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A ROBUSTNESS RESULT FOR 
A VON KÁRMÁN PLATE1 

M A R Y E. B R A D L E Y AND I R E N A L A S I E C K A 

This paper considers the problem of the robustness of boundary feedback controls for a 
von Karman plate with respect, to a small parameter y. This parameter enters the problem 
through a term representing, rotational inertia for the plate and is assumed to be quite 
small (i.e. proportional to the plate's thickness). This paper proves that the exponential 
decay rates produced for the energy of the total system (with y ^ l l ) are preserved as we 
pass will) a limit on 7 —» 0 . 

1. I N T R O D U C T I O N 

1 .1 . S t a t e m e n t o f t h e P r o b l e m 

Let Q be a bounded open domain in R with smooth boundary F = P o U T i , where 

P,: are relatively open, Pn O V\ = 0. We consider the von Karman system in the 

variables w(t,x) and \{w(t, ,v)): 

WU - J2AWu + A2W + b(x)wt = [w. \(u:)] 

(/;((), •) = i/'o ; !(.'((0. • I = W\ 

w = ~ w = 0 

Aw+(\ -,,)/-,», «.-.-А,,,, 

^ A w + (1 - u)B2w - TJ~u\, = u't - —jir, + w 

in Q 

iii Í2 

011 L,\ 

(1.1) 

where Q = Q x (0, T) and S . = P* x (0, T ) , for i = 0, I. Here, 6(x) G L ~ ( f i ) satisfies 

b(x) > 0 a.e. in 0 , 0 < /', < ^ is Poisson's rat io and the opera tors B\ and B2 a*"e 

[liven l)V 

B] ti) = 2ii.\ii2wxy — n'jwyy — n2wxx 

B2w = ^r[(irl~n?2)wxy + n]n2(wvy ~wxx)]. 
(l.l)(b) 

1 Presented at the 2nd IF.AC Workshop on System Structure and Control held in Prague during 
eptember 3-5, 1992. 
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Also, x(w) satisfies the system of equations 

A2
X = -[w,w] \ ,. , 

X=£;X = 0 o n S = r x ( 0 , o o ) / K'} 

where 
d2<t>d2i> d24>e2rj> dH a y 

W,rn dx2 dy2 dy2 dx2 dxdydxdy' 

Define the bilinear form 

a(w, v) = / (AwAv + (1 - n)^2wXyVXy - wxxvyy - wyyvXT)) AQ. (1.3) 
jn 

and the energy functional is given by 

E(t) = I / {K|2 + 72|V«;.| + \Ax?}dSl + \a(w,w) + \j w2AT, 
£ Jil l l j V y 

= E,(t) + E2{l), (1.4) 

where E%(t) is defined by 

E2(t)=
l-J\Ax\Híl. 

In [2] it was proven that by implementing stabilizing controls acting through forces 
wt and bending moments §^wt and -§^wt along a portion of the plate's edge, we 
achieve an exponential decay for the energy (1.4). Our goal in this paper is to prove 
that this exponential decay of energy is "robust," with respect to the parameter 7 
(i.e. when 7 —• 0+ the energy for the resulting system also decays exponentially 
in an appropriate topology). This problem is of interest, since the parameter 7 is 
assumed to be small (proportional to the thickness of the plate). Also, by taking 
7 = 0, the resulting limit equation (with zero right hand side) is precisely the Euler-
Bernoulli plate model, which is a well-known and frequently studied plate equation 
from classical mechanics. 

1.2. L i t e ra tu re and Or ienta t ion 

The problem of stabilization and controllability for the von Karman plate described 
above (so named for the nonlinear right hand side which was developed by von 
Karman) has attracted much attention in recent years. Indeed, the results on local 
controllability and stabilization can be found in [4, 5, 3, 2]. As for the question of 
global decay rates (such as we consider here) we refer to [4]. There, it was proved that 
for the von Karman model without rotational inertia or viscous damping (i. e. setting 
7 = 0 and 6 = 0) the energy of the resulting system is exponentially stable, provided 
that Q is star-shaped. This stability was achieved by means of the boundary feedback 
acting on the whole boundary (i.e. To = 0), where results were achieved by means 
of a Lyapunov function argument. This contrasts with our approach (see [2]) which 
is based on proving certain functional relations directly for the energy function. This 
allows us to "build in" an appropriately developed nonlinear compactness-uniqueness 
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argument to "absorb" nonlinear boundary traces and undesirable lower order terms 
arising from energy estimates. In order to dispense with geometric conditions, we 
shall use "sharp" regularity results for the traces of the linear problem, which were 
proved in [6] by using microlocal analysis. 

