SUPPLEMENT TO KYBERNETIKA VOLUME 28 (1992), PAGES 65-71

MINIMAL AXIOMATIC SYSTEM OF FUZZY LOGICAL ALGEBRA

ZUWEI LIAO

This paper presents seven axioms of fuzzy logical algebra based on an axiomatic treatment of system $(U, \star, 0, 1)$. This system will make a research into fuzzy logical algebra much more rigorous than before.

1. INTRODUCTION

One of the most important tools in modern mathematics is the theory of sets. Fuzzy set theory, introduced by L. A. Zadeh in 1965 [1], is a generalization of abstract set theory, while operations of fuzzy sets are obvious extensions of the corresponding definitions for ordinary sets. A year later, BCK-algebra, introduced by Y. Imai and K. Iseki in 1966 [2], is a generalization of set algebra based on six properties of the relative complement of a set with respect to the other. However there is a question between the two theories, whether exists a connection or not, and what it implies, this not problem seems to have been put forward so far.

As a matter of fact, fuzzy logical algebra [3] which is based on fuzzy set theory is special case of BCK-algebra, and from this, minimal axiomatic system in fuzzy logical algebra is obtained.

2. ABCD-ALGEBRA

Definition 1. ABCD-algebra is a system

$S = \langle U, \star, 0, 1 \rangle,$

where U is a partially ordered set and it has at least two constant elements 0 and 1,

$$\star : U \times U \longrightarrow U$$

and for $\forall x, y, z \in U$, system S satisfies the following set of axioms:

- a₁ Order: $x \star y = 0 \iff x \leq y.$
- a₂ Equivalence: $x \star y = 0, \quad y \star x = 0 \Longrightarrow x = y.$

```
66
                                                                                                                 Z. LIAO
  a<sub>3</sub> 0 Element:
        0 \star x = 0.
                                                   的现在分词 计正式变体分离分子
  a4 Associativity:
        x \star (x \star (z \star (z \star y))) = z \star (z \star (x \star (x \star y))).
                                                                                                · .
       Boundedness:
  \mathbf{a}_5
        x \star 1 = 0.
  a<sub>6</sub> Collocation:
        ((x \star y) \star (x \star z)) \star (z \star y) = 0.
  a7 Distributivity:
        ((x \star (x \star D)) \star (x \star (x \star z))) \star ((x \star (x \star y)) \star (x \star (x \star z))) = 0,
where
                                                                                                         1018
                                     D = 1 \star ((1 \star y) \star ((1 \star y) \star (1 \star z))).
   Theorem 1. Let a_1, a_2, a_3, a_4, a_5 and a_6 be the set of axioms. Then
  bo
           0 \star 0 = 0.
  bı
           x \star x = 0.
           x\star(x\star 0)=0.
  b2
           x \star 0 = x.
  b3
 \mathbf{b_4}
           (x\star(x\star y))\star y=0.
 b_5
           x \star (x \star y) = y \star (y \star x)).
   Proof.
                                                                                          estate de la state de <sup>la s</sup>e
  (b<sub>0</sub>) Let x = 0. Then 0 \star 0 = 0, since a_3
  (b<sub>1</sub>) Let y = 0, z = 0. Then
                                             ((x \star 0) \star (x \star 0)) \star (0 \star 0) = 0
                                                                                                                   - 14 M
        by a<sub>6</sub>, and since b<sub>0</sub>
                                                ((x \star 0) \star (x \star 0)) \star 0 = 0,
        while since a<sub>3</sub>
                                                0 \star ((x \star 0) \star (x \star 0)) = 0.
        Hence by a<sub>2</sub>
                                                    (x\star 0)\star (x\star 0)=0.
                                                                                       e go, er a fage teke
        If u = x \star 0, then
                                                           u \star u = 0
        Thus we obtain b<sub>1</sub>.
                                                                                           43
```

Minimal Axiomatic System of Fuzzy Logical Algebra

 (b_2) Let z = 0. Then

 $x \star (x \star (0 \star (0 \star y))) = 0 \star (0 \star (x \star (x \star y)))$

by a_4 , and since a_3 , b_0 , we have b_2 .

