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HYBRID VARIATIONAL FORMULATION 
OF AN ELLIPTIC STATE EQUATION APPLIED 
TO AN OPTIMAL SHAPE PROBLEM 

.JAN CHLEBOUN 

A variational formulation of the Poisson equation with homogeneous boundary condition 
is considered as a state equation on a two-dimensional domain. A part of the boundary has 
to be found to minimize a smooth cost functional. The primal hybrid formulation of the 
state problem is used to obtain not only a solution of the original state equation but also its 
derivative with respect to the outward unit normal to the boundary of the domain. Simple 
approximative spaces are introduced and a convergence of approximate state solutions as 
well as approximate optimal domains are proved. 

INTRODUCTION 

To make a theoretical analysis of the optimal shape problem studied in this paper the 
primal variational formulation of the state equation is quite sufficient (cf. Begis and 
Glowinski [1]). However, in practice, computational methods and algorithms have 
to be taken into account to maximize effectiveness and accuracy of computation. 

There are different methods used in the field of sensitivity analysis and some of 
them require to know the derivative of the solution of a state and adjoint problem 
with respect to the unit outward normal vector to the boundary of an optimized 
domain, see Haug, Choi, Komkov [5]. The derivative computed by means of the 
primal finite element method (FEM) is inaccurate. That is why we use the primal 
hybrid formulation. It directly gives the derivative we need. 

The goal of the paper is to apply the primal hybrid formulation of a simple elliptic 
boundary problem to an optimal shape problem given by a smooth cost functional. 

We extend the results of Raviart and Thomas [9] to a family of domains with a 
variable boundary and incorporate them into the methodological frame of [1], using 
results attained by Hlavacek [6], Hlavacek and Makinen [7]. 

An optimal design problem is formulated in Section 1 and reformulated in Sec
tion 2, where an existence result is given, too. In Section 3, we introduce approximate 
problems. An error and convergence analysis is given in Section 4. 
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1. PRIMAL FORMULATION OF AN OPTIMIZATION PROBLEM 

Let us introduce the following set 

U°d = {v£ G<0)'1([0,1]); 0 < Cx < v(x2) < C2, \v'\ < C3 a.e. in (0,1)} , 

where oW-'^O, 1]) denotes the space of Lipschitz functions and C\, C2, C3 are given 
positive constants. The prime symbolizes the derivative with respect to x2. 

Next, we consider a family of domains Q.(v), v G U°d (Fig. 1), where 

fi(t>) = {(x\,x2) G I 2 ; 0 < x\ < v(x2), 0 < x2 < 1} . 

Fig. 1. 

Let us define the state equation: Find a function y(v) € HQ(Q(V)) such that 

V w e ^ ( f i ( t ) ) ) / Vy(v) • Vw dx = f fwdx, (1.1) 
Jn(v) Jn(v) 

where HQ(Q(V)) denotes the Sobolev space of functions with vanishing traces, / £ 
L2(Q.p) is a given function, Q/j = (0, C2) x (0,1). In virtue of the Lax-Milgram 
theorem there exists a unique solution of 1.1. 

We introduce the cost functional J on the set U°d: 

J(v,y(v))= Í (y(v)-yp)
2dx, 

Jn(v) 
(1.2) 

where y(v) solves IT and the function yp 6 L2(Q,p) is prescribed. 
Finally, we define the set of admissible design variables (see [7]) 

Uad=lv € C(1) ,1([0,1]); veU°ad, \v"(x2)\ < C4 a.e.in (0,1), J v(x2)dx2 = C5\ , 

where C^,l([0,1]) stands for the space of functions with Lipschitz-continuous deriva
tives and O4, C5 are positive constants. The constraint imposed on v"(x2) is based 



Hybrid Variational Formulation of an Elliptic State Equation 233 

on numerical tests and recommended by [7] to reduce oscillations of the designed 
boundary. 

Then the domain optimization problem V reads: Find vopt G Uad such that 

J(v0pt,y(vopt))= min J(v,y(v)). (1.3) 
V&ad 

2. THE PRIMAL HYBRID FORMULATION OF THE STATE PROBLEM 
AND THE EXISTENCE OF AN OPTIMAL DOMAIN 

Let Q(v) = (Jr=i Ar(") he a decomposition of the closure of the domain fl(v), 
v G U°d' i n t o a finite number R(v) of disjoint subdomains £lr(v) with a Lipschitz-
continuous boundary. We introduce the space 

X(v) = {w e L2(Q(v)); wr = to|or(«) G Hl(£lr(v)), 1 < r < ft(t>)} 

provided with the norm derived from the Sobolev norm || • ||ilnr(u) on H'(Qr(v)) 

fR(v) 

H U » = I J2 IKHi,nr(«) 

1/2 

The seminoma | • |i,nr(l,) is defined analogously. 

