A NOTE ON T-NORM-BASED OPERATIONS ON $L R$ FUZZY INTERVALS ${ }^{1}$

Róbert Fullér and Tibor Keresz'tfalvi

The goal of this paper is to give a functional relationship between the membership functions of fuzzy intervals $M_{1} \oplus \ldots \oplus M_{n}$ and $M_{1} \odot \ldots \odot M_{n}$, where M_{i} are positive $L R$ fuzzy intervals of the same form $M_{i}=M=(a, b, \alpha, \beta)_{L R}$ and the extended addition \oplus and multiplication \odot are defined in the sense of a triangular norm (i.e. via sup-t-norm convolution).

1. DEFINITIONS

A fuzzy interval M is a fuzzy set of the real line \mathbb{R} with a continuous, compactly supported, unimodal and normalized membership function $\mu_{M}: \mathbb{R} \rightarrow I=[0,1]$. A fuzzy set M of \mathbb{R} is said to be positive if $\mu_{M}(x)=0$ for all $x<0$. We shall use the notation $M(x)$ to abbreviate $\mu_{M}(x)$.

It is known [3] that any fuzzy interval M can be described as

$$
M(t)= \begin{cases}1 & \text { if } t \in[a, b] \\ L\left(\frac{a-t}{\alpha}\right) & \text { if } t \in[a-\alpha, a] \\ R\left(\frac{t-b}{\beta}\right) & \text { if } t \in[b, b+\beta] \\ 0 & \text { otherwise }\end{cases}
$$

where $[a, b]$ is the peak of $M ; L$ and R are continuous and non-increasing shape functions $I \rightarrow I$ with $L(0)=R(0)=1$ and $R(1)=L(1)=0$. We call this fuzzy interval of $L R$ type and refer to it by $M=(a, b, \alpha, \beta)_{L R}$. The support of M (denoted by Supp M) is $[a-\alpha, b+\beta]$.

A function $T: I^{2} \rightarrow I$ is said to be triangular norm (t-norm for short) iff T is symmetric, associative, non-decreasing in each argument, and $T(x, 1)=x$ for all $x \in I$. Recall that a $\mathrm{t}-$ norm T is Archimedean iff T is continuous and $T(x, x)<x$ for all $x \in(0,1)$.

Every Archimedean $t-n o r m ~ T$ is representable by a continuous and decreasing function $f: I \rightarrow[0, \infty]$ with $f(1)=0$ and

$$
T(x, y)=f^{[-1]}(f(x)+f(y))
$$

where $f^{[-1]}$ is the pseudo-inverse of f, defined as

$$
f^{[-1]}(y)= \begin{cases}f^{-1}(y) & \text { if } y \in[0, f(0)] \\ 0 & \text { otherwise }\end{cases}
$$

[^0]The function f is called the additive generator of T.
Let T be a t-norm and let * be an operation on \mathbb{R}. Then * can be extended to fuzzy intervals in the sense of the following extension principle

$$
\left(M_{1} * M_{2}\right)(z)=\sup _{x_{1} * x_{2}=z} T\left(M_{1}\left(x_{1}\right), M_{2}\left(x_{2}\right)\right) \quad z \in \mathbb{R}
$$

which can be written as

$$
\left(M_{1} * M_{2}\right)(z)=\sup _{x_{1} * x_{2}=z} f^{[-1]}\left(f\left(M_{1}\left(x_{1}\right)\right)+f\left(M_{2}\left(x_{2}\right)\right)\right) \quad z \in \mathbb{R}
$$

2. THE RESULT

The following theorem gives a functional relationship between the membership functions of fuzzy intervals $M_{1} \not \ldots \oplus M_{n}$ and $M_{1}\left(\cdot \ldots \odot M_{n}\right.$, where M_{i} are positive $L R$ fuzzy intervals of the same form $M_{i}=M=(a, b, \alpha, \beta)_{L R}$.

Theorem 1. Let T be an Archimedean t-norm with an additive generator f and let $M_{i}=M=(a, b, \alpha, \beta)_{L R}$ be positive fuzzy intervals of $L R$ type. If L and R are twice differentiable, concave functions, and f is twice differentiable, strictly convex function, then

$$
\begin{equation*}
\left(M_{1} \oplus \ldots \oplus M_{n}\right)(n \cdot z)=\left(M_{1}\left(\cdot \ldots \leftrightarrow M_{n}\right)\left(z^{n}\right)=f^{[-1]}(n \cdot f(M(z)))\right. \tag{1}
\end{equation*}
$$

