
K Y B E R N E T I K A — V O L U M E 28 (1 9 9 2) , N U M B E R 1, P A G E S 6 2 - 6 8

THE EMPLOYMENT OF PROLOG
FOR A SYNTAX ANALYSIS IN SYNTACTIC
PATTERN RECOGNITION APPLICATIONS

JIŘÍ KEPKA

In the paper some possibilities of the employment of Prolog for a syntax analysis of context-free
languages are shown with respect to syntactic pattern recognition applications. The new syntax-analyzer
based on "top-down" strategy is proposed. All terminal symbols contained on a right side of a production
of a context-free grammar are used for the decision whether or not the production shall be applied.

1. I N T R O D U C T I O N

A syntax aualysis is one of major parts of a syntactic pa t te rn recognition system. T h e

decision whether or not the pat tern belongs to the class of pa t te rns described by the

given g r a m m a r is performed by t h e "syntax analyzer" or "parser" . Provided t h e p a t t e r n

is syntactically correct, a complete syntactic description is usually needed, too.

T h e problem of parsing can be regarded in the following way: Given a sentence x

and a (context-free or context-free programmed) grammar G, construct a derivation of

x and find a corresponding tree [2]. Two major strategies called "top-down" parsing

and " b o t t o m - u p " parsing are used to find a solution of this problem. Besides algorithms

based on these strategies two efficient algorithms called the Cocke-Younger-Kasami

parsing algorithm [2] and Earley's parsing algorithm [7] were developed.

In this paper some possibilities of the employment of Prolog for a syntax analysis of

context-free languages are discussed with respect to requirements of syntact ic pa t te rn

recognition. T h e new syntax analyzer based on "top-down" strategy is proposed.

2. T H E E M P L O Y M E N T O F P R O L O G F O R A SYNTAX ANALYSIS O F CON

T E X T - F R E E L A N G U A G E S

It is known t h a t if G is a context-free or context-free programmed g r a m m a r t h e cor

responding recognition device is, in general, a nondeterministic, pushdown a u t o m a t o n .

Consequently, the parsing process is usually a nondeterministic procedure and backtrack

ings are often required. Especially for this reason Prolog appears to be very efficient

The Employment of Prolog for a Syntax Analysis 63

and advantageous tool for solving problems of syntax analysis of context-free languages

because this programming language uses a backtracking mechanism. When a Prolog

program is executed, the system tries to find all possible solutions tha t satisfy the given

goal. Once one solution has been found, the backtracking mechanism causes Prolog to

reevaluate any assumptions made to see if some new variable values will provide new so

lutions. It also backtracks if a subgoal fails, hoping to resatisfy a previous subgoal in such

a way that the failed subgoal is satisfied with new variable values [4], [5]. Consequently,

if a program carrying out a syntax analysis is writ ten in Prolog, we need not worry about

how to ensure backtrackings during the execution of this program. Moreover, Prolog is

a declarative language and once the Prolog programmer has described what must be

computed, the Prolog system itself organizes how that computat ion is carried out . In

Pascal, in contrast , one must tell the computer exactly how to perform its tasks [5]. It

is easy to see for every Prolog programmer that "top-down" parsing strategy and Prolog

evaluation strategy are the same in principle.

The fact tha t the parsing process is, in general, a nondeterministic procedure and

backtrackings are often required, makes the parsing process potentially inefficient. If

there are several choices for each step (i .e . there are several productions with the same

left side) then the total number of possible ways of parsing increases exponentially. The

speed of parsing depends on avoiding false trials, which cause work to be done tha t is

later rejected. Therefore, it is desired to determine some a priori tests tha t have to be

satisfied before the chosen production is used. The situation such that at each step only

one production is possible would be optimal because then backtrackings would not be

needed and the parsing method could not be significantly improved [2] .

