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REMARKS ON FUZZY QUANTITIES 
WITH FINITE SUPPORT1 

M I L A N M A R E Š 

The general results concerning the algebraic properties of fuzzy quantities presented, 
e.g., in [2,4,6] can be rather completed and specifically interpreted if the fuzzy quantities 
with finite support are considered. It is possible to show that the algebraic equivalence 
relations over such quantities part their class into characteristical subclasses. 

1. I N T R O D U C T I O N 

As shown, e.g. , in [2] and [4] the fuzzy numbers and generally fuzzy quant i t ies can 

be ar i thmet ica l ly handled but the opera t ions over t hem do not fulfil some impor

t a n t algebraic proper t ies . Th i s lack of algebraic perfectness is not purely technical , 

it reflects the lack of de te rmin i sm and the s t ruc ture of uncer ta in ty typical for t he 

fuzziness. T h e dispropor t ion between the str ict de te rmin i sm of a lgebra and vague

ness of fuzzy quant i t ies can be avoided if we replace the crisp equali ty in algebraic 

rules by certain types of equivalence, as shown, e .g . , in [2 ,3 ,4] . 

Each equivalence means t h a t some type of equivalence classes is considered in

s tead of single e lements of the basic set. In our case the classes of equivalent fuzzy 

quant i t ies can be especially well specified if only the quant i t ies with finite suppor t 

are considered. It enables us to formulate a few results which could not be (up 

to now) derived for the general case, and to use t h e m for a s ta r t ing point to some 

conclusions on the n a t u r e of fuzziness in quan t i t a t ive da t a . 

In the whole paper we denote by R the set of all real numbers and by RQ = R— {0} 

the set of non-zero reals. 

By normal fuzzy quantity we call any fuzzy subset a of R with the membersh ip 

function fa : R, —> [0, 1] such t h a t 

s u p ( / a ( z ) : xeR)=l. (1) 

If, moreover, the suppor t of fa, i .e . the set 

{_* <= R : / . ( * ) > 0} (2) 
1The research summarized in this article was supported by the Czechoslovak Academy of Sci

ences, grant No. 27508. 
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is finite, we call a the finite-support normal fuzzy quantity (in this paper we mean 
by fuzzy quantity always the finite-support normal fuzzy quantity). The set of all 
fuzzy quantities will be in this paper denoted by ffi. It will be useful to denote by 
Mo the set of non-zero fuzzy quantities i.e. such 

{aem-. /a(o) = o}. (3) 
For o g l condition (1) turns into 

max(/„(x) : x 6 R) = 1, (4) 

which means that fa(x) = 1 for at least one x £ R. 
It will be useful to specify the following symbols of some sets of fuzzy quantities 

E+ = {a e 1 : fa(x) = 0 for x < 0} , ffi~ = {a g 1 : fa(x) = 0 for x > 0} , 
(5) 

and the fuzzy quantities from the set 

E* = ffi+ U R~ C 1 0 (6) 

are called polarized. 

2. ARITHMETICAL OPERATIONS 

Fuzzy quantities represent vague numerical data and, consequently, they should be 
processed by the usual arithmetical operations or by their close analogy. 

Due to the referred literature (and to some other works) we define the addition 
and multiplication of fuzzy quantities, with respect to the finiteness of their supports, 
in the following way. 

Let a, b £ K be fuzzy quantities with membership functions fa, fb, respectively. 
By a © 6 we denote the fuzzy quantity with membership function / a $ j such that 

/aej(z) = max(min(/a(y), fb(x - y))) = max(min(/a(z - z), fb(z))), x e R. 

(7) 
If o, 6 G l o C 1 then we denote by a © 6 the fuzzy quantity with membership 
function faQb, where 

faQb(x) = max (min(/a(y), fb(x/y))) = max (min(fa(x/z), fb(z))), x G R. (8) 
J/£fio z€Ra 

Remaxk 1. The finiteness of the supports of a and 6 and relations (7), resp., (8), 
imply that also a © 6 and a © 6 have finite supports. 

Reiixark 2. If a, 6 g 1 0 then (8) implies that also a 0 6 € IRo, i.e. /a06(O) = 0. 

Fuzzy quantities a © b and a 0 6 are called the sum and the product of a and b, 
respectively. 