Proof. Let $z \geq 0$ be arbitrarily fixed. According to the decomposition rule of fuzzy intervals into two separate parts [5], we can assume without loss of generality that $z<a$. From Theorem 1 of [6] it follows that

$$
\begin{aligned}
\left(M_{1}+\ldots+M_{n}\right)(n \cdot z) & =f^{[-1]}\left(n \cdot f\left(L\left(\frac{n a-n z}{n \alpha}\right)\right)\right)= \\
& =f^{[-1]}\left(n \cdot f\left(L\left(\frac{a-z}{\alpha}\right)\right)\right)= \\
& =f^{[-1]}(n \cdot f(M(z)))
\end{aligned}
$$

The proof will be complete if we show that

$$
\begin{align*}
(M(\cdot) \ldots(\cdot) M)(z) & =\sup _{x_{1} \ldots \cdot x_{n}=z} T\left(M\left(r_{1}\right) \ldots, M\left(x_{n}\right)\right)= \tag{2}\\
& =T(M(\sqrt[n]{z}) \ldots, M(\sqrt[n]{z}))= \\
& =f^{[-1]}(n \cdot f(M(\sqrt[n]{z})))
\end{align*}
$$

We shall justify it by mourtion:
(i) for $n=1$ (2) is olviomaly valid
(ii) Let us suppose that (2) holds for some $n=k$ i. e.

$$
\begin{aligned}
\left(M^{k}\right)(z) & =\sup _{x_{1} \cdots \ldots x_{k}=z} T\left(M\left(x_{1}\right), \ldots, M\left(x_{k}\right)\right)= \\
r & =T(M(\sqrt[k]{z}), \ldots, M(\sqrt[k]{z}))= \\
& =f^{[-1]}(k \cdot f(M(\sqrt[k]{z})))
\end{aligned}
$$

and verify the case $n=k+1$. It is clear that

$$
\begin{aligned}
\left(M^{k+1}\right)(z) & =\sup _{x \cdot y=z} T\left(M^{k}(x), M(y)\right)= \\
& =\sup _{x \cdot y=z} T(M(\sqrt[k]{x}), \ldots, M(\sqrt[k]{x}), M(y))= \\
& =f^{[-1]}\left(\inf _{x \cdot y=z}(k \cdot f(M(\sqrt[k]{x}))+f(M(y)))\right)= \\
& =f^{[-1]}\left(\inf _{x}(k \cdot f(M(\sqrt[k]{x}))+f(M(z / x)))\right)
\end{aligned}
$$

The support and the peak of M^{k+1} are

$$
\begin{aligned}
{\left[M^{k+1}\right]^{1} } & =[M]^{k+1}=\left[a^{k+1}, b^{k+1}\right] \\
\operatorname{Supp}\left(M^{k+1}\right) & \subset(\operatorname{Supp}(M))^{k+1}=\left[(a-\alpha)^{k+1},(a+\beta)^{k+1}\right]
\end{aligned}
$$

According to the decomposition rule we can consider only the left hand side of M, that is let $z \in\left[(a-\alpha)^{k+1}, a^{k+1}\right]$. We need to find the minimum of the mapping

$$
x \mapsto k \cdot f(M(\sqrt[k]{x}))+f(M(z / x))
$$

in the interval $\left[(a-\alpha)^{k}, a^{k}\right]$. Let us introduce the auxiliary variable $t=\sqrt[k]{x}$ and look for the minimum of the function

$$
t \mapsto \varphi(t):=k \cdot f(M(t))+f\left(M\left(z / t^{k}\right)\right)
$$

in the interval $[a-\alpha, a]$. Dealing with the left hand side of M we have

$$
M(t)=L\left(\frac{a-t}{\alpha}\right) \quad \text { and } \quad M\left(z / t^{k}\right)=L\left(\frac{a-z / t^{k}}{\alpha}\right)
$$

The derivative of φ is equal to zero when

$$
\begin{aligned}
\varphi^{\prime}(t)= & k \cdot f^{\prime}(M(t)) \cdot L^{\prime}\left(\frac{a-t}{\alpha}\right) \cdot \frac{-1}{\alpha}+ \\
& +f^{\prime}\left(M\left(z / t^{k}\right)\right) \cdot L^{\prime}\left(\frac{a-z / t^{k}}{\alpha}\right) \cdot \frac{-1}{\alpha} \cdot\left(-k \cdot \frac{z}{t^{k+1}}\right)=0
\end{aligned}
$$

i.e.