Our main contribution in this paper is that we produce a cohesive theory tying 
together the results of [4] and those of [2] by proving that the same type of feedbacks 
will provide similar stability results for both Euler-Bernoulli model of dynamics (i.e. 
7 = 0 as in [4]) as well as the Kirchhoff model (i.e. 7 > 0 as in [2]) in their respective 
appropriate topologies. In producing this result, it is critical that we carefully track 
the appearance of 7 in the estimates which we use to bound the energy (1.4). We 
must then prove that by passing with a limit as 7 —> 0+ we do not destroy the 
exponential decay of the energy. 

1.3. S ta temen t of Resul ts 

We begin by defining the space of finite energy for (1.1), 7i7 = Hf. (Q.) x / / r (fi) 
where 

with norm 

and 

with norm 

Я 2

o(í2) = {wЄ ЯҶ í ì) : w =£w = 0 on Г 0} 

IHIн Г o ( П ) =a(w,w) 

Hţo(U) = {we ЯҶíî) : w = 0 on Г0} 

IИI2„ r ( П )= / V + 72|VЧ2)dfi. 
0 Ja 

We note that well-posedness and regularity results for system (1.1) with respect 
to the topology %1 was proven in [1]. 

We now state our main result. 

T h e o r e m 1.1. Assume that the domain ( ! c f l 2 has a sufficiently smooth bound
ary r = To U Ti and that there exists x0 e B? such that 

hv~ (x-xo)-v<0 f o r x G T o . (1.5) 

Then for any initial data, (WQ,W\) € Ti-, there exist constants C and a which 
are independent of 7 such that, for t > T sufficiently large, the energy for (1.1) 
(corresponding to 7 ^ 0) satisfies 

EJ>Q(t) < Ce~aiE,>0(0). (1.6) 
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Remark 1 . Note that the statement of Theorem 1.1 affirms a "robust" property 
of the stabilizing boundary feedback. Indeed, the effectiveness of this feedback, as 
measured by the constants C and a in (1.6), does not deteriorate when the parameter 
7 - + 0 + . 

Theorem 1.1 allows us to obtain decay rates for the limit problem when 7 —*• 0 + . 
We will show that the solution wy to (1+) with 7 > 0 converges in L2([0,T] x Q) to 
a function w which is a solution to the following limit problem: 

wu + A2w + b(x)wt = [w, x(u>)] in Q 

w(0, -) = w0e H2
o(Q) ; wt(0, •) = Wl G #£„(<-) in Q 

w=£w = 0 on So I (1.7) 

Aw+ (1 - /t)Biw = --§^wt on St 

j^Aw + (1 - ix)B2W = wt - f^wt + w on S i , 

with the energy Ey=o(t) given by 

Ey=0(t) = ±^{\wt\
2 + \AX\2}d£l+±a(w,w)+1-^ w2dV\ (1.8) 

Moreover, the exponential decay rates (1.6) hold for a solution w of (1.7) as well. 
A precise statement of this result is given in the following corollary. 

Corollary 1.1. Let w = lim7_0+ w-y- Then w G C([0,T];H2(n)) with wt G 
C([0,T];L2(fi)) is a solution of (1.7). Moreover, there exist constants C > 0 and 
a > 0 such that 

E1=o(t) < Ce-aiEy=o(0) (1.9) 

where the constant C depends on the size of the initial data in a bounded way. 

Remark 2. Exponential decay rates for the limit problem (1.7) with boundary 
feedbacks acting on the whole boundary are proven in [4]. However, the results there 
are established to hold for "regular" solutions only (i.e. w £ L°°([0,T];H4(Q)) and 
wt £ L°°([0,T]; L2(fl))). Moreover, geometric conditions that fi be a "star-shaped" 
domain were assumed in [4]. 

