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From the classical point of view, as conceived by Z. Pawlak, rough sets are generated by classical 

subsets of a basic space and by an indiscernibility relation defined on this space; this relation expresses 
limited abilities to discern the elements which are members of a given classical set from the other ones. 
In this paper an alternative approach is suggested and investigated, when the possibility to decide 
about the validity of a membership predicate for a given element of the basic space is qualitatively 
and quantitatively classified and only the subsets for which this degree of decidability is below a given 
threshold value are taken into consideration. Some special quantification relations as well as relations 
between rough sets under the alternative approach, Dempster-Shafer theory and fuzzy sets are briefly 
discussed. 

1. F R O M INDISCERNIBILITY RELATIONS T O ROUGH SETS 

As far as their historical origins are concerned, the notion of rough set should be consid

ered as t he secondary one, following the primary and gnoseologically motivated notion 

of indiscernibility relation. Take a non-empty basic set (space, universe of discourse) 

X; from the classical set-theoretic point of view elements of X are equipped with the 

full individual identity, are strictly separable and, in fact, separated from each other . In 

other words said, if x,y 6 X and x = y, then x and y are even theoretically inseparable 

and x,y are nothing else than two names for one and the same entity. On the other 

handside, if x,y £ A and x ^ y, then x and y have nothing in common, in Leibniz 

terms, t he monade of each x £ X is either this x itself, or the singleton set {a;}, the 

difference being only a mat te r of technical convenience (at least from the point of view of 

our purposes in this paper when we have no needs to go into the details of type theory) . 

Evidently, from a more practical viewpoint such a trivial and idealized solution to the 

discernibility problem for elements of a given set is very far from being the satisfactory 

one. As a first approximation we may admit that there is an equivalence relation « 

defined on A', which is called and interpreted as an indiscernibility relation on X. Hence, 

if x,y £ X and x w y, we are not able, within the supposed and limited scope of our 

abilities, to discern x from y, i .e. , to decide, whether x = y in the classical sense of 

identity relation or whether x ^ y. 

Let us recall the definition of equivalence relation according to which, for all x,y,z £ X, 

(1) x « .c, (2) if .r « y, then y w x, and (3) if x « y and yfzz, then x W z. The conditions 

f?-#X'3£Uf oCO 
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(1) and (2) seem to be obvious for each reasonable indiscernibility relat ion, bu t the tran

sitivity condition (3) can be taken as a ra ther strong idealization and subjected to a dis

cussion. Namely, (3) excludes the possibility that there is a finite sequence X\, xi,... ,xn 

of elements of X such tha t X\ is discernible from xn, but each Xi is indiscernible from 

Xi+\. So, t he well-known "monkey-Darwin" paradox still remains paradoxical under this 

formalization of indiscernibility relation (just to recall the mat ter : ancestors - parents -

of each humain being are human beings, descendants of each monkey are monkeys, there 

are finite generations from a monkey to Darwin, and still Darwin is, as a man , discernible 

from each monkey) . However, more detailed and sophisticated reasonings about these 

problems would bring us into the area of alternative set theory and this ul t imately is not 

our aim. So, we shall accept, in what follows, the reduction of indiscernibility relations 

to appropr ia te equivalence relations. 

For a fixed indiscernibility (equivalence) relation » on A denote by [x] the equivalence 

class in Xj w containing a given x £ X. Now, for each V C X two sets can be defined, 

namely, 

V. = \J{[x]:[x}cV} = {xeV:(Vy€X)(yKx^yeV)}, (1) 

V* = \J{[x}:[x}nV^H>} = {xeX:(3yeV)(x^y)}. (2) 

Evidently, V, C V C V" C X. The pair (V*, V*) is called the rough set generated in X by 

V and « , cf., e. g., the papers of Kubat [4], Orlowska [9] - [11] and Pawlak [12] - [14] in the 

references below for more details on rough sets defined through indiscernibility relations. 

The notion of rough set can be easily extended to each pair ( K , V"), V, C V" C X, of 

sets, in other words, each such a pair of sets can be taken as the rough set generated 

by a set V such tha t V. C V C V and by the equivalence relation w 0 such tha t 

Xj « „ = {V*, V* - V„X - V'}, i .e., x w 0 y iff either x,y g V„ or x,y € V" - V„ or, 

finally, x, y <= X— V*. 

The intuit ion and interpretat ion behind these notions is as follows. Given V C X and 

x e X, we are not able to decide directly, whether i g K o r not, the only we can do is 

to take the class [x] and to decide, whether [x] C V or whether [x] 0 V ^ 0. So, V, is 

the set of all elements which can be claimed to be in V without any doubts , as all [a;] 

is in V, and X — V* is the set of all elements which can be surely claimed not to be in 

V. After all, for elements from V* — V. we are in doubts, their membership in V cannot 

be decided within the given framework of our limited abilities. The same interpretat ion 

can be applied to each pair (V,,V*) of sets such that V, C V C V* C X, even not 

mentioning explicitly the indiscernibility relation and speaking only about our limited 

abilities to decide the membership relation for V. This interpretation will be discussed 

in more details in the next chapter. 

