
K Y B E R N E T I K A — V O L U M E 8 Í (1 9 9 2) , N U M B E R 1, P A G E S 6 9 - 7 6

SEVERAL COMMENTS ON PATTERN
RECOGNITION SYSTEM BASED ON
THE USE OF ATTRIBUTED GRAMMARS

J I Ř Í K E P K A

In the paper attributed grammars as a tool for combining syntactic and statistical approaches to
pattern recognition is discussed. The points where the algorithm for pattern classification based on the
use of attributed grammars can be efficiently implemented in parallel are outlined. Some advantages
of the use of declarative programming languages like Prolog for the realization of pattern recognition
system based on attributed grammars are shown.

1. I N T R O D U C T I O N

It is known t h a t the syntactic approach to pat tern recognition provides a capability for

describing t h e details of internal s t ructure of a pat tern; But the sensibility to noise

which usually causes the s tructural change in a pa t te rn makes this approach alone in

adequate for some practical applications. On the other hand it is also known t h a t t h e

statistical approach to p a t t e r n recognition is unable to describe p a t t e r n s t ructures and

subpat te rn relations. T h e fact tha t the advantage of one approach is at t h e same t i m e

t h e disadvantage of the other makes the idea of a hybrid model which would incorpo

ra te t h e advantages of both very attract ive. There have been proposed some techniques

how to combine both approaches, e. g. applications of stochastic and/or transform gram

mars , stochastic error-correcting syntax analysis [2], a t t r ibuted grammars [1]. Especially,

a t t r i b u t e d g r a m m a r s are successfully used as the model for p a t t e r n g r a m m a r because

of their descriptive power, which is due to their ability to handle syntact ic as well as

semantic information, see e.g. [3], [4].

In this paper the use of stochastic a t t r ibuted grammars as a tool for combining syn

tact ic and statist ical approaches to pat te rn recognition is discussed. Several possibilities

of parallel implementat ion of t h e system based on a t t r ibuted grammars are shown.

At first, basic notat ions and definitions of stochastic a t t r ibuted g r a m m a r s are briefly

reviewed.

70 J. KEPKA

2. BASIC NOTATIONS AND DEFINITIONS

D e f i n i t i o n . A stochastic a t t r ibuted context-free grammar is given by a 4-tuple G =

(VN, Vr, P, S) where V/v is the set of nonterminals, Vj is the set of terminals , S € V/v is

the s tar t ing symbol, for each X € (Vjv U Vr), there exists a finite set of a t t r ibu tes A(X),

each a t t r ibu te a of A(X) having a set, either finite or infinite, of possible values Da; and

P is a set of productions each of which is divided into two par ts : a syntact ic rule and a

semantic rule. The syntactic rule is of the following form

X0 —• A , J \ 2 . . . A m

where X0 € Vjv and each X{ € Vpj U Vr for 1 < i < m, p is the probabili ty associated

with this syntact ic rule, 0 < p < 1. The summation of all the probabilities associated

the syntact ic rules with X0 at the left-hand side must be equal to one. The semant ic

rule is a set of expressions of the following form

a i —> / i (a n , a i 2 , . . . , a l n i)

a 2 -». / 2 (a 2 i , a 2 2 , . . . , a 2 n 2)

an -* / n (a n , , a n 2 , . . . , a n n „)

where { a , , a 2 , . . . , a n } = A(X0) U A(Xt) U ...UA(Xm), each ai3 (1 < . < n, 1 < j < «;)

is an a t t r ibu te of some Xk for 0 < A; < m, and each /,• (1 < i < n) is an operator which

may be in one of the following three forms:

1. a mapping /•: Dan x Dai2 x ... x Da<n< —> Da,

2. a closed form function

3. an algori thm which takes a . i . a ,^ , . . . , a.nj and any other available information or

da ta as input and a; as output [1].

A(X) is part ioned into two disjoint sets, the synthesized a t t r ibu te set A0(X) and the

inherited a t t r i bu te set Ay(X); a G A(X) has a set of possible values Da, from which one

value will be selected for each appearance of X in a derivation tree.