The remainder of this paper is organized as follows. We first set out the prelimi
nary energy estimates which will be used in proving that the energy for system (1.1) 
(7 > 0) decays exponentially. These estimates will possess lower order terms which 
will then be absorbed by a compactness-uniqueness argument. We then use an ar
gument from nonlinear semigroup theory, which provides us with an energy decay 
rate for system (1.1) that is independent of 7. Finally, we use a limiting argument 
to prove that (1.6) holds for the limiting equation (1.7). 
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2. PROOF OF THEOREM 1.1 

Our beginning strategy in proving Theorem 1.1 is to use the method of multipliers 
to produce preliminary energy estimates for (1.1) (with j > 0) which may then be 
used in conjunction with "sharp" trace regularity results to obtain the desired energy 
estimate, modulo traces of the nonlinear function x(w) a n d lower order terms. These 
energy estimates will follow closely those that are found in [2], however, here we will 
carefully follow all dependence of constants on the parameter 7. We summarize the 
results of these energy estimates below. 

Note. In this section, w and E(T) denote, respectively, the solution and energy to 
(1.1) with 7 > 0. We will only distinguish w1 and E-y from w and E7=0 in the 
limiting argument, where such a distinction becomes necessary. 

2 .1 . Energy Es t ima tes 

The first preliminary energy estimate we will prove is 

P ropos i t ion 2 .1 . Let (wQ,wi) G W7 = H2
o(Q) x H$B(Q,), then the energy of 

system (1.1) as given by (1.4) satisfies the following estimate 

I 
т 

1 E(t)dt - C( l + Y)E(T) 

< CT {(1 + 7 2) / K 2 + IVtutfJdEa + l.o.(w) 

+(l+7

2)jb(x)w2dQ + J\AX\dX 

r f\d2w\2 \d2wf I d2w | 2 \ j r , 1 ' , 

l\m + H + M ) d E i } (2-i} 
+ 

for all T sufficiently large where CT depends on E(Q) in an increasing manner but 
does not depend on 7. Here, l.o.(w) represents terms in w having order lower than 
the energy: 

l.o.(w) = | | H | 2

2 ( [ 0 > T l i „ 3 / 2 + . ( n ) ) + I M I 2 - W , (2-2) 

where 0 < e < | . 

In the following computations, we will assume the necessary regularity of solutions 
for (1.1) as guaranteed by [1] for sufficiently smooth initial data. Then the final result 
will follow by a standard density argument. 

P r o o f . Recalling (1.4) and by using the multiplier wt, it is straightforward to 
calculate the identity 

E(t) + 2 ( L j {w2 + \Vwt\
2} d r . dt + I I b(x)w2dQ dt\ = E(0). (2.3) 



296 M.E.BRADLEY AND I. LASIECKA 

This proves that energy is nonincreasing for the controlled system. 
If we now multiply the state equation in (1.1) by w and integrate by parts, we 

see that 

/ {u.2 + T 2 | V u , . | 2 } d Q - / a(w,w)dt- / (AX)
2dQ 

JQ JO JQ 

= (UJ., U))0\
T + T2(Vu>(, Vu>)..|o" + %(b(x)w, w)Q\T 

+ [ w2dZl + (w,w)ri\T + (Vw,Vw)ri\T. (2.4) 

Subsequently, we multiply (1.1) by h-Vu> and again integrate by parts, we obtain 

/[u.,x](h.Vu,)dg 
JQ 

= (wt,h-Vw)^ + 7
2(Vwt,h-Vw)a\

T + [ w2dQ 
JQ 

+ / a(w,w)dt+ / 6(.r)u,t(h. Vu,)dQ 
jo JQ 

-\ J K* + T2|Vu;(|
2)(h • t/)dSi -\Jj^- ^)(Au;)2dE0 

+ ±J (h-v){(Aw)2 + 2(l-n)(wly-wx*wyy)} dEj 

+ J { ( u > , - ^ + u,)(A-Vu,) + | ; ( h . V t , ) | 7 u , . } d E 1 . (2.5) 

From [4] (see page 115) we have 

J [w, X](h • Vu>) dQ = - 1 / (AX)2dQ - i jf h • KAx)2dE. 

