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ON SOME SUFFICIENT OPTIMALITY CONDITIONS 
IN MULTIOBJECTIVE DIFFERENTIABLE 
PROGRAMMING 

VASILE PREDA 

Some results on sufficient optimality conditions in multiobjective differentiable programming are 
estabilished under generalized F-convexity assumptions. Various levels of convexity on the component 
of the functions involved are imposed, and the equality constraints are not necessarily linear. In the 
nonlinear case scalarization of the objective function is used. 

1. I N T R O D U C T I O N 

Opt ima l solutions of mult iobjective programming problems were s tudied by several au

thors (cf., e .g . [ 4 - 7 ] , [ 9 -14 ] ) . Following Marusciac [7], Singh [11] establ ished Fri th 

John type opt imal i ty cri teria in the differentiable case. Necessary condit ions are based 

on the idea of convergence of a vector a t point with respect to a set (cf. [5], [7]). Singh 

[11] invoked a weaker constraint qualification than Marusciac [7] (see Takayama [14] for 

a basic t r ea tmen t of mult iobject ive programming along the lines of classical nonlinear 

p rogramming , and Stadler [13] for a survey of multiobjective opt imizat ion. ) 

In [7], Marusciac s ta ted two sufficiency criteria (cf. [7], Theorems 3.2, 3.3) for multi-

object ive differentiable programming involving inequality and equali ty const ra ints with 

various levels of convexity on the component of the function involved, and t h e linear 

equal i ty constraints . Singh [11] removed the last restriction and established a new suffi-

cienty criterion (cf. [11], Theorem 3.4) using a scalarization of t he objective function. In 

his pape r Tucker 's theorem of the al ternat ive (cf. [15]), ra ther than Motzkin 's theorem 

applied in Marusciac [7], was invoked. 

In this note we use a type of generalized convexity (cf. [3], [8]) to obta in a general

ization of sufficient opt imal i ty conditions for multiobjective differentiable p rogramming 

given by Lin [5], Marusciac [7] and Singh [11]. 

In Hanson and Mond [3], and in Mond [8] generalized convexity was defined using 

subl inear functionals satisfying certain convexity type conditions. It was shown in [3] 

and [8] tha t Wolfe's dual i ty holds under assumption tha t a sublinear functional exists 
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such that the Lagrangian satisfied some generalized convexity conditions. 

2. SOME PRELIMINARIES 

For convenience, we first recall the following notations. Let x = (xu... , x n ) , y = 
( j / i , . . . , yn) be vectors in the Euclidean space R". By x < y, we mean x, < y, for all i; 
by x < y, we mean x, < y< for all i and Xj < y, for at least one j (1 < j < n); and by 
x <C y, we mean x, < y, for all i. 

Consider the following vector minimization problem: 

minimize f(x) = ( / , (x) , . . . , /m(x)) 
subject to (VP) 

g(x) < 0, h(x) = 0, x 6 X 

where X C R", / . X - ^ R"', </ : X —• R", & : X -^ R\ f = (fu... ,fm), g = 

(9u---,9P) and A = (h , , . . . , / . , ) . 
We will denote by P the set P = {1,2, . . . ,p} and by X0 the set X0 = {x G X\g(x) < 0 , 

A(-) = 0}. 

Definition 2 .1 . We say that x° G X0 is a Pareto minimal point of problem (VP) if 
and only if there exists no x € X0 such that f(x) < f(x°). 

Definition 2 .2 . We say that x° € X0 is a weak Pareto minimal point of (VP) if and 
only if there exists no x E X0 such that f(x) <C /(z0)-

Definition 2 .3 . A functional F : X0 x X0 x Rn —> R is sublinear (in 8) if for any 

x, x° G X0, 

F (x, x°; 9X +02)<F (x, x°; 0,) + F (x, x°; 62) , for all 0U 02; 

and 
F (x, x°;a9) =aF (x, x°; 6») for any Q G R, a > 0, and (9. 

Now we give some examples of sublinear functionals. In the first three examples we 
consider some sublinear functionals which are independent of the vectorial problem.(VP). 

Example 1. F(x, x°; y) = (x — x°)Ty, where the symbol T denotes the transpose. 

Example 2. Let y : X0 x X0 —> R". Define F(x, x°; y) = yTi](x,x°). 

Example 3 . F(x, x°: y) = \\.r - x°|| • ||y||. 

The next sublinear functionals are dependent by (VP). 
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E x a m p l e 4 . F(x, x°; y) = \\y\\ • \\f(x) - f(x°)\\. 

