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PROBABILISTIC AND FUZZY PANEL MODELLING 

SÁNDOR JÓZSEF 

In panel data based econometric modelling the main problem is how to formalize the (eventual) 
homogeneity existing in the data. In the traditional approach there are prior restrictions (suppositions) 
on the heterogeneity. The purpose of the article is to give a probabilistic and fuzzy based foundation of 
the problem and to propose an alternative modelling algorithm which is not based on prior restrictions 
on the heterogeneity. 

The main problem in panel data based econometrical modelling is how to formalize 

t he (eventual) heterogeneity existing in the data. In the traditional approach there are 

prior restrictions (suppositions) on the heterogeneity. These prejudices are not always 

justified. This is for example the case when we have a huge da ta basis. In general in 

this case we do not have any information about the "true" panels but only suppositions 

and we use the seemingly appropriate method (based on these prejudices) to handle the 

da ta base (and est imate the model). These new methods accept tha t we do not have 

any information about the real heterogeneity. 

On probabilistic basis this problem can be treated as a parameter estimation problem 

of a mixture of (in general: normal) distributions. Each panel can be represented with 

the function of its conditioned expected value and with the distribution of its error term. 

So our probabilistic model is based on such a mixture density function as the following 

linear equation system (A'-panel model): 

£k = XTa* + £k k=\,...,K 

where the kth equation is fulfilled with probability pk and X^/iLi Pk ~ 1- But we can only 

observe the mixed random variable £ ( = £k — xTak + ek with probability pk) at given 

points of RM. Assuming the existence of the density functions j \ of £* (k = 1 , . . . , K) 

we can say tha t the panels in this model are represented.by the density functions fk. In 

case of normally distr ibuted error terms, i.e. when ek ~ N(0,cr^) and the kth density 

function at point x is denoted by fk,x(y). the density function of £ is 

iV 

fx(y) = Y.Vkh,x(v)-
* = i 

The "information" for the panels in this probabilistic model are in the conditional prob

abilities defined by 

Pkfk,x(y) 
Pk.x(y) ~ P(í* = УІX, í = y) -

h(y) 
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Let's suppose that we have a sample y; at the point x, (i = 1,.. •, N) for the mixed 

random variable £ and we know also the conditioned probabilities pkl* for this sample. 

Let /,• = / X l , fkl = fk,x,, Pki = Pk,x,, Pk = diag(/)fci, • • •, Pfc/v) and 

X = 

VN / \^N I \XN\ ••• XNM 

In this model we have K(M + 2 ) parameters to identify: pk, ak\,.. •, akM, a\; k = 

1 , . . . , K. For identifying the line parameter vectors we suppose "to have enough infor

mat ion" , i.e. the existence of the inverse of the product matr ix XTPkX, k = 1 , . . . , K. 

Based on the maximum likelihood equations we can define an iterative process to iden

tify the model parameters [3], since the solution of the ML estimation p*k, a*k, a*k (k = 

1 , . . . , K) has the following properties: 

1 N 

P* = AF E P * " a* = {XTPkX)-1XTPky, 

K ) 2 = "-J (y - Xak)
TPk(y - Xak). 

tlPki 
; = i 

Our proposition for the parameter estimation is the following: first choose an initial 

A'-panel system, then 

- compute the actual sample partition for the panel system, 

- es t imate the model parameters (find a new, "better" panel system), 

- and i terate these steps until a specified convergence criterion is satisfied. 

This algorithm can be considered as an iterative weighted maximum likelihood method. 

The weights for each observations are the respective probabilities tha t the observation 

is an element of the given panel. 

In the fuzzy approach to panel modelling we represent the.A'-panel model s t ructure by 

a fuzzy set system T = { F\,..., FK } defined on the sample space X x Y C R x R . The 

membership functions give us "soft informations" about the panels and describe, how 

the observations determine the panels, furthermore how the data can be characterized by 

a A'-panel s t ructure . Similarly we use K linear functions fk(x) = xTa.k and by the fuzzy 

set Fk we describe the property y « xTak, i.e. "the observation y belongs approximately 

to the fcth line (hyperline)". 