(b₃) Let y = 0, z = x. Then

$$((x \star 0) \star (x \star x)) \star (x \star 0) = 0,$$

 $((x \star 0) \star 0) \star (x \star 0) = 0,$

 $(x\star 0)\star 0=(x\star 0).$

 $((x \star 0) \star (x \star z)) \star (z \star 0) = 0$

 $(x\star(x\star z))\star z=0.$

by a_6 , and since b_1

while since b₂

Hence by a₂

 $(x \star 0) \star ((x \star 0) \star 0) = 0.$

Similarly, we obtain b3.

$$(b_4)$$
 Let $y = 0$. Then

by a_6 , and since b_3

Hence b₄.

(b₅) Let y = 1. Then

$$x \star (x \star (z \star (z \star 1))) = z \star (z \star (x \star (x \star 1)))$$

by a_4 , and by a_5 , b_3 , we have b_5 .

A system $(U, \star, 0)$ is a BCK-algebra, if U has at least one constant element 0 and it satisfies six axioms: a_1, a_2, a_3, a_6, b_1 and b_4 . A system $(U, \star, 0, 1)$ is a boundary commutative BCK-algebra, if it satisfies six axioms: a_1, a_2, a_3, a_5, a_6 and b_5 .

Above Theorem 1 shows that an ABCD-algebra is a special case of the BCK-algebra class.

Theorem 2. Suppose U = [0, 1], and $\forall x, y \in [0, 1]$;

$$x \star y = \begin{cases} x - y, & \text{if } x > y; \\ 0, & \text{if } x \le y, \end{cases}$$

then the system $\langle [0, 1], \star \rangle$ is the ABCD-algebra.

The proof of this theorem is evident from the above definition and is thus omitted.

67

Z. LIAO

3. FUZZY LOGICAL ALGEBRA

Definition 2. A fuzzy logical algebra is a system

 $Z = \langle U, +, \cdot, \prime, 0, 1 \rangle$

where U = [0, 1], and for $\forall x, y, z \in U$, system Z satisfies the following set of axioms: (A₁) Indempotency:

```
x + x = x,
                          x \cdot x = x.
(A<sub>2</sub>) Commutativity:
      x + y = y + x,
                            x \cdot y = y \cdot x.
(A<sub>3</sub>) Associativity:
      (x+y)+z=x+(y+z), \qquad (x\cdot y)\cdot z=x\cdot (y\cdot z).
(A<sub>4</sub>) Distributivity:
      x + y \cdot z = (x + y) \cdot (x + z),
                                               x \cdot (y+z) = x \cdot y + x \cdot z.
(A<sub>5</sub>) Complement:
      x'' = x.
(A<sub>6</sub>) Identifies:
      x + 0 = x
                         x \cdot 1 = x.
(A7) 0-1 Laws:
     x+1=1,
                         x \cdot 0 = 0.
(As) Absorption:
     x + x \cdot y = x,
                             x \cdot (x+y) = x.
(A<sub>9</sub>) De Morgan Laws:
     (x+y)'=x'\cdot y',
                                 (x \cdot y)' = x' + y'.
(A<sub>10</sub>) Complementation:
     x + x' = \sup\{x, x'\},
     x \cdot x' = \inf\{x, x'\}.
     In particular, \forall x \in \{0, 1\}
                                         x+x'=1,
                                                             x \cdot x' = 0.
```

Theorem 3. Let $S = \langle U, \star, 0, 1 \rangle$ be an ABCD-algebra. If U = [0, 1] and for $\forall x, y \in U$,

```
\begin{aligned} x' &= 1 \star x, \\ x \cdot y &\approx y \star (y \star x), \\ x + y &= 1 \star ((1 \star y) \star ((1 \star y) \star (1 \star x))). \end{aligned}
```

Then the operations "+", ".", "'" satisfy the axioms $A_1 - A_{10}$.