An input pa t te rn is first preprocessed and all necessary primitives and their a t t r ibu tes

are extracted. Then a s t ructural representation is formed by assigning symbols-to prim

itives, selecting e.g. concatenating directions, and any other prespe"cified relations. The

string, i .e . the resulting representation; is then parsed by using the syntact ic rules of

the a t t r ibuted grammar , while the semantics computat ions are performed at the same

t ime. It should be mentioned here that to obtain all required nonterminal (subpat tern)

a t t r ibutes (according to the semantic rules) it is sometimes necessary to go back to the

input pat tern because some subpat tern a t t r ibutes can not be obtained by a computa

tion from lower level terminal a t t r ibutes and thus the subpat tern corresponding to the

Several Comments on Pattern Recognition System 71

nonterminal must be found out and the corresponding subpattern attributes must be
extracted, see Figure 1.

liiput
patterns

Subpattern
attribute

extraction
Rejected
patterns

Primitive &
attribute

extraction

Structural

representation

Recognition
Learning

Sample
patterns

Syntax anal. &
semantics

computation

Attributed
grammar
inference

Classification &
descriptions

Figure 1: Pattern analysis system using attributed grammars.

As the authors in [1] point out the subpattern attributes cannot be extracted before
syntax analysis and semantics computations because without the guidance of syntax
analysis, the system would not know which terminals (primitives) should be grouped
into a subpattern (nonterminal). This is an advantage of using attribute grammars be
cause subpattern attribute extraction now becomes more effective with the guidance of
syntax analysis. Such an advantage is not obtainable by using the statistical approach
alone. The results of syntax analysis are both a parse of the analyzed pattern and its
total attribute vector if the analyzed pattern is syntactically correct. Then the pattern
is classified in accordance with its total attribute vectors.

Remark. The introduction of attributes into a grammar usually makes the reduction of
grammatical complexity possible, i.e. an attributed grammar can describe the structure
of patterns of several classes because the classification is performed on the total attribute
vector (for details see [1]). In the case that more (than one) attributed grammars are nec
essary to describe all kinds of patterns syntax analysis can be performed simultaneously
according to all grammars because it lends itself readily to parallel implementation.

72

3. THE USE OF ATTRIBUTED GRAMMARS FOR STATISTICAL CLASSIFI
CATION

As it is well known from the literature (cf. e.g. [1]), at least three kinds of statistical
information should be used for classification.

1. The occurrence probability of every pattern class.

2. The occurrence probability distribution of the total attribute vector of each pattern.

3. The occurrence probability of a specific pattern structure within its pattern class.

While the occurrence probability of every pattern class usually is determined intuitive
ly or through longer observations of pattern occurrences, the occurrence probability of a
specific pattern structure within its pattern class is computed as the product of all the
probabilities associated with the grammatical rules used in parsing the string (the pattern
representation). It should be reminded here that attributed grammar can usually de
scribe several pattern classes as it was noted in the above remark and hence the probabil
ities associated with the syntactic rules are generally not equal for different classes. If the
parallel computation can be performed, these probabilities P{z\C\), P{z\C?), •••, P{Z\CN)
where N is the total number of classes and z is the string representation of the given
input pattern can be computed simultaneously.

After an input pattern u> is successfully parsed a total attribute vector X is also ob
tained as the result of simultaneous semantic computation. In [1] it is noted that if a
top-down parsing is adopted to analyze pattern structures, the inherited attributes are
more convenient for use because they can be computed in a top-down fashion, starting
from the start symbol S of the grammar. On the contrary, if a bottom-up parsing is
preferred, the synthesized attributes should be used, which are computed in a bottom-up
fashion. The trouble with the computation when both the synthesized and the inherited
attributes are necessary can be sometimes efficiently solved if a declarative programming
language like Prolog is used. Many predicates (not all!) can be used to perform sev
eral functions depending on how the predicate is called. In one situation, a particular
parameter may have a known value; in a different situation some other parameter may
be known; and for certain purposes all of the parameters may be known at the time of
the call. When a Prolog clause is able to handle multiple flow patterns (i.e. statuses of
the arguments to a given predicate), it is known as an invertible clause; e. g. the append
predicate; for more details see [5].

3.1. An optimum decision rule for pattern classification using a t tributed
grammars

First given an unambiguous attributed grammar G, i.e. each string generated by G has.
only one derivation, let N be the total number of pattern classes covered by G, and
n be the total number of distinct strings (corresponding to pattern structures) which
can be generated by G. It is considered that each pattern class C,, i = \,2,...,N,

Several Comments on Pattern Recognition System 73

syntactically contains all the n strings z-i,z2, ...,zn generated by G. Let us consider the

2-tuple u>ij = (z3,Xij) as the description of a noise-free pa t te rn in class d, each class

d consists of exactly n noise-free pat terns d = {u>n,u>i2, ...,u>in} where subscripts i,j

in Xij specify tha t this AY, is computed for z3 of class C,-. Each u>i3 semantically can be

deformed into a finite or infinite set of noisy versions because of noise and distortion.