Having ff (div; Q(v)) = {q G [L2(tt(v))]2; div q G L2(Q(u))} , we define the space 

< R(v) 

M(v) = , i 6 ] ] r , / 2 ( 3 S ] r ( t ) ) ) ; 3 q 6 f f ( d i v ; ^ ) ) : 

/( = qlfj/^-j • vr on dQ,r(v), 1 < r < R(v] 

where vr is the unit outward normal along dQ,r(v). Generally, a functional q • v G 
H~'l2(d£l) is defined by the Green formula 

V m e i f ' P ) (q-zv, w) 9 n = / (Vw • q + to div q) da;, 
jn 

where (-,-)an represents the duality between H~'/2(dQ.) and H'/2(dCl). 
A norm over the space M(v) will be defined in Section 4.2. 
For any function v G U^d, we consider the continuous bilinear forms a(v;-, •) : 

X(v) X X(v) -» 1 and b(v; •, •) : X(v) x M(v) -* E defined by 

R(v) R(v) 

a(v;w,z)=\^ Vw-Vzdx and b(v; W, / Í ) = - S~] (/^Wan r 
řr í jnr(v) p=í 
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The primal hybrid formulation of the state problem (1.1) (see [9]) reads: 
Find a pair (y(v), A(i>)) £ X(v) x M(v) such that 

V W G X ( D ) a(v;y(v),w) + b(v;w,X(v))= fwdx, (2.1) 
jn(u) 

V / . £ M ( v ) b(v;y(v),fx) = 0. (2.2) 

It is known [9, Lemma 1] that 

ffo^n^)) = {u; £ X(v); V/i e M(v) b(v; w, /») = 0} (2.3) 

and that [9, Theorem 1] the problem (2.1) - (2.2) has a unique solution (y(v), X(v)) £ 
X(v) x M(v) for any i> £ U°d. Moreover, y(v) £ H0(£l(v)) is the solution of the 
problem (1.1) and we have the equality (though in a weak sense, still useful— see 
the Introduction) 

^ = A ( » W ) . l<r<R(v)-

As a consequence, both (1.1) and (2.1)-(2.2) can be considered as the state 
problem for the optimal design problem V (see (1.3)). 

If we need we shall extend any function belonging to the space # o ( n ) or L2(n) by 
zero on the set ffiL2 \ n . For the sake of simplicity, the extension will not be denoted 
by a new symbol. Particularly, any solution y(v) of the state problem (1.1), v £ U°d, 
can be extended to the domain Q( = (0, S) x (0,1), S > C2 (see Fig. 1). 

Lemma 2 .1 . Let {vn}n
<'=1 be a sequence of functions vn £ Uaa-. Then a subse

quence {v„m} C {vn} and a function i> £ Uaa- exist such that v„m —» v in C^\[0,1]) 
and 

V(vnm)~->y(v) i n # x ( n i ) , (2.4) 

where y(vnm) and y(v) are the first components of the solution of the state problem 
(2.1)-(2.2) on the domain n(v„m) and Cl(v), respectively. If a sequence {««}„=;! C 
U°d converges in C([0,1]), then v £ U°d and (2.4) holds again. 

P r o o f . Let us notice that subdomains £lr(vn), Qr(v) are unimportant here. 
The solutions y(vn) belong to #o(n(t>„)) and are #1(na)-bounded. Thus a weakly 
convergent subsequence can be extracted. The set Uaa- is compact in C^l\[0,1]). 
The strong convergence of y(v„m) can be proved like in the proof of [6, Lemma 2.1]. 

D 

Theorem 2 .1 . There exists at least one solution of the optimization problem V. 

P r o o f . The proof is standard — cf. e.g. [1], [6]. Suppose {vn}
<^=l, vn £ Uad, 

is a minimizing sequence, i.e., lim J(vn, y(vn)) = inf J(v,y(v)). A subsequence 
n-i-oo v£Uad 

{vnm} C {v„} exists (Lemma 2.1) such that lim vnm = v0, v0 £ Uad-

It is easy to see that the convergence (2.4) implies lim J(vnm, y(vnm)) = J(v0, y(vo)) 

Hence, ^inf J(v,y(v)) = J(v0,y(v0)) and v0 = vopt. • 
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;•;. APPROXIMATION BY HYBRID FINITE ELEMENTS 

We shall proceed briefly, since the section summarizes known results. For details we 
refer to e.g. [6], [7] (triangulations) and [9] (the primal hybrid FEM). 

Let Ar be a positive integer and h = 1/At. Denoting by CJ the subintervals 
{(j " 1 )!*. j/ .], j = 1,2,. • •, A', we define the set 

lC= V'h eld; vh\t.€ PI(CJ), j=\,...,N, 

\Sbh(jh)\<C4,j= 1 V - l , / r/,(:r,)d.i:2 = C 5 | , 

where Ti(ej) ' s l'ae s e t of linear functions defined on Cj and 

^«A(jlO = - ^ [«*((i + OlO - 2^0' l i ) + »fc((i - i)lO] • 

Any domain Q("/i) is subdivided into triangles (Fig. 2) and we suppose that the 
resulting family r = {'T/,(t'/,); vh £ U^d, h -» ()+} of triangulations Th(vh) is strongly 
regular in the sense of [3] (see [6] for details). If h is fixed the triangulation of the 
rectangle [0,Co] x [0, 1] is independent oft;/,, Co is a fixed positive constant less than 

Ci • 
YVc prescribe a unique correspondence between Q(»;/,) and Th(vh). Coordinates of 

the nodal points are governed by A7 + 1 values Vh(jh), j = 0 , . . . , At. The triangles 
of a triangulation Ti,(vh) serve as snbdomains Q,.fri,l 

x2 

\ \ 

щw 
\ ' \ \ \ \ І\ Чү\vh 

\ \ 
o c 0 C l c 2 *, 

Fi S - 2. 