Several a priori tests were proposed to make the top-down parsing method more

determinist ic to avoid the exponential increase of the total number of possible ways of

parsing. A production can be rejected because it must necessarily lead to more symbols

in the terminal sequence than are available, or because it forces the use of a terminal

tha t does not occur. Another a priori test for rejecting a production depends on the first

symbol of the phrase that has to be derived from it. If the desired symbol cannot be

derived as the first terminal , the production should be rejected. This modified top-down

parser select only productions tha t can yield phrases start ing with the same terminal

symbol as is the current symbol of the sentence. Before start ing syntax analysis the

g rammar has to be processed to produce a matrix of terminals against nonterminals ,

indicating which nonterminals can begin with which terminals [2].

Left recursion causes most difficulties in a left-right top-down parser because g rammar

productions of the form A —* Aa generate infinite loops:

A —+ Aa —» Aaa —•....

One way to avoid left recursion is to transform the g rammar into s tandard form but

then in the syntact ic pat tern recognition desired structural descriptions are lost [6].

Consequently, other ways must be used. For example, when from every nonterminal

can be derived a terminal sequence containing at least one terminal, then if the number

64 J. KEPKA

of symbols in the remainder parse is greater than the number of terminals left in the

sentence, the parse cannot be correct. This test is useful in practice only if the length

of the sentence is short [2].

3. T H E T O P - D O W N SYNTAX ANALYZER BASED ON T H E N E W A P R I O R I

T E S T

The a priori tests described so far are not efficient enough because the selection from

several productions with the same left par t only according to the first terminal symbol

(modified top-down parser) is very short-sighted.

As follows, it is shown how all terminals contained on the right par t of a production

can be used for the decision whether or not the production shall be applied. Let w' be

the analysed string, w' = a'w and let a'/? be the sentence form derived by means of

product ions of a context-free grammar G:

S ^G a'0,

where /3 begins with a nonterminal A, A £ V/v, /? £ (V/v U V r) + , a' £ Vf. Let exist such

a left derivation tha t /? =>G w holds and let /? = AS. A production with the nonterminal

A on its left side is generally of the following form:

A -» o171a272.-Q.7.> (!)

where ax e Vf, at 6 V / , \ <l <i, 7; € V.J, j k € V$, 1 < k < 1. If f3 =>G w, then the

following derivation must exist:

atili-otififi =>"G «>.

T h e first pr imary condition for the selected production to be valid is: w = axw. Let

w = wxw2, then the following two derivations must exist too:

7iOj272a3...a,- =>"a wx fl fiS =*-G w2

If we use terminal symbols contained on the right side of the production in 0 2 , 0 3 , •••«!

(we assume they are some in the production), we can determine other conditions. If the

selected production is valid the following decomposition of the string w must be found:

w = v\a2v2a3...aiW2 • (2)

T h e proposed a priori test is performed in the following way. The decomposition of

the string w is looked for:

w = vxa2w

w' = v2a3w"

Then w" is processed in the same manner as w and w' until the total decomposition of the

form (2) is found. If the decomposition is not found the production should be rejected. As

The Employment of Prolog for a Syntax Analysis 65

follows, for the application of the selected production to be valid the following derivations

must be found:

7i =>G v\ 0 7 2 =>c v2...r)fi8 =>*G w2 (3)

Evidently, the a priori tests already described in this paper can be used too:

1. If the derivations (3) exist the leftmost nonterminal symbol of ik € Vj$ (jiS), k < i

must yield the leftmost terminal symbol of the string vk £ Vj (w2).

2. When from every nonterminal can be derived a terminal sequence containing at

least one terminal symbol, then if the derivations (3) exist the number of symbols

in 7t € V^ (~H&), k < i, must not be greater than the number of terminals in

vk e V+ (w2).