All these versions have an identical symbolic string representation z3 bu t a t t r ibu tes of

input pa t te rns are subject to numerical variations due to noise and distort ion. Thus for

u>ij = (z3,Xij) in Ct let the set of its noisy versions be denoted D(u>i3) = {w,-^ | u>i3k =

(z3,Xijk),k = 1,2, ...,m,-j} where m^- may be finite or infinite, then Ci can be regarded

as Ci = D(u>ti) U D(u>i2) U ... U D(u>in). Since each u>i3k € D(u>i3) may occur with a

different probability, we can introduce a conditional probability distribution on D(u>i3)

for class C, such that

p(u>tJk\u>i3,d) = p(X,3k\z3, Ci)

is the occurrence probabili ty for u>t3k = (z3,Xi3k) € D(u>,j), which will be called the at

t r ibute occurrence probability of w.-jt from u>i3, in contrast with the s tructural occurrence

probabili ty of z3 within class Ci,P(zj\d) [1].

If the string representation of an unknown pat tern u> is accepted by the g rammar as z3,

and if the computed total a t t r ibu te vector (TAV) for u> is X, the tuple u> = (z3,X) can

be regarded as a noisy version of ov,, included in D(u>{3). Then the a t t r i bu te occurrence

probabili ty of u> from w,j with respect to class d is

p(u>\u>t3,d)=p(X\z3,Ct)

and hence the composite occurrence probability that u> 6 d is

p(u>\d) = p(u>\u>t3,Ct)P(u>t3\Ct)

= p(X\z3,Ct)P(z3\Ct).

With respect to the assumption that the attributed grammar is unambiguous, it is

possible to compute the a posteriori probability p(Ci\u>) that u> can be recognized as a

deformed pattern from the pattern class Ci = [_J"=1 D(u>t3)

p(Ct\L0) = p(u>\d)P(d)/P(u>)

= p(u>\iot3,Ct)P(iot3\Ct)P(Ct)/p(u>)

= p(X\zJ,Ct)P(z3\Ct)P(Ct)/p(oJ)

where u>i3 = (zj,Xi3), P(Ct) is the a priori probability of class d, and p(u>) can be

calculated as p(u) = E,=i p(u\Ct)P(d).

When the attributed grammar is ambiguous, the above discussion is no longer valid

as the authors in [1] point out and it should be modified. For the system to be im-

plementable, G is assumed not to be infinitely ambiguous that means there is a finite

number of distinct derivations for each string accepted by G. This assumption is general

74 J. KEPKA

enough for most applications. In this case the following equations hold [1]:

t,

P(u\d) = £[p(c|4,C,)P(4|C,)]
k=\

t,

= Y/\p(Xk\zk,C,)P(zk\Cl)] (1)
J t = l

After applying Bayes Theorem on (1):

I,-

assigns to CM if £ \p(Xh\z),CM) P(zk\CM]P(CM)

fc=i

= , f l % . l [p(Afcl4,c) P(*j=|C,)]P(C.)
' ' ' * = 1

where p(u>) common to both sides, has been dropped, /,- is the total number of distinct

derivations. They can also be adjusted for parallel computat ion without serious difficul

ties. It should be mentioned here tha t because of the different combinations of syntactic

rules used in the derivations, each different derivation zk of z = Zj will also result in

a different s t ructural occurrence probability value, which is denoted as P(zk\C\). The

above Bayes classification rule is for one grammar only. In the case of several g rammar

the extension is: assign w to CM if

p(CM\us) = max max p(C,\u),
Gj i~\,2,...,Nc

where NQJ is the total number of pat tern classes covered by grammar Gj. For more

details in this subsection see [1]. It is evident that the last expression also lends itself

readily to parallel implementation.

3 . 2 . T h e diff icul t ies w i t h t h e c o m p u t a t i o n of t h e a t t r i b u t e p r o b a b i l i t y

p(Xk\zk,C,)

The distr ibution p(Xk\zk, C,) depends on the syntactic s t ructure of the recognized string

representation Zj. Given two input pat terns from class C,-, assume tha t they have the

same total a t t r ibu te vector Xk computed. If they are accepted syntactically to have

different string s tructures Zjl and Zj2, the probabilities or densities used for them should

be p(Xk\zk
l, C,) and p(Xk\Zj2, C,), respectively, they m a y b e different; bu t since in general

the string s t ruc ture (ZJX or Zj2) can be determined only after parsing, a t t r ibu te occurrence

probabilit ies can not be computed during the parsing procedure. Computa t ion of such

values must be delayed until parsing is completed and the s t ructure of the input string

representation is identified as the authors in [1] mention.