To be prepared to use the rectangle S2j we extend each triangulation T/,(t;/,) £- T 
to Q,i uniquely and denote by Ths(vh). The resulting family rj of triangulations is 
assumed to be strongly regular. Like in Section 2 we define the space Xi(vh) with 
the norm || • ||A't(»0 a n c l ' ' l e serai norm | • \x6(vk)-

Let us consider the approximate subspaces 

XнЫ G L2(Q(vh)); V A' e Th(vh) w\K is a linear function} C X(vh), 
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Mh(vh) = j / 1 6 J J L2(dK); VA' G Th(vh) VS / . | s = constant, 
A'er,(^) 

/'l3/t'i + /'ls/<2 = ^ o n '̂ ' = l^i ^ l^'2' l^j a n c ' l^2 a r e ELcljELcent triangles^ C M(vh) 

where S denotes a side of the triangle A'. 
Elements of Mh(vh) comply with a natural condition which follows from opposite 

directions of outward normals along a common side of adjacent triangles. 

The approximate state problem: 
Find a pair (yh(vh), Xh(vh)) G Xh(vh) x Mh(vh) such that 

VwheXh(vh) a(vh;yh(vh),ivh) + b(vh;wh,\h(vh))= I fwhdx, (3.1) 
Jfl(vh) 

\ffth€Mh(vh) b(vh;yh(vh),nh) = 0. (3.2) 

The approximate domain optimization problem Th'- Find v„pt G .7a'd such that 

^ K V > y / » « t ) ) = mm J(vh,yh(vh)), (3.3) 

wliere yh(vh), yh(v„pt) are the first components of the solution of (3.1) — (3.2) on the 
domains Q(vh), &(v„pt), respectively. 

As an analogy to (2.3) we introduce the space 

Vh(vh) = {wh G Xh(vh); V/.ft G Mh(vh) b(vh;wh,i.ih) - 0} 

and reformulate (3A)-(3.2) into the problem to find yh(vh) G Vh(vh) such that 

Vwh£Vh(vh) a(vh;yh(vh),wh)= fwhdx. (3.4) 
Jil(vh) 

According to [9], the mapping 

wh *-+ [a(vh;wh,ivh)}
1/2 = \wh\X(Vh) 

is a norm on Vh(vh), the problem (3.1)-(3.2) has a unique solution (yh(vh), Xh(vh)) G 
Xh(vh) x Mh(vh), the component yh(vh) belongs to Vh(vh) and solves (3.4) uniquely. 

Remark 3.1. A general treatment of the primal hybrid FEM applied to the Pois-
son equation can be found in [9]. Let us note that Vh(vh) is an external approxi
mation of the space H^(Q(vh)), i.e., Vh(vh) <£. H\(p.(vh)). A function wh G Xh(vh) 
belongs to Vh(vh) if and only if [9, Section 4] 

Wh is continuous at midpoints of the sides of triangles contained in £l(vh); (3.5) 

XV), vanishes at midpoints located on dQ(vh). (3-6) 
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Theorem 3.1. There exists at least one solution of the problem Vh given by (3.3). 

P r o o f . Introducing basis functions of the space Vh(vh), we rewrite the equation 
(3.4) into a matrix form. It is not difficult to prove that the solution of the linear 
system continuously depends on the design variables. The cost functional is continu
ous, too. Hence, the existence problem is reduced to a minimization of a continuous 
function on a compact set. O 

4. CONVERGENCE ANALYSIS 

In this section we study a convergence of the approximate state solutions and the 
approximate optimal domains, respectively. We emphasize the convergence analysis 
of the first component of the primal hybrid state solution, since it is the point of the 
optimal domain problem. Let us note that Qj°(f2(u)) stands for the set of infinitely 
continuously different iable functions with a compact support contained in £l(v). 

4.1 . Approximate; solutions of the opt imal domain p rob lem 

The convergence analysis will be based on the following equality (see [9, Theorem 3]). 

Theo rem 4 .1 . Let yh(vh) G Vh(vh), Vh G Uad, be the solution of the problem 
(3.4). Then 

\y(vh) - yh(vh)\X(Vk) = \^J$LkM
v*) - wh\x(vk)j

 + ( 4 < n 

, / • , b(vh\wh,\(vh) -fi-h) 
+ inf sup — : r-^— 

\»„£Mh(vh) Wh£Vh(vh)\{0] \Wh\x(vh) 

where (y(vh), \(vh)) G Hl(Q(vh)) x M(vh) is the solution of the problem (2d)-(2.2) 
on the domain Q(vh). 