$$
\begin{equation*}
t \cdot \int^{\prime}(M(t)) \cdot L^{\prime}\left(\frac{a-t}{\alpha}\right)=\frac{z}{t^{k}} \cdot f^{\prime}\left(M\left(z / t^{k}\right)\right) \cdot L^{\prime}\left(\frac{a-z / t^{k}}{\alpha}\right) \tag{3}
\end{equation*}
$$

which obviously holds taking $t=z / t^{k}$. So $t_{0}=\sqrt[k+1]{z}$ is a solution of (3), furthermore, from the strict monotony of

$$
t \mapsto t \cdot f^{\prime}(M(t)) \cdot L^{\prime}\left(\frac{a-t}{\alpha}\right)
$$

follows that there are no other solutions.
It is easy to check, that $\varphi^{\prime \prime}\left(t_{0}\right)>0$, which means that φ attains its absolute minimum at t_{0}. Finally, from the relations $\sqrt[k]{x_{0}}=\sqrt[k+1]{z}$ and $z / x_{0}=\sqrt[k+1]{z}$, we get

$$
\begin{aligned}
\left(M^{k+1}\right)(z) & =T(M(\sqrt[k+1]{z}), \ldots, M(\sqrt[k+1]{z}), M(\sqrt[k+1]{z}))= \\
& =f^{[-1]}(k \cdot f(M(\sqrt[k+1]{z}))+f(M(\sqrt[k+1]{z})))= \\
& =f^{[-1]}((k+1) \cdot f(M(\sqrt[k+1]{z})))
\end{aligned}
$$

which ends the proof.

Remark 1. As an immediate consequence of Theorem 1 we can easily calculate the exact possibility distribution of expressions of the form $e_{n}^{*}(M):=\frac{M \oplus \ldots \Phi M}{n}$ and the limit distribution of $e_{n}^{*}(M)$ as $n \rightarrow \infty$. Namely, from (1) we have

$$
\left(e_{n}^{*}(M)\right)(z)=\left(\frac{M \oplus \ldots \oplus M}{n}\right)(z)=(M \oplus \ldots \oplus M)(n \cdot z)=f^{[-1]}(n \cdot f(M(z)))
$$

therefore, from $f(x)>0$ for $0 \leq x<1$ and $\lim _{x \rightarrow \infty} f^{[-1]}(x)=0$ we get

$$
\begin{aligned}
\left(\lim _{n \rightarrow \infty} e_{n}^{*}(M)\right)(z) & =\lim _{n \rightarrow \infty}\left(e_{n}^{*}(M)\right)(z)= \\
& =\lim _{n \rightarrow \infty} f^{[-1]}(n \cdot f(M(z)))= \\
& = \begin{cases}1 & \text { if } z \in[a, b] \\
0 & \text { if } z \notin[a, b]\end{cases}
\end{aligned}
$$

that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \epsilon_{u}^{*}(M)=[a, b] \tag{4}
\end{equation*}
$$

which is the peak of M.
It can be shown [4] that (4) remains valid for the (non- Archimedean) weak t-norm. Other results along this line have appeared in $[1,2,8]$.

Remark 2. It is casy to see [7] that, for instance, when $T(x, y)=x \cdot y$:

$$
\left(M_{1} \oplus \ldots \mapsto M_{n}\right)(n \cdot z)=\left(M_{1} \cdot \ldots \text { © } M_{n}\right)\left(z^{n}\right)=(M(z))^{n}
$$

REFERENCES

[1] R. Badard: The law of large numbers for fuzzy processes and the estimation problem. Inform. Sci. 28 (1982), 161-178.
[2] H. Diskhaut: About membership functions estimation. Fuzzy Sets and Systems 5 (1981), 141-147.
[3] D. Dubois and H. Prade: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980.
[4] D. Dubois and H. Prade: Addition of interactive fuzzy numbers. IEEE Trans. Automat. Control AC-26 (1981), 4, 926-936.
[5] D. Dubois and H. Prade: Inverse operations for fuzzy numbers. In: Proc. IFAC Symp. Fuzzy Information, Knowledge, Representation and Decision Analysis (E. Sanchez and M. M. Gupta, eds.), Pergamon Press, Oxford 1983.
[6] R. Fullér and T. Keresztfalvi: t-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems (to appear).
[7] R. Fullér: On product-surn of triangular fuzzy numbers. Fuzzy Sets and Systems 41 (1991), 83-87.
[8] M. B. Rao and A. Rashed: Some comments on fuzzy variables. Fuzzy Sets and Systems 6 (1981), 285-292.

Dr. Róbert Fullér, Computer Center of L. Eötvös University, P. O. Box 157, Budapest 112, H-1502. Hungary. Presently on leave: Department of Operations Research, RWTH Aachen, Templergraben 64, W-5100 Aachen, Germany.
Dr. Tibor Lieresztfalvi, Computer Center of L. Eötvös University, P. O. Box 157, Budapest 112, H1502. Hungary. Presently on leave: Department of Mathematics and Statistics, Faculty of Economics, J. W. Goethe University Frankfurt, Mertonstrasse 17-25, W-6000 Frankfurt a. M., Germany.

[^0]: ${ }^{1}$ Supported by the German Academic Exchange Service (DAAD)