As shown in [6] the definition of product o©6 can be extended to fuzzy quantities 
from R D E0, where faQb(x) is given by (8) for x ^ 0, and 

/a06(O) = max(/a(O), A(0)). (9) 
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This extension is coherent with the original definition of a 0 6 for a, 6 £ Mo and 
preserves all its useful properties. 

If x £ R then we denote by (x) the degenerated fuzzy quantity for which 

/<-)(*) = 1 . /<x)(y) = 0 i f y - i * . (io) 

For a crisp real number r £ R the products of degenerated (r) with fuzzy quantity 
gets a simplified form. For a £ 11 and r £ R we denote r • a = (r) 0 a, where 

/-.«(*) = fa(x/r) i f r # 0 , (11) 

= / ( 0 )(x) i f r = 0 . 

As shown e.g. in the papers referred below, set II is a commutative monoid con
cerning operation © i.e. 

a © 6 = 6©a, a © (6 © c) = (a © 6) 0 c, a © (0) = a (12) 

for a, b, c £ E. Analogously, E is a commutative monoid concerning operation 0 , 
i.e. for a, b, c £ E 

a© 6 = 6 0 a, a 0 (6 0 c) = (a © 6) 0 c, a 0 ( 1 ) = a. (13) 

For the crisp product of r £ R, a, 6 £ E 

r - ( a © 6 ) = ( r - a ) © ( r - 6 ) . (14) 

On the other hand, if we denote for a £ E, 6 £ Eo the fuzzy quantities —a £ E and 
1/6 £ E0 such that 

/_„(*) = fa(-x), h,b(y) = h(ily), / i / t (0) = 0, x £ « , j / £ i ? 0 (15) 

then the remaining group properties 

aff i(-a) = {0) and 6 0 ( 1 / 6 ) = (1), (16) 

as well as the complementary distributivity 

(n + r 2 ) • a = n - a © r 2 - a , r i , r 2 £ f t , (17) 

are not generally fulfilled. The roots of this lack of pleasant algebraic properties 
are discussed in [2,4, 6]. Generally, it is innatural to demand the validity of strict 
equations (16) between fuzzy quantities and crisp numbers, especially regarding the 
fact that the operations © and 0 do increase the fuzziness of the operated quantities. 
Evidently also the repetitive addition becomes to be different from multiplication by 
the number of repetitions (e. g. a © a ^ 2 • a) if indeterminism enters the process, as 
expressed by (17). The distributivity of© and 0 is preserved in very special cases 
only, as shown in [1], 
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3. ALGEBRAIC EQUIVALENCES 

The previous paragraph shows even how to avoid some of the discrepancies connected 
with the arithmetical processing of fuzzy numbers. It is not rational to implement 
crisp numbers, 0 and 1, into the manipulation with fuzzy phenomena. Instead of it 
we should include some kind of "fuzzy zero" (in the additive case) or "fuzzy unit" 
(in the multiplicative case). It was done in [2] and [4] in the following way. 

Let a g l , i G f l . We say that a is ^-symmetric iff 

fa(x + z) = fa(x - z) forallzefl. (18) 

By §x we denote the sets of all a;-symmetric fuzzy quantities. § denotes the union 

§ = U S - (19) 
xen 

If a, b £ R. then we say that they are additively equivalent, and write a ~® b iff 
there exist Si, s2 £ §o such that 

a®si = 6 © s 2 . (20) 

Analogously, if b £ W. and y £ R0 we say that b is y-transversible iff 

h(yz) = fb(y/z) forzX), (21) 
= 0 f o r z < 0 . 

By Ty we denote the set of all y-transversible fuzzy quantities, and T denotes the 
union 

T= [J Ty. 
y€Ro 

It is not difficult to verify that any y-transversible fuzzy quantity belongs to the set 
1+ iff y > 0 and to ! ~ iff y < 0 (cf. (5)). 

We say that a and 6 from E are multiplicatively equivalent, in symbols o ~ 0 6, 
iff there exist t\, t2 £ Ti such that 

a © < i = 6 © < 2 . (22) 

Let us remember that 

a © ( -a ) ~ e (0) for a £ E (23) 

and 
6 © ( 1 / 6 ) ~ 0 ( 1 ) for&£E*. (24) 

It was shown (cf. [2,4]) that K with the operation © is a commutative group up to 
the equivalence relation ~g>, and E* = E + U E~ with 0 forms a commutative group 
up to ~Q. 