These a priori tests can be employed when a decomposition (2) is being looked for. First ,

the condition whether the leftmost terminal symbol of the string V\ can be derived from

the leftmost nonterminal symbol of 71 is checked. Second, the decomposition w = via2w'

is looked for. Third , the condition that the number of symbols in ^ must not be greater

than the number of symbols in vi is checked. If the third condition is not satisfied

backtracking is necessary to try to find an alternative decomposition of the w. When

all conditions are satisfied w' is processed in the same manner as w. If whether first or

second condition is not satisfied (for w') then backtracking is also necessary to find an

al ternat ive decomposition, etc. After the total decomposition of the form (2) is found

the two last conditions tha t the leftmost terminal symbol of the string w2 can be derived

from the leftmost nonterminal symbol of 7;5 and that the number of symbols in -jiS must

not be greater than the number of symbols in w2 are checked. If the decomposit ion of

the form (2) is not found the production is rejected. Of course, if there are product ions

of the form P - t e , where e is the empty symbol, presented, in the g rammar , the a priori

tests 1, 2 cannot be simply used without changes.

E x a m p l e 1. Consider the grammar G = (VN,VT, P,S), where S is the s tar t ing

nonterminal , V/v = {S,A,B}, Vr = {a,b,c,d}, and P:

S-> AB B^d A ^ c B-^Bb A-*Aa

In general, L(G) = {candbm \n,m = 0 , 1 , 2 , . . . } . Let w = caadbb. The production

S —> AB is accepted because the first terminal symbol of w can be derived from the

nonterminal A and the number of symbols of AB is not greater than the number of

symbols of w. Then the production A —* c is tested. The condition tha t the nonterminal

B can yield the terminal symbol a is not satisfied and consequently, the production is

rejected and the production A —» Aa is tried. The first condition is satisfied because

the first terminal symbol c of the string w can be derived from the nonterminal A. The

decomposit ion w = v\0.2w2 = c\a\adbb is found but the derivation B =>Q adbb does

not exist because B cannot yield the terminal symbol a as the first one. Consequently,

66 J. KEPKA

backtracking is necessary to find another decomposition of w, w = ca\a\dbb'. This decom

position satisfies all conditions. As follows, the derivations A => ca and then B => dbb

are looked for.

If any of the subgoals (3) fails, backtracking is needed to find another decomposition

of the form (2) tha t satisfies all conditions. In the case tha t it does not exist an alter

nat ive production is chosen and tested. Several decomposition of the form (2) satisfying

all conditions can be generally found. With respect to the fact tha t the backtracking

mechanism is one of fundamental features of Prolog the realization of this a priori test

is quite easy, in contrast to other programming languages.

The realization of this a priori test using all terminal symbols on right sides of produc

tions in Prolog is based on the known predicate append. For example, let 's append the

lists ['a',' a',' b'} and ['a',' c'} to form the list ['a', 'o', ' V',' a1',' c'}. The predicate append(List\,

List2, List3) with three arguments combines List\ and List2 to form List3. If Listl is

empty, the result of appending List.\ and List2 will be the same as List.2:

append([} , List2, List2).

Otherwise, List\ and List2 can be combined to form ListZ by making the head of List\

the head of List3. The rest of List'i is obtained by appending the rest of List\ and the

List2:

append([X\Ll], List2, [X\L3]) : -append(Ll, List2, L3).

This relation between three lists also holds if List\ (List2) and ListS are known but

List2 (List\) is not known and if only List3 is known.

E x a m p l e 2 . To find which two lists could be appended to form a known list, we

could use a goal of the form

append(List\, List.2, ['c ,'a','a'}).

for which Prolog will find the solutions

Listl = [] List2 = ['c',' a',' a'},

Listl = [V] List2 = ['a','a'},

Listl = ['c','a'} List2*= [V] ,

Listl = ['c','a','a'} List2 = [].

E x a m p l e 3 . Let A —• AabBCc be the production which causes left recursion and

let a'(i = a'AS be the derived sentence form (a' 6 Vj) and W the par t of the analyzed

str ing W (W = a'W). If the nonterminal A can yield t he leftmost terminal of the

str ing W then the decomposition of the type (2) is looked for. The realization of this

proposed test (decomposition) in Prolog is based on the following test predicate

t.est(W, [V\,V2,W2}, Number) : -

append(V\, [VJ['i'|Xl]], W),
append(V2, ['c'\W2}, L I) .