Putting these together, keeping track of the dependence on T> ar>d bounding the 
traces in the last term of (2.5) and using (1.5) to eliminate the boundary integral 
on Eo we obtain 

rT 
[ w2dQ + [ «(u,,u,)dť+ì [ (AxfdQ 

JQ JO Ł JQ 

< d [ bw2dQ + C2 /(Дx)2dE 
jQ jc Q 

+ |(u...h • Vu.)n|2'| + T

2 |(Vui f )h • V«,)0|T| 

+Ca(l + 72) / K + |Vu>ť|
2} dEi + /.©.(») 

JZl 

„ f f\d2w\2 \d2w\2 \d2w \2\ , „ , x + ^ A M + M + M J d E i - (2-6) 
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Here, we have also used the estimate 

- / bwt(h • Vu>) dQ < Ci / 6u>2dQ + C2 / |Vu>|2dQ 
JQ JQ JQ 

< C I / 6u>2dQ + l.o.(w). (2.7) 
JQ 

From (2.4) and (2.6), we obtain 

/ E(t)dt < c(\(wt,wU^]\ + 7
2\(Vwt,Vw)a\^\ + \(bw,w)n\^\ 

+ |(io., h • Vw)0|3"| + 72 | (Vu . ,h • Vu>)„|J| + |(u>, ai) r, lo | 

+ |(Vu>, Vu>)r, \H\) + C. ^ ( ^ x ) 2 d E + /.o.(u.) 

+C2(1 + 7
2 ) / (u>2 + |Vi0,|2)dEi + C3 / 6u>2dQ 

„ y /is2™!2 a2u>|2 | d2w \2\ JV, 
+ C 4 / - j - r + v r + - r - - - H E i - 2-8) 

jE, \ | # T 2 I di>21 | 3 ^ 3 T | / 

By the Sobolev imbeddings and trace theory, we see that 

C1(l + 7
2 ) £ ( T ) + C2(l + 72)£(0) 

> |(u>.,u>)X| + 7 2 |(Vu>t, Vu>)n|J| + |(u>.,h- Vu>)n |J| 
+ 72 |(Vu>., h • VuOoftl + |(u>, u>)Pl \J\ + |(Vu>, Vu>)Pl U l . (2.9) 

We now estimate 

|(6u>,uOoljTI < C f(w2(T) + w2(0))dQ (2.10) 

< C{E(T) + £(0)}, 

since 6 € Z/°°(0). 
Using the results in [2], we obtain the bound 

J\AX(w)\2dE<eC-E2(0)J E(t)dt + ~J\AX(w)\di:. (2.11) 

By appropriately selecting £ = EE0\ and using (2.9)-(2.11) in (2.8) along with the 
estimate (2.3), we obtain the estimate 

fT 
/ E(t)dt-C(l+7

2)E(T) 
Jo 

< cJ(l + 7
2)J (u>2 + |Vu>t|

2)dS1 
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+ ( 1 + 7 2) J bw2dQ + l.o.(w) + CE2(0) j |A X | dS 

f (\d2w\2 \d2w\2 I d2w \2\ ,__ ] . „ , _ . 

u A M + M + M j d s T (2-12) 

where the constants C, C_, and C do not depend on 7. This proves Proposition 2.1. 
D 

Our next step is to develop appropriate estimates for the traces of the solution, 
w, on the portion of the boundary, P_. To accomplish this, we shall use the following 
result proved in [2]. 

Proposit ion 2.2. Let w satisfy (1.1). Then for any a > 0 and e > 0 we have 

[T~a [ (\82w\2 \82w\2 I d2w \2\ „ , 

L Lw\+\M+\m)dTidt 

< cT^IIKII^^ + l lv^n 2 ^, 
+ E 2 ( 0 ) | |x(t0)| |_.n„>ri i^-'(„, ) + '•<>»} • (2-13) 

Here, Or.a.e does not depend on 7 for 0 < 7 < M < 00. 

We are now in a position to prove our main energy estimate. 

L e m m a 2.1. Let w satisfy the system (1+) and let 0 < a < T and let e > 0 be 
arbitrary. Then 

E(T) < CT,a,e(E(0))Ul + y2)J(w2 + \Vwt\
2)d^1 + l.o.(w) 

+ ( l + 7 2) / bw2dQ+ / | A x H | d E + / | |x(«0| |„3~. ( o )d. 
JQ J E JO 

bw2dQ+ I | A x M | d E + / 

where CT,a,i(E(0)) is an increasing function of E(0) but does not depend on 7. 