Minimal Axiomatic System of Fuzzy Logical Algebra

4. THE LEMMAS FOR PROVING THEOREM 3

 L_1 $x \le y \Longrightarrow z \star y \le z \star x,$ $\forall z \in U.$ $L_2 \qquad x \leq y, \ y \leq z \Longrightarrow x \leq z.$ L_3 $(x \star y) \star z = (x \star z) \star y.$ L_4 $x \star y \leq z \Longrightarrow x \star z \leq y.$ $x \leq y \Longrightarrow x \star z \leq y \star z.$ L_5 L_6 $x' \star y' = y \star x.$ $x \star (y+z) = (x \star z) \star (y \star z).$ L_7 $x y \leq x, \qquad x y \leq y.$ L_8 $x \le x + y, \qquad y \le x + y.$ L_9 L₁₀ $u \le x, u \le y \Longrightarrow u \le xy$, i.e. $xy = \inf\{x, y\}$. L₁₁ $x \le v, y \le v \Longrightarrow x + y \le v, i.e. x + y = \sup\{x, y\}.$ L_{12} $x \leq y \Longrightarrow x z \leq y z$. $xy + xz \le x(y+z).$ L₁₃

The proofs of the lemmas L_1-L_{13} are based on the definitions of the operations "+", ".", "4", and the axioms a_1 - a_6 (cf. [4,5]).

5. PARTIAL PROOF OF THEOREM 3

A۱	$x \cdot x = x \star (x \star x)$	def.
	$= x \star 0$	$\mathbf{b_1}$
	= x.	$\mathbf{b_3}$
A_2	$x \cdot y = y \star (y \star x)$	def.
	$= x \star (x \star y)$	\mathbf{b}_{5}
	= y x.	def.
A ₃	$(x \cdot y) \cdot z = (y \cdot x) \cdot z$	A ₂
	$= z \star (z \star (x \star (x \star y)))$	def.
	$= x \star (x \star (z \star (z \star y)))$	a4
	$= (y \cdot z) \cdot x$	def.
	$= x \cdot (y \cdot z).$	A_2
A4	$(x \cdot (y+z)) \star (x \cdot y + x \cdot z) =$	
	$= (x \cdot (y + z) \star x \cdot z) \star (x \cdot y \star x \cdot z)$	L_7
	= 0,	a7
and	$(x \cdot y + x \cdot z) \star (x \cdot (y + z)) = 0.$	L ₁₃

Z. LIAO

Hence $x \cdot (y+z) = x \cdot y + x \cdot z$. a_2

A_5	$x'' = 1 \star (1 \star x)$	def.
	$= x \star (x \star 1)$	b₅
	$= x \star 0$	a_5
	= x.	$\mathbf{b_3}$
A ₆	$x \cdot 1 = 1 \star (1 \star x)$	def.
	= x''	def.
	= x.	A ₅
A7	$x \cdot 0 = 0 \star (0 \star x)$	def.
	$= 0 \star 0$	a3
	= 0.	$\mathbf{b_0}$
A ₈	$x + x \cdot y = x \cdot 1 + x \cdot y$	A_6
	$= x \cdot (1 + y)$	A4
	$= x \cdot 1$	A7
	= x.	A ₆
A9	$(x \cdot y)' = (x'' \cdot y'')'$	`A ₅
	$= ((1 \star x)' (1 \star y)')'$	def.
	$= (1 \star x) + (1 \star y)$	def.
	=x'+y'.	def.
A ₁₀	$x \cdot x' = \inf\{x, x'\}.$	L10.

The proof of dual part for Theorem 3 is omitted.

6. CONCLUSION

Theorem 2 and 3 show that the ABCD-algebra $\langle [0,1], \star \rangle$ is exactly the fuzzy logical algebra $\langle [0,1], +, \cdot, \prime \rangle$. Hence the axioms $a_1 - a_7$ of $\langle [0,1], \star \rangle$ become the minimal axiomatic system of fuzzy logical algebra $\langle [0,1], +, \cdot, \prime \rangle$. This system will make a research into fuzzy logical algebra much more rigorous than before.

REFERENCES

70

^[1] L.A. Zadeh: Fuzzy sets. Inform. and Control 8 (1965), 338-353.

^[2] Y. Imai and K. Iseki: On axiom system of propositional calculus. Proc. Japan Acad. 42 (1966), 19-22.

Minimal Axiomatic System of Fuzzy Logical Algebra

[4] Q. Hu: BCI-algebra. Shanxi Science Technology Press, China 1987.

[5] G. Birkhoff: Lattice Theory. Third edition. American Mathematical Society College Publications, Providence, R. I. 1967.

Professor Zuwei Liao, China Central Radio and TV University, Mathematical Department, Beijing 100856. P. R. China.

۲

^[3] S.C. Lee and A. Kandel: Fuzzy Switching and Automata: Theory and Applications. Crane, Russak, New York 1978.