E x a m p l e 5 . F(x, x°; y) = £ \y,\ E Ш ' ) - / i И ) ł E й ( ť , 
;=i j=i 

For some discussion about sublinear f u n c t i o n a l see Hanson and Mond [3] and Mond [8]. 
Let us consider a sublinear functional F and the function ip : X0 — • R . We suppose 

t h a t ip is a d i f fe rent ia te function at x°, an interior point of X. 

D e f i n i t i o n 2 . 4 . T h e function ip is said to be F-convex in x° if for all x e X0 we 

have: 
<p(x)>\p(x°) + F(x,x°;V<p(x0)). 

D e f i n i t i o n 2 . 5 . T h e function tp is F-quasiconvex in x° if for all x £ X0 such t h a t 

¥>(-) < V(x°) we have: F(x, x°; V<p(x0)) < 0. 

D e f i n i t i o n 2 .6 . The function <p is F-pseudoconvex in x° if for all x G X0 such t h a t 

F(x, x°; V<p(x0)) > 0 it results <p{x) > <p(x°). 

From the above definitions it is clear t ha t an F-convex function is both F-quasiconvex 

and F-pseudocouvex. 

R e m a r k 1 . In the case of Example 1, Definition 2 . 4 - 2 . 6 boil down definition of 

convexity, quasiconvexity and pseudoconvexity, respectively. 

R e m a r k 2. In the case of Example 2, Definitions 2 .4-2.6 reduce to definitions of 

invexity, quasiinvexity and pseudoinvexity (Hanson [2], Ben-Israel and Mond [1]) respec

tively. 

3. S U F F I C I E N C Y C O N D I T I O N S 

Let F be a sublinear functional as in Definition 2.3 and x° € X0 an interior point of X, 

Jo ~ {J I 9i(x°) = 0} , g° = (gj)jeJa, s = card J0. We have: 

T h e o r e m 3 . 1 . Suppose tha t 

(i) / , </°i h Me differentiable at x°; 

(ii) / . , 1 < i < »«, gj, j € Jo, hk, I < k < q, are F-convex at .T°; 

(iii) there exists «° > 0, «° € R » . „o g - ^ wo g R ; s u r | , t h a t f o r a n y x g ^ 

'i*-*0' E " ^ ^ ) + j ; ^ f t ( , v j ; - { v M ^ ) >o. 
ieJo Jfc=l / 
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Then, x° is a (weak) Pareto minimal point of Problem (VP). 

P roof . Suppose that x° is not a (weak) Pareto minimal of Problem (VP). Then, 
there exists an x G X0 such that 

/ ( x ) - / ( x ° ) < 0 (1) 

g(x) < 0 (2) 

h(x) = 0. (3) 

Then, in view of (1)- (3) and x° € X0, we have 

ft(*)-ff;(z°)<0, J€J0; (4) 

h(x) - h(x°) = 0. (5) 

Now, by hypothesis (ii) and (1), (4), (5), we have 

F (x, x°; V /,(x0)) < 0, for any i, (6) 

and there exists at least one index i such that we have a strict inequality; 

F (x, x°; V 5 i (x 0 ) ) < 0, for any j € J0, (7) 
F (x, x°; V hk(x

0)) < 0, for any it. (8) 

Then, for any u > 0, w € R"\ v > 0, n € R ! , w > 0, w eW, from (6)-(8) and the 
sublinearity of F, we obtain 

F (x, x°; J T «, V /,(x°) + Y, Vi V^ (x 0 ) + J2 wk V hk(x°) j < 0 
V v=i ieJo fr=i / 

that contradicts (iii). Hence, x° is a Pareto (weak) minimal point of Problem-(VP), and 
the proof is complete. • 

Theorem 3.2. Assume that 

(i) f, g°, h are differentiate at x°, 

(ii) there exist u° > 0, u° € R'", v° € R+, iu° € R" such that 

III q 

a) w(x) := £ «° fi(x) + E v°9](x) + E w°k hk(x) is F-pseudoconvex at x°; 
1=1 J6J0 *=i 

Ъ)F(x,x°; E«?V f(x 0 )+ E ^ V Л ( ^ ° ) + E < V / г , ( x 0 ) > 0 
\ i=l ІЄJo fc=l 

for any x Є .Yo-
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Then, x° is a Pareto (weak) minimal point of Problem (VP). 