P r o o f . Applying the result of Proposition 2+ on the interval [a,T— a] yields 

I E ( 0 d . - ( l + 7
2 ) E ( T - a ) 

< c r ( E ( a ) ) ( ( l + 7 2 ) / (w2 + | V « . | 2 ) d E l a + / | A x H | d E 
V < ! - l _ >!E 

+ ( l + 7 2 ) / bw2dQ + l.o.(w) 
JQ 

, / \d2w\2 \d2w\2 

+ / -5-5- + k - - + 
j _ ! _ _ . | 
drdůl 

d E l a ^ (2.14) 
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where S j a = T\ x [a,T — a]. By the dissipation of energy given in (2.3), we have 
E(T) < E(T - a). Also, since CT(E(t)) is an increasing function of E(t), we have 

CT(E(a)) < CT(E(0)). (2.L5) 

Applying Proposition 2.2 to the last term on the right hand side of (2.14) and 
recalling (2.3) and (2+5) leads to the desired right hand side of the inequality in 
Lemma 2.L Again using (2.3), we see that 

f*— 

TE(T) < TE(T ~a)< E(t) At. 

Then since, j < 1, selecting T > To — 2C, we have the lemma. D 

2.2. Compactness—Uniqueness Argumen t 

Making the observation that 

/llAxlldE^mesf/r)1!2 / ||Ax|U-<r><« 
J-c Jo 

< cf ||AxL./a+.(n)d. < C ( ||x||«.-.,Q,d. (2.16) 
Jo Jo 

and using the results of Lemma 2.1, we now have a bound on our energy in terms of 
the controls and some undesirable terms (i.e. lower order and nonlinear terms) and 
in which the dependence on j is explicit. We now use the following result proven in 
[2] which proves that the energy of (1.1) is bounded in terms of the controls alone. 

L e m m a 2.2. Let (w, wt) be a solution pair for (1.1). Then for any e > 0, 

I ||xMI|W3-.(Q)d< + /.o.(u,) 
Jo 

< C1 (E(0)) | f {w2 + |Vu; t |
2}d£i + / 6 (x)u ; 2 do | (2.17) 

where C-, (E(0)) is an increasing function of the initial energy, i?(0), and may depend 
on 7. We note that l.o.(w) are as in (2.2). 

We now must prove that the estimate (2.17) holds where C(E(0)) is increasing 
in E(0) but does not depend on 7. 

L e m m a 2.3. Let (w, wt) be a solution pair for (1.1). Then for any e > 0, 

f ||x(u>)||„3-c(0)d. + l.o.(w) 
Jo 

< C(E(0)) i j {w2 + |Vttf,|2}dEi + / 6(z)u,2dQ j (2.18) 
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where C{E{0)) is an increasing function of the initial energy, E{0), and does not 
depend on 7. 

P r o o f . The proof is by contradiction. Suppose (2.18) does not hold for C{E{0)) 
independent of 7. Then there exists a sequence of functions {t_7(.)} in H-y which 
satisfies the system 

_>;' - 7 2 A _ ; ' + A 2 _ 7 + 6_; = [_>7, x(w-,)] 

U>7.0, •) = UI70 ; ~>;(0, •) = ~7i 

wi = lbw-y = 0 
„\n .„ , — 

i n Q 

infi 

on Eo 

on E_ 

| ; A _ 7 + (1 - ,«)B2t-7 - T
2font; = _ ; - £_ < + _ 7

 o n s i 

and such that 

/•T 

(2.19) 

lim 
7—0+ 

/.o.(„7) + / | |xЮllн 3-'(«) d í 

Jo 

/ ((_;)2 + |v_;i2)dE1+ /&ю2dQ 
Jz, JQ 

(2.20) 

where the initial energy (as prescribed by initial data (_ 7o,-> 7 l)) are uniformly 
bounded in 7. (Note: for convenience, we denote the time derivatives by '.) 

Denoting the sequence 

c 7 = -j ..o.(_ 7) + J | | xЮII_э-.( П ) d < > 

1/2 

we introduce the new variable 
_ . y 

c 7 

We observe that t,7 satisfies the system 

«;' - T

2 At,; + A2t;7 + 6«; = K , x(_ 7 )] 

^7(0.0 = v 7 0 ; «;(o,-) = %! 