Let (Xi,yi) (i = 1 , . . . , N) be N observed values (a "sample" at the points x,) and 

denote the distance from a value yt to the fcth fuzzy panel 

du = \yi - x f a/t|. 

The problem can now be formulated as follows: 

Find the 0 < jxki = /iFk (x. , y.) < 1 i = 1 , . . . , At; k = 1 , . . . , A' values of memberships 
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by minimizing the cost function 

N K K 

C = V J V " pn
kldl, subject to the constraint V J p,ki = 1 Vi € { 1 , . . . , At}, 

« = 1 fc=l ( A : = l 

where a > 1 is a fixed parameter . With a the fuzziness of the panels can be determined 

and for a = 1 we would have totally separated nonfuzzy sets. 

For the model we will search only "pure fuzzy panels" at the point //, ^ { x f a t : 

k = 1 , . . . , A ' } i.e. it will be assumed that all /ikl > 0 if rj*=i <!*' > 0- ^el Mk = 

diag(/ t^ , . . . , /t^yv) a , K l w e assume the existence of the inverse of XTMk X (k = 1 , . . . , K). 

Using the matr ix notation given for the probabilistic case the fuzzy linear panels have 

the following properties: 

/ o, if k i K0- -£, , 
Ui.i = < .„ . , . fulfi hug > a, • = 1 
"• ! 0 \ e [ 0 , l ] otherwise 8 j-<' kl 

if 4 , „ = 0 for A: (E A'o C { 1 , . . . , A'}, ?:0 £ {1, • • •, A'} fixed, and 

><« = Tf T 

if EI ^W > 0 (* fixed), furthermore 
fcsl 

a : = ( A ' r M , a A ' ) - ' A ' r M « y . 

Like the probabilistic case the proposition for the estimation of the fuzzy line param

eters is: first choose an initial A'-panel system, then 

- compute the actual fuzzy partition for the line system, 

- es t imate the model parameters (find new, "better" lines), 

- and i terate these steps until a specified convergence criterion is satisfied. 

The basic idea of our methods comes from the study [2]. The construction (esti

mations, algorithm) of our panels is also similar. In this study the ML esti'mation of 

parameters of a mixture density function of K random vector variables was analysed. 

The authors est imated the vectors of the expected values and the covariance matrices 

of each (homogeneous) density function under Gaussian assumption. The fuzzy clus

tering problem was solved like this, using fuzzy covariance matrix and the solution of 

their problem gives special "ellipsoid-type" fuzzy clusters for every fuzzy part like t he 

homogeneous, normally distributed parts of a mixture density function. Our algori thms 

arc also similar to the algorithms proposed by M . J . Hartley (in a comment to the paper 

[I]) for the switching regression model based on the so called EM algorithms (see [1], 

for example) , bill in addition we can est imate the probabilities of the panels. 
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We note that if we do not know the number of panels (K) we can fix different A"s and 

from these A'-panel models we can choose one. For example the choice can be based on 

the cumulative sums 
i< N K 

] T pko-2
k or C = J2J2'lk' (l>-' • 

k=\ 1=1 k=\ 

In the fuzzy case the rule of the pk probabilities is taken by the "number (or percent

ages) of elements" of the fuzzy panels: 

N N 

nk'=Y^^, i.e. nk(%) = — J2^i. 

T h e estimation was analysed by Monte-Carlo experiments on specific models. The 

experiments were carried out with three different models to compare the properties of the 

two algorithms: model with two parallel lines; model with two crossing linear panels and 

model with three panels in a triangular form. 50 samples (with 26 or 30 observations) 

were generated for each panel model. The initial parameters were chosen with special 

changes (or rotations) of the regression line. The value a = 2 was fixed. So all estimations 

were correct and the procedures converged in 10-20 iteration steps. The probabilistic 

and the fuzzy panels were always reliably estimated in average, and the ranges of the 

estimations were small enough. 

We note that this method can also be applied for general function fitting problem. If 

the d a t a come from a functional relation and we calculate some linear panels then using 

the weights pkt or Hki for each fixed i, the function values can be approximated by these 

weighted sums of linear panels (functions). 
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