value of the output is 
0.666 with standard deviation 0.244. Although qualitatively and statistically similar, 
the phase plane plots indicate that the reduced order system may have a significant
ly lower dimensional attractor than the original system. The absolute values of the 
fact Fourier transform are given in Figure 2 (e) and (f) and show no particularly 
interesting differences. 

C . Linearization at an operating poin t 

This approach is most applicable to stabilizing a chaotic system to some predefined 
unstable operating point and thus allowing standard linear small perturbation con
trol design [12]. Although it can be applied to any system, many standard linear 
model reduction methods are known to have difficulty in reducing unstable systems. 
In addition, chaotic systems linearized at most operating points in state space will 
be unstable in the small perturbation sense. This approach is applied here to the 
infinite dimensional system of Eq. (5). 

The first step in solving this problem is to determine the system fixed points. For 
the system used in example B, the fixed points are determined to be 0 and (a— l) /a . 
Thus the system linearized about the (a — l ) /a fixed point is 

e6x = -6x+(^-^-\e-sT6x + 6u. (7) 

This results in a transfer function of the form 

™=.+i+Lr~- w 
Using a Fade (3,4) approximation for the e~sT term, the reduced order system is 
determined to be 

- 5s4 + 80s3 + 600s2 + 2 400s + 4 200  
,(S'~ s5 + 21s4 + 189.67s3 + 1541.15s2 + 2 317.9s + 6351.24' ( ' 

Note that this final reduced order linear model does not preserve attractor stability. 
Most control system designs for nonlinear systems are based on this method of 

linearizing the particular system at the desired operating point and then designing 
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a controller to obtain the desired response. This approach assumes that any devi
ations from the particular operating point are small with respect to the degree of 
nonlinearity. One particular problem with using this approach for chaotic systems is 
choosing when to turn the controller on because it is necessary to have all the states 
inside the basin of attraction for the desired operating point. Since the underlying 
system is chaotic, this basin is likely to be fractal thus making it difficult to ensure 
that all the initial conditions and any deviations from the operating point are in the 
basin of attraction. This problem of being outside the basin of attraction has been 
considered in controller design in the aerospace industry via gain scheduling. Here 
a series of operating points with their controller gains are stored in a computer and 
are recalled whenever there is a change in operating region (i.e., change to another 
basin). 

D . Removal of insignificant manifolds 

This is a somewhat novel approach that attempts to eliminate the states going in the 
flow direction for a system with several near zero Lyapunov exponents. The method 
of model reduction in this case relies heavily upon the center manifold theorem. 
In order to determine which components of the state vector propagate in the flow 
direction, a set of orthogonal vectors tangent to the chaotic attractor are integrated 
with time. Periodically, the angles between all of the vectors are examined using a 
dot product rule. Vectors that propagate in the flow direction should remain close 
to a 90 degree angle from vectors that are in a diverging direction. The problem of 
determining which states corresponds on the average most closely to the diverging, 
flow, and converging directions of the attractor has not been resolved in a general 
sense. 

The seventh order system due to [7] will be used to demonstrate this method, 

xi = —2xi + k\f%xixz + 4\/5x4X5 

x2 = - 9 x 2 + 3\/5;EIX3 + 3vl5.56.57 

X3 = -5X3 + 9xiX7 - 7\/5xiX2 + R 

X4 = —5X4 — y/%X\X$ (10) 

«5 = —*5 - 3\/5xiX4 

X6 = —8X6 - 4\/5X2X7 

X 7 = -5X7 + \J%X2X§ — 9xiX3 

For R = 300, the system exhibits chaos with a Lyapunov dimension of 3.19. Table 1 
contains the average cosine of the angles between the tangent vectors after many 
orbits around the attractors. 