»7 = &*? = ° 
Д « T + ( 1 - / І ) B 1 I = - | 7 I ; ; . 7 

2 _ _ _ „ ' ' — , , ' 

i n Q 

in fi 

on Eo 
on E] 

(2.21) 

(2.22) 

(2.23) 

u>7) 

7 A« 7 + (1 - /.)B,t,7 - 7 2 | ; t , ; ' = t,; - £_•«; + t;7 on E t . 

By using (2.20), we see that t>7 satisfies (by the quadratic dependence of \ o n 

I.O.(I ) + / ||x(t )|U»-.(Q)d< 
Jo 
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/.o.(u>7) + / ||x(w7)||„3-,(n)d< 
= \ = 1 (2.24) 

l.o.(wy) + J | |xK)l|W3-'(o,d< 

so that 

lini / ( « ) 2 + |V<| 2 )dEi + / b(v'yfdQ = 0 (2.25) 

By (2.25), we have the following convergence properties: 

(i) V ; - > 0 inL 2(Q) 

(ii) v'y-^0 inHl(Ei). (2.26) 

In order to pass with a limit on (2.23), we need first to determine the convergence 
properties for u7 and for our nonlinear terms. 

To determine the convergence properties of vy, we will use the energy estimates 
which were derived in the previous section. Using an argument similar to that found 
in [2], we apply the results of our well-posedness theorem (see [1]) to (2.23) to obtain 
that 

IKI|c«o,Ti.,H2(o)) + IKI|cao,TiiZ.2(Q)) + 72||Vv7||c([0iT].I.2(n)) < C (2.27) 

which implies, in particular, that {i;7} are uniformly bounded in Hl([Q,T} x 0 ) . 
Hence, by the compact Sobolev imbeddings and trace theory, we see that 

Vj ^ v in L2([0, T]; 7/2(0)) and v\ Z v' in L2([0, T]; L2(0)) 

=> w 7 " « i n i / 1 ( [ 0 , T ] x f i ) 

= • vy -> v in L2(E). (2.28) 

Also, since £^(0) < M, the well-posedness for (1.1) yields similar convergence prop

erties for Wy. Q 

We now state some convergence properties of the von Karman nonlinearity, 
[vy,x(wy)], which were proven (or are similar to results proven) in [2]. 

Propos i t ion 2.3. Let w7 -^ w in # 2 ( 0 ) . Then x(wf) •"» x(w) i n IIo(O). 

We now seek to obtain the convergence of x(w~t) in the space-time cylinder, Q. 

Propos i t ion 2.4. Assume that 

llw7llo(to,n.>i*(Q)) + l l^l lcflO.TJit2^)) + T l|V^7||ctto,TJit:1(n)) < C 

and 

wy^w mL2([0,T];H2(n)) 

w'y^w' mL2([Q,T];L2(n)). 
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Then for every 0 < £ < \, 

X(v>y) -x(w) in C([0,T];H3-*(Q)). 

Propos i t ion 2.5. Suppose that v7 —+ v in i/2(fl) and u;7 satisfies the assumptions 

of Proposition 2.4. Then [v7,x(wy)] ~* b j X ^ ) ] in the sense of distributions. 

In passing with a limit on (2.23), we will consider two cases. 

Case 1. c0 = {l.o.(w) + / T | |x(«0IU : i-. (n )dt ;}1 /2 # 0. By the result of Proposition 
2.4, (2.21), the convergence properties of w7 and by the compactness properties of 
l.o.(w), we have c7 —* Co, hence v = W/CQ. Using (2.26), Proposition 2.5 and passing 
with a limit on (2.23), we obtain the limit system 

A2v=[v,X(w)] = Mw,x(w)] i n Q 

on Eo 

on Ei 

on Ei . 

Av + (l-(i)Biv = 0 

£Av + (l-fl)B2v = 0 

Multiplying (2.29) by v and integrating by parts, it is easy to show that 

0 = a(t),t)) + - ^ / ( A x W ) 2 d O , 
c0jn 

and conclude, by the positivity of a(v, v) that 

v = 0 in Q. 

By Proposition 2.4, (2.27), (2.28) and (2.30) we obtain 

(2.29) 

Lo.(vy) + J | | x ( f 7 ) | | „эw ( n ) dť j — * 0 . 

(2.30) 

and hence the proof of Lemma 2.3 for Case 1. 

Case 2. c0 = 0, (i.e. x(w) = 0 and Lo.(w) = 0.) In this case, we will a-
gain use the result of Proposition 2.4. Here we use the fact that x(wy) —> 0 in 
C([0,T];H3~*(Q)) in combination with (2.27) and Proposition 2.5 in order to ob
tain that [vy(t),x(wy)(t)] —* 0 in the sense of distributions. By using (2.26) and 
passing with a limit on system (2.29), we obtain 

A2i> = 0 

£» = ° 
ino 

on Eo 

At> + (I - /«)Bif = 0 on Ei 

£Av + (l-n)B2v =0 onEx. 