Remark 3. If o, b £ §0 then evidently o ~ $ 6 and a © 6 £ S0. 
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Lemma 1. If a, b are fuzzy quantities and a £ Sx, b £ §y , x, y £ /?., then a ~® b 
iff x = j / . 

P r o o f . If a € Si, 6 £ §y then by [3] a = (x) © «., 6 = (y) © s2 for s j , s2 g S0. 
The equivalence a ~ $ 6 means that there exist s\, s'2 £ §0 such that 

(x) © si © s'j = (y) © s2 © s'2, (25) 

where si © s\ = s" £ §o, «2 © s'2 = s2 € S0. As - s 2 = s" 

(x) © «i' © (-((y) © 4')) = (* - v) © (*.' ® 4 ) = (* - ?;> ©« 

for s = s'j © s2 £ §0- Equality (25) implies that (x — y) © s £ §0 which is possible 
iff x-y~0 (cf. [3]). • 

Lemma 2. If a, 6 are fuzzy quantities and a £ T-, 6 £ Ty, x, y £ /?0 then a ~ 0 6 
iff x- = y. 

P r o o f . The proof is analogous to the previous one where relevant results from 
[4] are used. • 

4. EQUIVALENCE CLASSES 

If we limit our considerations to the fuzzy quantities with finite support, some useful 
conclusions can be derived. Those ones which concern the additive case were in a 
slightly modified form presented in [2] (e.g., Lemmas 9 and 10 or Theorems 8 and 
9). 

The proofs of the following statements demand to proceed rather less strict type 
of fuzzy quantities than the normal ones considered in the other paragraphs. An 
arbitrary fuzzy quantity with finite support will be called any fuzzy quantity a with 
membership function fa : R —» [0, 1] with finite support (2) but generally not 
fulfilling the normality assumptions (1) and/or (4). 

Lemma 3. Let a be arbitrary fuzzy quantity with finite support, let s £ §o be 
O-symmetrical fuzzy quantity, let x0 £ R be such that / . (x 0 ) = /.(—^o) = 0, and 
let ao be an arbitrary fuzzy quantity such that 

fao(x) = fa(x) for all x £ R, \x\ -. |x0 | 

fa0(x0) = fao(-x0) > max(/ . (x) : x € R). 

Then for any.x £ R fa(x) = fa(-x) iff/„„(*) = / . „ ( - * ) , and fa<Ss(x) = faBs(-x) 

iff fao®»(x) = fa0<$S(-x). 

P r o o f . The validity of the first equivalence is evident. Let us denote 

{xu...,xn} = {xeR: fa(x)>0}. (26) 
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Then for any y G R 

/ . o e . ( y ) = m a x ( m m ( / a o ( ^ 

/ . 0®,(-J / )=max(min( / a o ( a : ) i / , ( _ y - .-)))= (28) 

^i^mm^o(x),fs(y + x))) =mzx(mm(fao(-x)Js(y-x))) . 

Let fa®s(y) = fa®s(~y) for all y G R, and let us consider the y0 G -ft for which 

fa0($s(yo) = / a o (z 0 ) = min(/.0(a;o), fs(y0 - x0)). 

Then, as /.D0co) > fa(x) for all x e ft, (27) implies 

fao®s(-yo) = mHx(min(fao(-x), fs(y0-x))) = 

= min( /a o ( -x 0 ) , / . (y 0 - *o))) = / . 0 ( - * o ) = /.„(.-„) 

and consequently fao®s(yo) == / . 0 ® s ( -y 0 ) . If /.0®s(y) # / .0(^o) then it is equal 
to some of the values of / . e s ( y ) = / a © s ( -y ) . If, on the other hand, / . 0 e s (y) = 
fa0®s(-y) for all y G -ft then for any y e R either / a 0 . ( y ) = / . „ e , (y ) = fao@,(-y) = 
fa®s(-y) or fa®s(y) = 0 ^ faoQS(y) and then also fa®(-y) = 0 as follows from the 
previous steps of the proof. D 

Lemma 4. Let a G K be a fuzzy quantity, let s G So be O-symmetric fuzzy quan
tities and let a © s G §o- Then a G §o as well. 