Lemma 4 .1 . Let {vh}, h —* 0+, be a sequence of functions vh G Uad such that 
lim vh = v in C([0, lj). Then v (= Uad. 

/i —o+ 
P r o o f . Through a sequence of continuous piecewise linear interpolates of the 

derivatives v'h can be proved that v'h —* v' G ( ^ ' ' ( [ O , 1]). In addition, v G Uad can 
be shown. See the proof of [7, Lemma 3.2] for details. D 

Lemma 4 .2 . Let us denote e(vh) = inf \y(vh) - wh\x(vh), where y(vh) is the 
tfh€Vh(vh)

 v ' 

solution of (3.4), vh G Ua
l
d. Let a sequence {vh}, h —> 0+, vh G U\d, converge to a 

function v in C'([0,1]). Then lim e(vh) = 0. 
h~»0+ 
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P r o o f . Let n be a positive integer. For any sufficiently small h (see Lemma 2.1) 

\\y(vh)-y(v)\\x,ne<^. (4.2) 

Also a function <pn G CQ°(Q(V)) exists such that 

l|y(f)-¥>»||i,n(«o<i. (4-3) 

The uniform convergence of vh guarantees the existence of a parameter h(n) > 0 
such that we have suppy„ C tt(vh) for all h G (0,h(n)}. 

We define the space (Pi(K) is the set of linear functions on A') 

Zh(vh) = {zh£C(rL(v^jy,VKeT(vh) ^|A-GPi(A)^/.l9nK) = 0}cFo
1(«K))-

Denoting by rh<pn G Zh(vh) the /^(^- in terpola t ion of <pn, we estimate (see e. g. [3, 
Theorem 3.1.6]) || (<pn - rh<pn)\K\\i,K < Ch\ (<pn\K) \z,K for any triangle K. The 
constant C > 0 is independent of h and vh, since the set of triangulations is strongly 
regular. Taking the root of the sum of the squared inequality, we obtain (h is small) 

||Vn - rh<pn\\\,n(vh) < Ch\<pn\2,n(Vh) < -• (4.4) 

The inclusion Zh(vh) C Vh(vh) and (4.2), (4.3), (4.4) lead to 

3 
z(vh) < \y(vh) - rh<pn\X(vh) = \y(vh) - rh<pn\XMs < -

but n has been chosen arbitrarily. D 

The next analysis is based on an auxiliary problem similar to (1.1). 
Let the domain Cln(v) be given by v G Uad and a positive integer n, 

nn(v)= j z G l 2 ; dist(z,fi(v)) < - \ . 

We define the auxiliary problem: Find yn(v) G HQ(QU(V)) such that 

Vi/;G/!o((n„(v)) / Vyn(v)-Vwdx= [ fwdx, (4.5) 

•/«»(») jn.Cf) 

the function / (see (1-1)) is extended by zero outside Sip. 
We remind that for any n and v G Uad the equation (4.5) has a unique solution. 

Lemma 4.3 . Let v G Uad be given and Q,Q be a domain with a Lipschitz boundary, 
fia C QQ. Assume the parameter n big enough to ensure £ln(v) C Q Q . Then 

lim |Mw) - y(tO||i,n0 = 0, 
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where y(v) £ H0(Q(v)) is the first component of the state solution (2.1)-(2.2). 

P r o o f . The method of the proof is identical with that of Lemma 2.1. • 

An analysis of the second term of (4.1) is more laborious. We shall exploit the 
method of function regularization. For any parameter Q > 0, the mollifier is defined 
as follows 

<pa(z)=l " "K2 ' IM-aO " "R2 (4.6) 

I 0, \\x\\v > Q. 

Lemma 4.4. Let a sequence {vh}, h —» 0+, vh G u*j, converge to t; in C([0,1]). 
Let the pair (y(vh), X(vh)) G H]

0(tt(vh)) x Af(vft) be the solution of (2.1)~ (2.2) and 
let yn(^) G !!o(^n(1')) ' ) e t , n e solution of (4.5). Finally, let the function yne(v) be 
given by 

Vne(v)(x) = Q-2 I yn(v)(t)<pe(x-t)dt= I yn(v)(x + Ql)ipx(t)dt, 
Jn„(v) J\t\<i 

where x G Q„(v) and Q > 0. 
Define Kne(vh) G M(«ft) by 

«»«K) = % - M on a/f VA'GTftK), fi(«*)Cfi„W, (4.7) 

where i-vc denotes the unit outward normal vector along the boundary of a triangle 
K e'Th(vh). Then 

3h(n,g)>Q V/i G (0,h(n,g)] 3e(vh,n,g)eR \fw&X(vh) (4.8) 

\b(vh;w, X(vh) - Kne(vh))\ < e(vh,n, g) \\w\\X(vk) \ 

for any e0 > 0 there exist parameters n and g such that 

0 < lim e(vh,n,g) <e0. (4.9) 

h—*0 + 

P roof . We introduce the function fe on fln(t>), 

/*(*) = 0~2 / / ( - W * - * ) < " • . (4-10) 