Model Reduction Methods for Chaotic Systems 463 

Vi 

v 2 

V3 

v 4 
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v 6 

Table 1. Cosine of angles between state vectors 

V
2 

Vз 

.2431 -A93875 

-0.2355 

V
5 

V
6 

.311181 .002186 -.039807 -.092461 

.062205 -.01384 .03834 .005686 

-.065598 .003047 .029489 -.025053 

.010508 -.015768 -.020141 

.002091 .005847 

.084183 

The largest value of the cosine (which corresponds to the angles furthest from 
90°) appears between vectors Vi, V2, V3, and V4. For the system it happens that 
vectors 5-7 correspond mostly closely to states 5-7 respectively. It is then chosen 
that states X5, XQ and X7 will be eliminated from the system by replacing them with 
their average values. The reduced order nonlinear system is thus: 

xi = —2a;i + 4\/5a;2£3 + 4\/5x4(7.754) 

i 2 = -9x2 + 3 ^ 1 x 3 + 3>/5(0.966) (-4.72) 

x3 = -5*3 + 9zi(-4.72) - l\flxxxi + R 

x4 = -5x4 - \/5ari(7.754). 

(П) 

The reduced order model of Eq. (12) is chaotic (Lyapunov dimension = 2.83). As can 
be seen from the time domain series of Figure 3, the reduced order model maintains 
some qualitative relationship with the seventh order system. By observation of the 
absolute value of the fast Fourier transform in Figure 4, it can be seen that the 
fourth order model preserves most of the primary harmonics of the seventh order 
model. 
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0.2 0.4 0.6 0.8 

Fig . 3 . Time series plots for the model due to Franceschni. (a), (b), (c), and (d) are due 
to the seventh order model; (e), (f), (g), and (h) are due to the fourth order 

approximation. 
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F i g . 4 . (a) Absolute value of the fft for the seventh order Franceschini model; 
(b) Absolute value of the fft for the fourth order approximation of the Franceschini model. 
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3. CONCLUSIONS 

In this paper we have presented four methods for obtaining reduced order models of 
chaotic systems where the resulting models have preserved some system properties. 
There are of course, additional considerations in applying these approximate models 
in control system design. These issues include the effect of nonlinearities, model 
uncertainty, stabilization of high dimensional attractors, and the robustness of the 
controlled system. The question of using the reduced order model for control system 
design will now be briefly considered. For linear dynamic systems, the robust control 
area has adequately addressed the problem of control with uncertainty in the model 
[17]. The robust control area also addresses the problem of stabilizing a nonlinear 
system to a point attractor [17,6]. Here, both model errors and some bounds on 
the nonlinearity are combined into the uncertainty in order to design a controller 
that is robust for perturbations of a predetermined size. Unfortunately, very little 
work has been done in the area of stabilizing an attractor of dimension greater than 
one, particularly with respect to robustness to model uncertainties. As robust con
trol fundamentally uses an input output representation for control design, perhaps 
the input output approach (as opposed to state space approach) will be the most 
successful approach for stabilizing higher dimensional attractors. With this in mind 
it is suggested that the linear nonlinear decoupling approach discussed above will 
probably be the most fruitful area for stabilizing higher dimensional attractors. In 
particular, the methods used in [9] and [12], which are based on harmonic balance, 
are probably a good place to begin considering robustness of chaotic attractors to 
modelling errors in the control design. 

Table 2. Comparison of discussed methods (preservation of characteristics) 

Chaгacteristic 
to be preserved 

Singular 
perturbation 

Decoupling Linearization 
at Operation 
Point 

Removal 
of Manifold 

Attractor stability Maybe ProbaЫy No ProbaЫy 

Attractor number Maybe ProbaЫy No Maybe 

Basins Maybe ProЪaЫy No Maybe 

Bifurcation structure ProbaЫy Probably No Maybe 

Attractor dimension Maybe Probably Only at 
Fixed point 

No 

Attractor volume Probably Probably Only at 

fixed point 
Maybe 

Some frequency 

characteristics 

PгobaЫy Yes Probably Maybe 

Applicable to 
most systems 

Yes No Yes No 

Contгol chaos 
to a point 

ProbaЫy Yes Yes Maybe 

Stabilize attractor 

of dimension > 1 

Yes Yes Yes Maybe 
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T h e purpose of th is pape r has been to lay some framework for t he development of 
mode l reduct ion m e t h o d s for chaot ic sys tems . Some ideas on the required character
istics of t he reduced order mode l as appl ied to controller design have been presented 
as well as some suggested mode l reduct ion techniques . These are cross references in 
Table 2. It is hoped t h a t this pape r will s t imu la t e further work in this a rea . 

(Received March 3, 1993.) 
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