P r o o f . Let us denote {*i,... ,«„} by (26). As s G S0, equalities (27) and (28) 
hold. Let us choose the j G { 1 , . . . , n} for which 

fa(xj) = m&x(fa(xi) : i=l,...,n), (29) 

M > I1.! for all Xi such that /.(-?,-) = /.(ay)> (30) 

ay > 0. (31) 

Such j exists, as the finiteness of support guarantees the fulfilling of (29) and (30) 
for at least one j G {1, . • •, n}. If (31) is not fulfilled for some j respecting (29) and 
(30) then there exists Xj G R such that Xj < 0 and fa(—Xj) < fa(xj). Let us choose, 
then, yo e R such that 

f>(V0 - * ; ) > fa(xj) and fs(y) < fa(Xj) for y>y0-Xj. ' 

It means that 

/«e*(yo) = min(/ .(ay), / ,(y0 - ay)) > rn in( / . ( -ay) , L(y0 - ay)) = / .® s ( -y 0 ) 

which inequality contradicts the symmetry assumption on a © s. 
Having chosen j € {1 n} and ay G # which fulfill (29), (30), (31), we choose 

the yo e R for which 

fs(yo~Xj) >fa(xj), 

fs(y) < fa(xj) for y < y 0 - a y , 
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then by (27) and (28) 

fa®s(yo) = . m a x
n (min(/a(x-!), fs(y0 - x,-))) > fa(xj,) 

fa®s(~yo) = max(min( / a ( -x) , fs(ij0 - x))) = 

= min(fa(-xj), fs(y0 - Xj))) < fa(-Xj) < fa(Xj). 

But the O-symmetry of a © s means that 

fa(Xj) < /a e ,(l/0) = fa9,(-V0) < fa(-X}) < fa(xj) 

and, consequently, fa(—Xj) = fa(xj). 

Let us construct, now, an arbitrary fuzzy quantity with finite support a\ such 
that 

fai(x) = fa(x) forxG R, \x\^xj, 

faAxj) = /»,(-*,-) = 0. 

Lemma 3 implies that fai(x) = fai(—x) for all x iff fa(x) = fa(—x) for all x and 
that fa(Bs(x) = fa®s(-x) for all x £ R iff /0 , e ,(-") = / « , e . ( - * ) f o r a11 x G «• J t 

means that we may repeat the previous procedure for a. and, after a finite number 
of analogous induction steps, we prove fa(x) = fa(—x) for all x £ R. D 

R e m a r k 4. It follows from the proof of Lemma 4 that an analogous statement is 
valid for a being arbitrary fuzzy quantity with finite support such that fa^s(x) = 
fa(&s(-x) for all x£ R. Then fa(x) = fa(-x) for all x £ R, as well. 

The following statements concerning the additive equivalence can be derived from 
the previous lemmas. 

Theo rem 1. If a, b £ E are fuzzy quantities then a ~ $ b if and only if a © (—6) £ 
§n. 

P r o o f . The statement can be proved similarly to Theorem 8 in [2], using previ
ous Lemma 4 and definitoric equality (20). • 

Theo rem 2. If a £ M. is a fuzzy quantity then a ~gj (0) if and only if a £ §o-

P r o o f . The statement follows from Theorem 1 immediately. 
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Theo rem 3. Subsets §.-, x £ R, form equivalence subclasses of the set of fuzzy 
quantities M, according to ~ $ . 

P roof . It was shown by Lemma 1 that for x, y £ R, a £ §_., 6 £ §,,, the relation 
a ~ 0 & can be true iff x — y. Let us suppose that there exists a £ E — § and 6 £ § 
such that a ~ 0 6, and let x £ ft be such that 6 £ §~. Then b = (x) © s for some 
s £ §o and there exist s^, s2 £ §o for which 

a®si = & © s2 = (z) © s © s2. 

It means , . ... 
a © S] © (-X) = S © Si © (0) = S © S! , 

and by Lemma 4 a © (—z) £ §o- By [3], a £ §_x C § which contradicts the 
assumption a £ E — §. • 

R e m a r k 5. Evidently, there exist more equivalence classes in E than the sets Sx, 
x £ R. However, the specific position of symmetry in fuzzy quantities (cf. [5] or [2]) 
is even more stressed by the previous result. 