^n„(«) 
Supposing a*Gfi„(i>), dist(a;, dQ.n(v)) > g, is a given point, wehavesupp ipe(x—t) C 

f.n(i?) and Atipe(x - t) = Ax<pe(x - t), (see (4.6) or [8], § 16). The subscripts t, x 
denote variables used in the process of differentiation. 
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Applying this and the equality / = — Ayn(v) (in the sense of distribution) to 
(4.10), we may write 

e2fe(x)= I f(t)<pe(x-t)dt= (4.11) 
Jnn(v) 

= - [ yn(v)(t)Atcpe(x-t)dt = - I yn(v)(t)Axtpe(x-t)dt = 
Jnn(v) Jnn(v) 

= -Ax f yn(v)(t)<pe(x -t)dt = -Q2Axyne(v)(x). 
Jnn(v) 

If Q is small enough a value II(Q, n) > 0 exists such that 

V/i e (0,h(Q,n)] dist(n(vh),R
2\{ln(v)) > Q. 

Then on any domain £l(vh), 0 < h < h(g,n), (4.H) reads 

fe(v) = -Ayne(v). (4.12) 

Using substitution of the domain of integration, we obtain 

^rw=t,^+^' (1 )d ,= (413) 

= ( ^ ~ ) (*), i=l,2; x€n(vh),0<h<h(g,n). 

For any h sufficiently small, the function yne(v) is defined on the set Q.(vh). We 
can define Kne(vh) G M(vh) by (4.7). 

Using (4.12) and (4.13), we get (now q = V(2/„e(v)) - see Section 2) 

VwEX(vh) b(vh;w,Kne(vh)) = - V^ J A(Vne(v))w dx -
K€Th(vh)

Jli 

~ £ / nyne(v))-Vwdx=f fewdx- J2 / (?!*.(*)). 
K€Th(vh)

jK M'*) KtTh(vh)
jK 

This and (2.1) lead to 

\b(vh;w,\(vh)-Kne(vh))\< [ (f-fe)wdx 
JítíVK) 

•Vwdx. 

(4.14) 

J2 I WvM - (v2/»(,j))e] • V w dx 

K*Th(vh)
JK 

Let tov G [L2(Q(vh))]
2 be a function such that for any triangle K G %(vh), wv\R = 

Vw\K. Obviously, | |wv | |o,i.K) = \™\x(vh)- Replacing Vio by wv in (4-14) and 
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summing, we arrive at 

\b(vh;w,X(vh)-Kne(vh))\<\ / (f-fefdx 
\Jil(vh) 

,1 /2 

H\x(vh)+ (4.15) 

+ 

We can write 

/ |Vj,(«ft)-(Vy„(t;)) e |2dx| \\w\\X(Vh), 
Mvh) 

f (f-fe?dx=( (f-fe)
2dx + ei(vh,9) = el(vh,e) + e2(e), (4.16) 

Jil(vk) Jii(v) 

where the term £i («/,,£>) involves the integrals over the sets fi(v/,) \Q(t;) and il(v) \ 
fi(t'ft). We easily get 

lim Є\(vh,e) - 0, 
»—+0-f 

limi e2(e) = o. 
f?-»0+ 

(4.17) 

Indeed, the first limit is a consequence of the uniform convergence of the functions 
vh and the second one is a well known property of regularized functions (see e. g. 
[8], § 15). 

Making use of Sl(vh) C fi<s fl SIQ C\ fi„(n), we estimate the second term of (4.15) 

||Vt/(t.„) - (Vy„(t-))e||o,n(„o < \\Vy(vh) - Vj/(V)||o,n. + (4.18) 

+ \\Vy(v) - Vy„(t;)||o,n0 + \\Vyn(v) - (Vyn(v))e\\0^^v). 

Denoting the terms on the right-hand side of (4.18) by £3(1;/,), £4(11) and £s(rc, g), 
respectively, and applying Lemmas 2.1 and 4.3, we have 

ltm £з(fft) = 0, 
ft-^o+ 

lim £4(11) = 0, lim £5(n. g) = 0. 
Q-, 0 + 

(4.19) 

The last equality is valid for any positive parameter n. 
Finally, (4.15), (4.16) and (4.18) give 

s(vh,n,n) = [£, (vh, e) + e2(e)]l/2 + £s(vh) + £4(") + £5(1, {?) 

and, by virtue of (4.17), (4.19), the statement (4.9) holds. • 

L e m m a 4.5. Assume that a function <p € H2(U(vh)), vh £• U^d, is given. Let us 
define 4> <E M(vh) by V = -£-- on OK, K € Th(vh). Then 

inf 
b(vh;w,i}>- /(/,) / , , . . 