The same argument as in Case 1 yields a contradiction and the proof. 

(2.31) 
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2.3. Complet ion of P r o o f of T h e o r e m 1.1 

By using (2.3), (2.16) and Lemmas 2.1 and 2.2, we have shown that, for T sufficiently 
large, the energy for system (1.1) satisfies 

E(T) < C(E(0))(\ + j2) (J (w2 + \Vwt\
2) dS, + J hv2dQ\ , (2.32) 

where C(E(0)) is increasing in E(0) but does not depend on y. Now using an 
argument from nonlinear semigroup theory (as in [2]), we see that the energy of 
(1.1) satisfies 

Ey>0(T) < Ce~atEy>0(0) (2.33) 

where the constants C and a depend on the initial energy, Ey>0(0), but not on 7. 
This proves Theorem 1.1. • 

3. PROOF OF COROLLARY 1.1 

We now show that the estimate (1.6) also holds for the energy of the limiting system 
(1.7). We first note that by the well-posedness and regularity of solutions to system 
(1.1), we have 

IKI|C([O.TI,HJ;O(«)) + I K I U I O . T ] , ^ . . ) ) + 72||Vw7||C([o,rbi.2(Q)) < C (3.1) 

so that w7 enjoys the following convergence properties: 

« ) / 4 f f i in Lx([0,T];H2
o(n)) 

w'^w' in Lx([0,T];L2(Q)) 

wy^*w in H\[0,T\xQ) 

w7-^w in L 2 (S,) . (3.2) 

In particular, this implies by the compact Sobolev imbeddings that wy —* w strongly 
in L 2([0,T]x SI). 

We also know that [io 7,x(w i)] ~" [U,!X(U;)) in the sense of distributions (see 
Propositions 2.3-2.5). However, this is not sufficient to pass with a limit on system 
(1.1) as 7 —» 0 + . We must also have the following result, which was proven in [3]. 

Lemma 3 .1 . Let (w7,u;7) be a solution pair to system (1.1). Then 

IKII2-(-i) + llvKHia,,.., 
< C ( l h i l l ^ ( n ) + 7 2 | |V«; l | |

2
2 ( n ) + | K | U 2 o ( n ) ) 

where (w0,wi) e ? i 7 are the initial data for system (1.1) and the constant C does 
not depend on 7. 
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A consequence of L e m m a 2.4 is t h a t the t races w'y\li:i) and V i y 7 | ( E l ) a re uniformly 
bounded in 7 in L2(Ei). (This follows because the initial d a t a are no t changing with 
7 and the fact t h a t 7 is bounded above.) 

By the result of L e m m a 2.4 and a s t a n d a r d l imit ing a rgumen t , we ob ta in t h a t 

V u , 7 | E l ^ V t t f ' | C | in I 2 ( E i ) 

< k - « / | E l in L 2 ( E , ) - (3.3) 

We note t h a t this result does not follow from general t race theory and interior 
regulari ty of solut ions . In fact, w'y € / /p o ( f i ) alone is no t enough to imply t h a t the 
t race V w 7 | E l is even well-defined! 

Now combining (3.1) —(3.3), we may pass with a l imit on (1-1) as 7 —• 0 + to 
ob ta in t h a t w satisfies (1.7) (in the sense of d is t r ibu t ions) . We also observe t h a t for 
t > T sufficiently large we have 

£y= 0 ( t ) 

= I (iMOHi-w + a(w(t), w(t)) + fa \AX(w(t))\2dQ + /Pi w
2(t) drx) 

< liminf7 I (\\w'y(t)\\l(a) +72 | |V<(0H2
2(n) + a(w,(t),w1(t)) 

+ fJAx(w,(t))\2dQ + friW
2(t)drr) 

< l iminf 7 C e - « ' { | K | | 2
2 ( n ) + 7 2 | | V « , i | | 2

2 ( n ) + a(w0, w0) 

+fJAX(w0)\
2dn + fri(w0\r)

2<irl} 

= Ce~atEy=o(0), 

where we have used (2.33). Th i s gives us the proof of Corollary 1.1. O 

(Received March 16, 1993.) 
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