The transversible fuzzy quantities and operation of multiplication can be pro
ceeded in a similar way. In the following paragraphs we limit the presentation of the 
procedure to the points which essentially differ from the additive case. 

Let us remember that the concept of arbitrary fuzzy quantity with finite support 
mentioned above keeps unchanged. 

Lemma 5. Let a be an arbitrary fuzzy quantity with finite support, let /_(-) = 0 
for all x < 0, let t £ Ti be a 1-transversible fuzzy quantity, let Xo > 0 be such that 
fa(xo) = /a( l /zo) = 0, and let ao be an arbitrary fuzzy quantity such that 

fa0(x) = fa(x) for all x £ R, xo 9- x ^ l/x0, 

fao(x0) = / . . ( I / s o ) > fa(x) for all x £ R. 

Then for any x £ /_„ /„(_•) = fa(x/l) iff /_„(_) = /_o(l/-0> and faQt(x) = 
fa0t(l/x)ifffao01(x) = faoQt(l/x). 

P r o o f . If we denote the support set of a by {._i,.. . , _ „ } , like in (26), then for 
any y > 0, analogously to (27) and (28), 

/ O o 0 ( ( y ) = m > a A ( m i n ( / _ o ( ^ (32) 

/ a o 0 i ( l / 2 / )=max(min( / a o ( z ) , ft(l/yx)))= (33) 

= rnax(min(/ao(_), ft(y • i-)))=max(min(/_0(l/-), ft(y/x))) • 

The assumptions of the lemma immediately imply that for y < 0 faQt(y) = 

/_oO.(y) = ° ^ wel1 a8 /«o(-0 = /-(*) = /.(*) = ° for a11 * < °-
Further procedure of the proof is analogous to Lemma 3. If we choose j/o £ R+ 

such that / a o 0 . (y o ) = /_„(*.) > / . ( « ) , x > 0, 
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then by (32) /ao0t(l/?yo) = /«0(*o) = faMvo)-
If fa0Qt(y) 7- /o0(xo) then the desired equality follows from the properties of 

aQt. The first one of the stated equivalences, namely fao(x) = fao(\/x) iff fa(x) — 
fa(\/x), is evident from the assumptions. • 

Lemma 6. Let a £ Mo be a fuzzy quantity, let t 6 Tj be 1-transversible fuzzy 
quantity, and let a 0 t G Tj . Then a £ Ti as well. 

P r o o f . If there exists xQ < 0 such that fa(x0) > 0 then (8) implies that also 
faQt(yo) > 0 for some tja < 0, and in such case a Qt £ Tj. Consequently a £ II+. 
Further steps of the proof are analogous to the proof of Lemma 4. If we accept the 
notation {X\,..., xn) for the support (26) then X{ > 0 for all i = 1 , . . . , n and we 
may choose j £ {1,... ,?)} for which 

fa(xj) > fa(xt) for all i = 1 , . . . , n, (34) 

* , - > l , (35) 
if / a ( s ) = fa(xj) for some x £ R then either 1 < x < £j or 1 > x > \/xf?>&) 

Such Xj in R does exist, as the finiteness of support guarantees the existence of Xj 
fulfilling (34). If (35) and (36) are not simultaneously true, i.e. if there exist Xj for 
which (34) holds, and 0 < Xj < 1, fa(x) < fa(

xj) for all x > \/x.j > 1 then we may 
choose 1/0 > 0 such that by (32), (33) 

ft(yo/xj) > fa(xj) and ft(y) < fa(x,j) for y > y0/Xj. 

But then 

Myo) = mm(fa(yj), ft(y0/xj)) > mm(fa(\/Xj), fs(y0/xj)) = fa(\/y0) 

which is impossible because of the transversibility of t. To the j £ { 1 , . . . , n} and 
Xj > 0 fulfilling (34), (35), (36) we find y0 > 0 for which 

ft(yo/xj) > fa(Xj) 

ft(y)<fa(xj) for y<y0/xj. 