SUP — m ^ eitlvIi.íiK)' /ueA/„(i;0 ,„gA'(^)\{0} \w\x(vh) 

where the constant C > 0 is independent of h and vh € U^A. 
P r o o f . Lemma 4.5 is, in fact, Lemma 9 of [9]. 
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For any K £ Th(vh) and any side S of K, we set /.ih = TTS-£^ = JT5^
 o n S, 

where TT° stands for the orthogonal projector in L2(S) upon constants Pols- We 
can estimate 

VweHl(K) \f^-^h)wd7\ = \f (fL-^^P\wdy\< 
\Js I \Js KOVK 0VK J I 

< Ch\ip\2,K\w\i,K, 

where the constant C > 0 is independent of K, h and vh. The inequality is a direct 
consequence of the estimate cited by [9]. However, the paper [9] refers to [4]. A 
detailed proof can be found in [2]. Since the independence of C is a consequence of 
strongly regular triangulations, we consider [4] as a sufficient reference. Thus 

У ) / (Ф~Џh)wd7 
ÏҐ.. Jдк 

MweX(vh) \b(vh;w,i>- nh)\ = ^ 
KeTh(vh) 

< ] P Clh\fU,K\w\i,K <C\h\<p\2,n(vh)\w\X(vh), 
K£Th(vh) 

and the constant C\ > 0 does not depend on h and vh. 

Having Lemma 4.4 and Lemma 4.5, we tend to approximation of \(vh) by nne(vh) 
and to utilization of (4.1). According to the following lemma, the two norms on 
Vh(vh) are uniformly equivalent. 

L e m m a 4.6. There exists a constant C > 0, independent of h and vh 6 U%d, such 
that 

Vwh e Vh(vh) \\wh\\x(vh) < C\wh\X(Vk). 

P r o o f . The family r of triangulations is strongly regular, so that there exist 
constants Ci > 0, C2 > 0, independent of h and vh e U^d, such that for any 
K e Th(vh) it holds diam(/C) < C\h and C2h

2 < meas(A'). 

Suppose vh e Uad is given. The interval [0,1] on a;2-axis is subdivided into 
At = / i _ 1 subintervals. We denote their midpoints by ZJ, j = 1,...,N, and erect 
perpendiculars pj —see Fig. 3. Let the set of triangles A'. G %(vh) intersected by 
pj be denoted by /,-, j = 1 , . . . , N. We define the sets Qj =' U.e/, K>> 3 = *> • • • > N> 
and the segments qt = pj DA,-, i e Ij, j = \.,...,N. The length of qt is not greater 
than C\h. 
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Fig. 3. 

Let us choose a point a: £ \J,£i lv\:, l = Ui = i lj- Then the subscripts i and j 
exist such that x € /<",-, x € Q j . By (3.5), the function w is continuous at a midpoint 
Si = (U,Zj) € 0AV Using (3.6), we have 

">(*) = / - A * ! . ~i)fl^i + (V u'!K,) • (x - s,). 
jo o*. 

Estimating the argument of the above integral on relevant segments qt and realizing 
the fact that the number of elements of the set /, is not greater than C3//1, C3 > 0 
is a constant independent of «/, £ U^d, we arrive at 

w2(x) < 4C2C3Л £ ||Vu;|A-J|22. 
te/. 

(4.20) 

/ . 

We integrate (4/20) over /\',, taking linearity of w on any triangle into account, 

(x)dx < 4C2Cyimeas(/\ ' ,)53| |V7<;|K-Jll2< (4.21) 
fce/i 

< 4 ^ / » T / !V t (; |„J2d,C. 62 *«/*-

he estimate (4.21) is valid for any /v",-, ?' € /,-. Denoting CA — 4C\Cz/Ci, we obtain 

/ w2(x)dx =J2 f w2(x)dx < C3C4 Y, I lVwi/cJ2 dx. 

Finally, we integrate over Q(vh) = (J^=1 Qj 

w2(x) dx < C3C4 Yl I l^wlif J 3 d* = C3C4|u)|2V(l,h). 
(»0 kei^'" 
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The closing estimate is independent of h and vh 6 / ^ , 

V » e % ) \H\x(vh)<(C3CA+l)\w\2
x{Vh). a 

Now we are able to prove the following convergence lemma based on (4.1). 

Theorem 4.2. Assume that a sequence {vh}, h —* 0+, v/, 6 U^d, converges 
to v in C([0, 1]). The solutions of (3.1)-(3.2) and (2.1)-(2.2) are denoted by 
(yh(vh)Ah(vh)) G Xh(vh) x Mh(vh) and (y(v),X(v)) g Hl

0(Q(v)) x M(v), respec
tively. Then 

^ m J I W i K ) - y(v)\\x6(vh) = o. 

P r o o f . We know (Lemma 2.1) that 

y(vh) -* y(v) in Hx((lf), h -* 0+, (4.22) 

where (y(t»h), A(wfc)) G Hl(Q(vh)) x M(vh) solves (2+)-(2.2) on Q(vh). 
Denoting the terms on the right-hand side of (4+) by I7(vh) and I2(vh), respec

tively, we have (see Lemma 4.2) 

fcUra |y(t»ft) - yh(vh)\X(vh) = h i™ + ( I?(^) + I2(^)) = A!lm
+ Il(^)- (4-23) 

Let us choose £0 > 0 arbitrarily. Then (see (4.9)) parameters n, £> and /»0 > 0, 
dependent on e0, exist such that e(vh,n, Q) < e0 and the function yne(v) defines 
Kne(vh) G M(vh), 0 < h < h0. Using (4.8) and Lemma 4.6, we get 