P roof . Assume that x° is not a Pareto (weak) minimal point of Problem (VP). Then, 
there exists x € X0 such that 

f(x) - /(.-») < 0. (9) 

But, x°, x 6 A'0, and then 

go(x)-9°(xo)<0, (10) 

h(x) - h(x°) = 0. (11) 

Because u° > 0, v° > 0, from (9)-(11) we obtain: LJ(X) < W(X°) where u> is defined by 
(ii-a). Since u is F-pseudoconvex at x°, we have 

F(X,X°; jru°vf,(xo) + ^vygj(x
o) + J2w°Vh^x0n « ° - (12) 

\ i=i jeJo t=i / 

But condition (12) violates hypothesis (ii-b). Thus, this contradiction leads to the con
clusion that x° is a Pareto minimal point for Problem (VP). O 

Theorem 3 .3 . We assume that 

(') / , </, h are differentiable at a:0, 

(li) there exist u° > 0, u° £ R"\ v° € IR^, w° € E ' , such that 

a) VJ u° / is F-pseudoconvex at :r°; 
i=i 

b) J2 i>°</j is F-quasiconvex at x°; 
ieJ-o 

i 
c) 2 w° hk is F-quasiconvex at x°; 

k=\ 

d) F(X,X°; £>?V/.(-°) + E»°Vft(.-°)+f;itfgVM*0)) >o 
\ i=l jgJo *.=! / 

for all x e A'0; 

e) t v°i9i(*°) = 0. 

J = I 

Then, a;0 is a Pareto minimal point of problem (VP). 

P roof . Because, 

£ > > ; ( * ° ) = 0 , 9(-r°)<0, v°>0, 
7 = 1 
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it follows that: vj9j(x°) = 0, for all j . Hence, £ »?#(.-°) = °- A l s o ' f o r a n v 

x € A'o, £ v°gj(x) < 0. Therefore 
j€Jo 

£«£«(») <o«£tfa< A d3) 
ieJo j6J0 

By (13) and hypothesis (ii-b), we have 

F ( x, x°; J2 w°Vfc(x°) J < 0, for any * € A0. (14) 

From w° </j(x°) = 0, for all j £ J0, it results that v° = 0 for all 3 € P \ J0- Hence, 

£ v ° V 5 i ( x ° ) = 0. (15) 
i*Jo 

From (15) and the fact P(x, x°; 0) = 0 for all x € A0, 

E(x,x°; J2v0Vgj(x
0)) = 0 . (16) 

\ ;*Jo / 

Combining (14) and (16) with sublinearity of F we obtain 

F Ix, x°; ^2v0Vgj(x°)\ < 0, for all x € A0. (17) 

Similarly, since 

w°k hk(x°) = 0 = w°k hk(x), x € X0, \<k<q, 

it follows 
9 1 

^ ^ ( x 0 ) ^ ^ ™ " ^ ) , ^ € A 0 . (18) 
* = 1 fc=l 

By (18) and hypothesis (ii-c), we have 

F ( x, x°; £ > ° V ftA.(x°) j < 0, for any x G A0. (19) 

Because F is a sublinear functional, from (17) and (19) we have 

F (x, x°; J2v^aA*0) + £ > ° Vh k(x°) \ < 0, x € A'0. (20) 

V J=l A-l / 
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By using (20), (ii-d) and sublinearity of F we obtain 

F i x , X°; ^ U ° V / , ( X 0 ) J > 0 , x e X 0 . 

Therefore, by hypothesis (ii-a), it follows 

] T « ? / . ( * ) > 5 3 u° Ji(x°), for all x € X0. (21) 

i=i i=t 

Hence, by (21) and Theorem 6.1 in [2], x° is a Pareto minimal point of Problem (VP) . 

The proof is now complete . D 

Now we consider some remarks. 

R e m a r k 3 . If F(x, x°; y) = (x — x°)Ty, then we obtain Theorems 3.3, 3.4 from 

Singh [11]. Assumption (ii-b) by Theorem 3.2 reduces to assumption (ii) (a) from Singh 

[11, T h m . 3.3] and assumption (ii-d) by Theorem 3.3 reduces to (ii) (d) from Singh 

[11, T h m . 3.4] . When assumption (2.6) (a Kuhn-Tucker condition) from Marusiac 

[7, T h m s 3.1 , 3.2] holds, then these assumptions are valid. Also, in this case our gener

alized F-convexity conditions become the convexity, quasiconvexity or pseudocouvexity 

condit ions. 

R e m a r k 4. Generally, scalarization means the replacement of a vector optimizat ion 

problem by a suitable scalar optimization problem which is an opt imizat ion problem 

with a real valued objective functional. Since the scalar optimization theory is widely 

developed, scalarization turns out to be of great importance for the vector optimizat ion 

theory. Solutions of multiobjective optimization problems can be characterized and 

computed as solutions of appropriate scalar optimization problems. For scalarization in 

mult iobject ive programming see, for example Jahn [4], Luc [6], Singh [10] and Pascoletti 

and Serafini [9]. Our scalarization given in the last two theorems is on the lines of Singh 

[11] and Liu [5]. 
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