This problem exists whenever probability distributions or density functions for prim

itives (terminals) or subpat terns (nonterminals) are used for pat tern classification. So

Several Comments on Pattern Recognition System 75

far, it has always been assummed that the occurrence probabili ty of a certain prim

itive (terminal) is invariant with respect to different pa t te rns . Such an assumption

p(Xk\zk
i, d) = p(Xk\zk

2, C,) = p(Xk\C<) though simplifying statistical discussion, theo

retically is not general enough for applications using a t t r ibuted grammars [1].

In the cited paper the authors added "identification rules" to identify the string struc

ture. Wi th the help of these identification rules correct probability density functions can

be chosen after parsing is completed and then the a t t r ibute occurrence probabili ty or

density can be computed.

Another way how to solve this problem is the division of an a t t r ibu ted g rammar into

several ones so tha t each grammar will generate a set of strings Z\, z2,..., zn which satisfy

the following conditions

p(Xk\zk,C,) = p(Xk\zk,d) = ... == p(.Y*|-*,o .) (2)

But as the authors in [1] point out this solution is impractical because it destroys the

essence of g r ammar usage - with one grammar efficiently covering as many s t ructura ly

similar pa t t e rns as possible.

Another way how to solve this problem can be suggested when parallel implementa

tion is available. If the set of strings {2,, i = \,...,n) is finite and n is a small num

ber the input str ing (pat tern) 2 can usually be directly compared with possible strings

Zi, 8 = 1 , ...,n, and when the match arises the corresponding conditional probabili ty or

density functions are found. In the more complex cases (the number of generated strings

by the g rammar is large or infinite) it should be pointed out tha t there must exist only

a finite number probability distributions or density functions for each terminal (primi

tive) for the problem to be relevant. In other words it must be possible to find a finite

number of types of string structures within which (2) holds (n may be infinite because

each type of str ing s t ructure can have infinite different realizations). Then the amount

of all possible result's of computing p(Xk\zk, C,) before the string s t ruc ture identification

at the end of parsing is also finite and in practice all possible results can usually be

computed simultaneously during parsing in the case of parallel implementation because

the introduction* of at t r ibutes into a grammar reduces grammatical complexity and sim

plifies parsing. After parsing the string s tructure identification is performed (e .g . with

the help of identifications rules) and corresponding result is chosen according to it . In

this way the computat ion of a t t r ibute occurrence probabilities need not be delayed until

parsing is completed and the pa t te rn classification can be speeded up.

4. CONCLUSIONS

The a t t r ibu ted grammars are shown as an interesting tool for combining syntactic and

statistical approaches to pat tern recognition. Their advantages are most outs tanding

in the cases when pat tern classes can be divided into groups, each group consisting of

several pa t te rn classes which are similar in s t ructure but different in a t t r ibutes .

76 J. KEPKA

When the declarative method instead of customary procedural one is used both in
herited and synthesized at t r ibutes can often be used.

Several possibilities how to speed up pat tern classification by parallel implementat ion
are outl ined.

(Received October 17, 1989.)

R E F E R E N C E S

[1] W.H. Tsai and K.S. Fu: Attributed grammar - a tool for combining syntactic and statistical
approaches to pattern. IEEE Trans. Systems Man Cybernet. 10 (1980), 12, 873 - 885.

[2] S. Lu and K.S. Fu: Stochastic error-correcting syntax analysis for recognition of noisy patterns.
IEEE Trans. Coinput. 26 (1977), 12, 1268 - 1276.

[3] P. Trahanias and E. Skordalakis: Syntactic pattern recognition of the ECG. IEEE Trans. Patt. Anal.
Mach. Intell. 12 (1990), 7, 648 - 657.

[4] E. Pietka: Feature extraction in computerized approach to the ECG analysis. Pattern Recognition
^ (1991), 2, 139- 146.

[5] Turbo Prolog - the natural language of artificial intelligence. Owner's Handbook. Borland Interna
tional 1986.

Ing. Jiří Kepka, Ústav leone informace a automatizace ČSAV (Institute of Information Theory
and Aulomalioti - Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 182 08 Praha 8.
Czechoslovakia.