V ^ e l i W V/ift G Mfc(t>fc) | 6 K ; w h , A K ) - / » f t ) l < (4-24) 

< |6(wh;«»/,, A(t»/.) - /v„e(vft))| + |6(uft; to/,, K„e(vh) - Hh)\ < 

< e0C1\wh\X(Vh) + \b(vh;wh,Kne(vh) - Hh)\, 

where the constant C'i > 0 is independent of h and vh • 
Applying Lemma 4.5 to (4.24), we obtain for any positive e0 

i , / M ^ n , -e b(vh-wh,Kne(vh)-Lth) \h(vh)\ < e o d + mf sup -^~J—-—-^—J- '- < 
fheMh(vh) Wh£Vh(vh)\{0} \wh\X(vh) 

< £QCi +C2h\yne(v)\2in{vh) < e o d + C2h\yne(v)\2,cie < 2<r0oi, 

where the constant C2 > 0 does not depend on h and vh. Thus, limit (4.23) tends 
to zero. 

Choosing e > 0, we have, if h is small enough, (see (4.22), (4.23)) 

\yh(vh) - y(v)\x6(vh) < e. (4.25) 

Next, a function ys(v) G Co°(^(v)) exists such that 

\\y(v)-ye(v)\\lAs<e. (4.26) 
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For any triangulation Ths(vh) G Ts we define the set of continuous and piecewise 
linear functions 

Zs(vh) ={z£ C(fi«); VK G TwK) z\K G ei(A')} . 

For any w G C(n^), let rhw G Zs(vh) be the Zi(f/,)-interpolation. 
The well known estimate (see e.g. [3], Theorem 3.2.1) gives 

||jfc(w) - rhye(v)\\hn6 < C3h\y€(v)\2in6 < e, (4.27) 

the constant C3 > 0 is independent of h and vh since the family Ts of triangulations 
is strongly regular. Combining (4.25), (4.26) and (4.27), we estimate 

\l/h(vh) -rhy£(v)\x6(Vh) < 3e. 

For any h sufficiently small, we have suppye(v) C Q(vh), hence rhyc(v)\n (vh) G 
Vh(vh). 

The function (jh(vh) = yh(vh) — rhye(v)\n(vk) complies with the assumptions of 
Lemma 4.6, hence a constant C4 > 0, independent of h and vh, exists such that 

\\9h(vh)\\x6(vh) < 3C4e. (4.28) 

The inequalities (4.28), (4.26) and (4.27) imply the final estimate 

\\Vh(vh) - y(v)\\x6(vh) < Wjh(vh) - rhye(v)\\xe(vh) + \\rhys(v) - y(v)\\i,ae < 

< SC4e + \)y(v)-y£(v)\\lins + \\ye(v)-rhyt(v)\\ltas <e(3o4 + 2). D 

Lemma 4.7. Under the assumptions of Theorem 4.2 

lim J(vh,yh(vh)) = J(v,y(v)). 
h-*o+ 

P r o o f . The proof is easily seen from (1.2) and Theorem 4.2. • 

To prove the main convergence result we need the following auxiliary lemma. 

Lemma 4.8. For any v G Uad there exists a sequence {vh}, h —* 0+, vh G U%d, 
such that 

lim vh = v in C([0,1]). 
h—>0+ 

P r o o f . Following the proofs of [7, Lemma 3.1] and [1, Lemma 7.1], we can 
construct a piecewise linear function dependent on li and prove that it belongs to 
Ua

l
d. A sequence of these functions converges to v uniformly. D 
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Theorem 4.3. Let {v^ i} , h —> 0+, vopt 6 Uad, be a sequence of solutions of 

the approximate domain optimization problem Vh (see (3.3)). Then a subsequence 

{^opt} C {vh
pt} exists such that vo;t -> wopl in C([0,1]), hn -> 0+, and the design 

variable uopt G Uad solves the problem T3 (see (1.3)). 

The strong convergence of the first component of the approximate hybrid state 
solution is ensured by Theorem 4.2. 

P r o o f . We follow the proof of [1, Theorem 7+]. 

Let i] G Uad be given. There exists a sequence {?//,}, h —> 0+, r/;, G U^d, such 
that rjh —» 7] in C([0,1]) (Lemma 4.8). Let us denote by yh(f]h) G Xh(i]h) the first 
component of the solution of (3.1)-(3.2) where vh is replaced by i]h-

The set U°d is compact in C([0,1]). We choose a subsequence \vop"t J- C {vopt} C 

U°d such that (Lemma 4+) vh;t converges to v* £ Uad in C([0,1]). 

By virtue of (3.3), J(vh
o;t,yh(v

h;t)) < J(r]ha,Vh(Vhn))- Passing to the limit with 
hn and using Lemma 4.7, we obtain J(v*,y(v*)) < J(i],y(j])) and v* = vopt. D 

4.2. Convergence of t h e second component of t h e approx imate s t a t e 
solution 

Essentially, in this subsection we verify results of [9] generalized to a family of 
domains with a movable boudary. 