The Employment of Prolog for a Syntax Analysis 67

where Number is the number of the production A —> AabBCc. If this test is succesfully

evaluated, then the simpler derivations A =>G VI , BC =>G V2 and S =>G W2 must be

found if the production is valid.

To employ the a priori test tha t "the leftmost nonterminal symbol must yield the

leftmost terminal symbol" consider that Prolog facts

listJ(Nonterminal, List-of-terminals)

indicating which nonterminals can begin with which terminals, are created. Then the

predicate test can be modified into the following form:

test([T\\W], [V1 ,V2 ,W2] , Number):-list J(! A', ListA),

member(T\, ListA), append(Vl, [a'\[b'\[T2\L\]}}, [T l jW]) ,

UstJ('B', ListB), member(T2, ListB),

append(V2, \'c'\W2], [T2\L\]).

where the known member predicate is defined by [5]:

member(X, [X\-]) : - ! .

member(X, [-\Y]) : —member(X, Y).

The proposed a priori test using all terminal symbols reduces essentially the total

number of possible ways of parsing. Moreover, the difficulties caused by left recursion

are removed if every right side of the production tha t causes left recursion contains at

least one terminal symbol. If the given grammar contains productions tha t have not

any terminal .symbol on their right sides and if these productions cause left recursion

there are following possibilities how these problems can be solved. One of them already

described is to check whether the number of symbols in the remainder parse is not greater

than the number of terminals left in the sentence. This a priori test can be used only

when from every nonterminal at least one terminal symbol can be derived. Thus , the

g rammar must not contain the productions of the form A —* e. Another way how to

remove left recursion is to modify the given grammar according to [3] without losing the

desired s t ructural description of the given string. More details about the proposed test

and the description of the program (analyzer) can be found elsewhere, see [8].

4. CONCLUSIONS

The syntax analysis of context-free languages is a nondeterminist ic 'procedure and back

trackings are often required. For this reason Prolog appears to be very convenient tool

for performing the parsing process. Moreover, both productions of a context-free gram

mar and top-down parsing strategy can be easily described by means of simple Prolog

facts and rules.

68 J. KEPKA

The syntax analyzer based on the new a priori test using all terminal symbols on

the right side of a production of the given grammar was proposed. Backtrackings are

in general needed. The proposed a priori test essentially reduces the total number of

possible ways of parsing and the difficulties caused by left recursion are removed if every

right side of the production that causes left recursion contains at least one terminal

symbol. The syntax analyzer based on this a priori test can be used in syntactic pa t te rn

recognition systems, where the structural description according to the given g rammar is

desired.

(Received September 25, 1989.)

R E F E R E N C E S

[1] M. Chytil: Automata and Grammars (in Czech). SNTL, Prague 1984.
[2] K.S. Fu: Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs, N.J.

1982.
[3] R. Kurki-Suonio: On top-to-bottom recognition and left recursion. Coram. ACM 9 (1966), 7, 527

-528.
[4] W.F. Clocksin and C.S. Mellish: Programming in Prolog. Second edition. Springer-Verlag, Berlin

- Heidelberg - New York 1984.
[5] Turbo Prolog - the natural language of artificial intelligence. Owner's Handbook, Borland Inter

national, Inc. 1988.
[6] T. V. Griffiths and S. R. Petrick: On the relative efficiencies of context-free grammar recognizers.

Comm. ACM 8 (1965), 5, 289 - 300.
[7] J. Earley: An efficient context-free parsing algorithm. Comm. ACM 13 (1970), 2, 94 - 102.
[8] J. Kepka: The Top-Down Parsing of Context-Free Languages and Its Realization in Turbo Prolog

(in Czech). Research Report No. 1681, UTIA CSAV, Prague 1990.

Ing. Jifi Kepka, Ustav teorie informace a automaiizace CSAV (Institute of Information Theory

and Automation - Czechoslovak Academy of Sciences), Pod voddrenskou vezi 4, 1S2 08 Praha 8.

Czechoslovakia.