According to (32), (33), 

faQt(yo) = .maxn(mm(fa(xi), ft(y0/xi))>fa(xj), 

Ml/yo) = m^(mm(fa(l/x),ft(yo/x))) = 

= mm(fa(\/X]), ft(y0/xj)) < fa(l/xj) < fa(Xj). 

The 1-transversibility of a 0 t means that 

fa(Xj) < MV0) = faQt(l/y0) < fa(l/Xj) < fa(xj) 

and, consequently, fa(l/xj) = fa(xj). 
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Now we may construct an arbitrary fuzzy quantity a\ with finite support, where 

fa,(X) = fa(x) for Xj^X^ l/xj, 

fai(Xj) = fai(l/Xj) = 0, 

and using Lemma 5 we may proceed for aj analogously to a. After a finite number 
of induction steps the 1-transversibility of a will be proved. • 

R e m a r k 6. A statement analogous to Lemma 6 is valid for a being arbitrary fuzzy 
quantity with finite support such that /<.©«(#) = faQt(X/x) for all x > 0, as follows 
from its proof. Then / a (x) = fa(\/x) for all x > 0. 

Theorems analogous to those ones derived for additive case can be obtained for 
the multiplicative ones, as well. 

Theorem 4. If a, 6 G 11* are fuzzy quantities then a ~ 0 6 if and only if a©(l /6) G 
T j . 

P r o o f . If a ~ 0 6 for a, 6 G E* then there exist tu t2 G Tj such that a0<i = bQt2 

a i K l t h e " a 0 h 0 (1 /6) = 6 0 (1/6) © <2 € Tj, 

as 6 © (1/6) = f 6 T , and l 0 i 2 £ T i as well. Lemma 6 implies that a © (1/6) G Tj . 
Let, on the other hand, a © (1/6) = U G Tj. Then 

a© (1 /6 )06 = bQl2 

and, putting (1/6) © 6 = t\ G Tj, we obtain the equivalence a ~ 0 6. • 

Theorem 5. If a G K is a fuzzy quantity then a ~ 0 (1) if and only if a G Tj. 

P r o o f . The statement follows from Theorem 4. • 

Theorem 6. For any y G Ro the subsets Ty C E* form equivalence classes accord
ing to the equivalence relation ~ 0 . 

P r o o f . For x, y G Ro and a G Tx, 6 G Ty the equivalence a ~ 0 6 can be valid 
iff x = y, as shown in Lemma 2. It means that Tx are equivalence classes in T. It 
remains to prove that for a G E* — T, 6 G T the equivalence a ~ 0 6 is impossible. 
Let a ~ 0 6 be valid for such a and b, and let 6 G Tx, x G Ro- Then 6 = (x) 0 t for 
some 2 G Tj and there exist t\, t2 G Tj such that 

8 0 ( i =bQt2 = {X)QtQt2. 

It means that , ,, , . ,,, , , _, 
a © U 0 (1/x) = (1) © t 0 <2 = < 0 h € Ti 

and, by Lemma 6, a 0 (1/x) G Tj. It means by Theorem 4 that a ~ 0 (1/x), i.e., 
a G T | / x which contradicts the assumption a G E* — T. • 
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R e m a r k 7. Evidently, there exist o ther equivalence classes in M* different from 

Tx, x G R0-

As shown above t h e equivalence s t r u c t u r e s for n o r m a l fuzzy quant i t ies with finite 
s u p p o r t are r a t h e r more lucid t h a n those ones in more general cases. It simplifies 
the e laborat ion of fuzzy-contaminated d a t a with finitely m a n y possible values in 
real appl icat ions . In connection with this it could be interest ing t o c o m p a r e the 
theoret ical tools derived here and in other re lated papers with the uncer ta inty models 
in sys tem theory [8] a n d other branches (e.g., [7]). 

T h e variety of equivalence s t r u c t u r e s for addit ive and mult ipl icat ive case offers 
also some deeper considerat ions a b o u t t h e s t r u c t u r e of fuzziness a n d uncer ta in ty in
cluded into fuzzy quant i t ies and their description, analogous to those ones presented 
in [5]. T h e m u t u a l re lat ions between addit ive and mult ipl icat ive decomposi t ion of 
fuzzy quant i t ies could give s o m e information a b o u t t h e essential types of fuzzy un
certainties . 

(Received August 14, 1992.) 
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