^1/2 

We provide the space X(vh) with the new norm |||w|||x(«fc) = ( J2 IIMIIi K 
\K<ETh(vh) 

where for any triangle A' G Th(vh), 

\M\l,K = (M?,K + hK
2\\w\\lK)in , hK = diam (K). 

Then the space M(vh) is normed by | | H | | M K ) = sup [IL.J^^^ • 
»6X(« t) \{0} \lW\lX(vh) 

Lemma 4.9. Let Th(vh) belong to the set r of strongly regular triangulations. 
Then there exists a constant C > 0, independent of h and Vh, such that 

\/nheMh(vh) sup b±hl^hiBl>c\Uih\\\M(vh). 
whexh(vh)\{o] I I K I I U K ) 

P r o o f . The proof is based on detailed estimates concerning an affine mapping 
between a triangle K and a reference triangle K. Since r is a strongly regular family 
of triangulations, we find out that the proof of [9, Lemma 10] can be followed step 
by step. D 
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L e m m a 4 . 1 0 . Let the pai r (y(vh),X(vh)) € X(vh) X M(vh) solve the p rob lem 

( 2 . 1 ) - ( 2 . 2 ) on t he domain Q(vh). Assume t h a t (yh(vh), Xh(vh)) £ Xh(vh) x Mh(vh) 

is the solut ion of the problem ( 3 . 1 ) - ( 3 . 2 ) . Then 

|||A(ivO - Xh(vh)\\\M(vh) < ^\y(vh) - yh(vh)\x(vh) + (4-29) 

+ Í1 + -V) inf iX(vh)-HhU(vh), 
\ w nhíMh(vh) 

where the cons tan t C > 0 is independent of h and vh € U%d and equals to the 

cons tant C in L e m m a 4.9. 

P r o o f . We refer to the proof of [9, T h e o r e m 3]. T h e independence of C is an 

immedia te consequence of L e m m a 4.9. O 

T h e o r e m 4 . 4 . Let a sequence {vh}, h —* 0 + , vh 6 U^d, converge to v in C([0,1]). 

Then 

hlim mvh)-Xh(vh)U(vk) = 0. 

P r o o f . Let us choose £ > 0 arbi t rar i ly . By L e m m a 4.4, we have yne(v) £ 

C°°(£l(vh)) and Kng(vh) € M(vh) such t h a t 

V « € % ) \ { 0 } ^ ; " , ' ^ ) - K " g ( ^ < £ f a , n , g ) < e . (4.30) 

Using IIMIU'K) > \w\x(vh) and L e m m a 4.5 (y> = Ifoc(«)i i> = K n e ( ^ ) ) , we arrive 
at 

inf JII«neK)-/i/.UlMK)= (4-31) 
fh€Mh(vh) 

b(vh;w,Kne(vh) - fih) , 
inf 4 sup - i g v < Ch\yne(v)\2in(vh) < e, 

»h<zMh(vh) wex(vh)\{o] I I M I I A K ) 

where the last inequal i ty holds for all h sufficiently small because yne(v) does no t 

depend on h and vh. 

T h e inequali ty ||u;||x(»fc) < I M I x K ) and (4.30), (4.31) give 

• f \\\\{ \ in • f b(vh;w,X(vh) -fih) 
mf . P W - W A f W - inf sup - i — - • '—L < 

l*hGMh(vh) »heMh(vh)w€X(vh)\{0} \\\w\\\x(vh) 

< inf 
l*h€Mh(vh) 

b(vh;w,X(vh) - Kne(vh)) 
SUp jjj - |-

«ex(vh)\{P} \Ww\\\x(vh) 

b(vh;w,кne(vh)- џh) 
sup <2ê. 

»€XC-k)\{0} \\\W\\\X(vh) 

Inser t ing th is in to (4.29), we finish the proof by 

\\\X(vh) - Xh(vh)\^M(vh) < ^\y(vh) - yh(vh)\x(vh) + 2(1 + - - ) * . 
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Indeed, by v i r tue of T h e o r e m 4.2 (see (4.23)), the t e rm \y(vh) - yh(vh)\x(vh) t ends 
to zero. T h e p a r a m e t e r § is a rb i t ra r i ly small . D 

C l o s i n g r e m a r k . T h e sys tem ( 3 . 1 ) - ( 3 . 2 ) seems to be clumsy to solve. Never

theless, using the space Vh(vh) (see ( 3 . 5 ) - ( 3 . 6 ) ) , we can c o m p u t e yh(vh) from the 

equat ion (3.4) easily. Subs t i t u t i ng yh(vh) in to (3.1) and in t roduc ing sui table basis 

functions of the spaces Xh(vh) and Mh(vh), we ob ta in a sys tem of linear equat ions 

with a d iagonal m a t r i x . 
T h u s the c o m p o n e n t X(vh) can be c o m p u t e d and the desired normal derivat ive 

along the b o u n d a r y of an opt imized domain app rox ima ted . However, compu ta t iona l 
effectiveness of the approach given in this pape r has no t been tes ted yet. 
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