In general, rough sets can be understood as a set-theoretic analogy of the well-

known three-valued Lukasiewicz logic with the third t ru th value interpreted as "I do 

not know...", "we are not able to decide..." or, less subjectively, "it is not known..." 
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which of the two classical t ru th values is the correct one for the proposition in question. 

Let us also emphasize the fact tha t in this approach, indiscernibility relations and rough 

sets are conceived as purely gnoseological notions. Hence, our abilities to discern be

tween elements and to decide membership relations are taken as limited and relativized, 

but no doubts are admi t ted as far as the existence of all subsets of the space X and the 

ideal separabili ty and disjointness of any two elements of X are considered. Admi t t ing 

such doubts , we shall arrive, in what follows, to an al ternative and ontologically based 

approach to the notion of rough sets. 

2. ONTOLOGIZATION OF ROUGH SETS 

Aiming to outl ine a qualitatively different and more ontological in its na tu re approach 

to the notion of rough sets, we have to begin with the very axiomatics of the set theory. 

We do not repeate here this axiomatics (in its Zermelo-Fraenkel sett ing, to be more 

correct) in all details and refer to, e.g., Kuratowski-Mostowski 's monography [6] for 

mathemat ica l details and to Maddy's essay [7] for interesting philosophical discussions, 

also Frankel and Bar-Hillel [2] monograph may be of interest in this context (cf. the list 

of references below). In the center of our at tent ion will lie two axioms, namely axiom 

of power set (PSA) and axiom of extensionality (EA). Just to recall bo th of them, PSA 

claims: 

"If A is a set, then the collection V{A) of all subsets of A is also a set." And, for EA 

we have: 

"If A is a set and P is a unary predicate, i .e. , a well-formed formula of a formalized 

language C with single free indeterminate, then the collection A\P of all elements of A 

for which P holds, is also a set." 

As a rule, we write 

A\P = {x : x 6 A, P{x)}. (3) 

Let us remember tha t , not taking into consideration the axiom of choice, just PSA and 

EA are, because of their non-constructive features, probably the most often discussed, 

objected, and criticized axioms of ZF-set theory. Or, it is just PSA which is, in the 

greatest degree, "responsible" for the "explosion" of cardinals in ZF-set theory. On the 

other hand, an unrestr icted definition of new subsets through unary predicates has given 

arise to the paradoxa like "the set of all sets" (applying the predicate "to be a set" to 

t he universum of all enti t ies). 

W h a t is impor tant in our context is the purely platonist and ideal character of exis

tence of sets created due to both the axioms above. The sets V{A) and A\P, defined 

by PSA and EA, are ascribed the same kind or modus of existence like the original set 

A, and are supposed to be able to be subjected to the same operations as A itself, i .e . , 

we may obtain t he new sets V{V{A)) and {A\P)\Q, if Q is a unary predicate. The pos

sible intractability of these sets (because of a great cardinality of V{A), say, or because 

of a very subtle na ture of the predicate P) does not influence, anyhow, their status of 
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existence. E.g . , the set of Goedel numbers of the t rue sentences of Peano ar i thmet ic 

"exists" in the same sense as each, even the most simple one, recursive subset of the set 

M of all non-negative integers. 

Due to a continual repetition in all textbooks, monographs, courses of elementary set 

theory and mathemat ics , etc., all what we have said till now seems to be very trivial, 

self-evident, and not worth repeating. On the other hand side, many interesting scien

tific discoveries originate from "putt ing into question" the seemingly most self-evident 

assumptions of the current scientific paradigm a [5]. Trying to do so in the case of EA 

we shall arrive at rough sets in another way than tha t described above. 

As before, let A be a non-empty basic set (space, universe of discourse), let B be 

another non-empty set, let -< be a partial-ordering relation defined on B. I.e., for each 

x,y,z € B,x -< x,x < y and y < x imply x = y in the sense of the identity relation 

on B and, finally, x •< y and y < z imply x •< z. Let £ be a formalized first-order 

language with the set Pied of unary predicates (well-formed formulas with a single free 

indeterminate) . Finally, let 

p : V\X) x Pred x X -> B (4) 

be a partial mapping (called reference system) ascribing to (some, in general) subsets 

A C X, predicates P, and elements x £ X the value p(A, P,x) from B. 

D e f i n i t i o n 1. Given A C X,P € Pred, and b € B, the (classical) set A\P is called 

a b-subsct of the set A, if for all x e A, p(A, P, x) is defined and 

p(A,P,x)<b. (5) 

B is a 6-subset of A, if there is P € Pred such that B is A\P and A\P is a 6-subset of 

A. 

The intuition and interpretation behind is as follows: p(A, P,x) express the degree of 

effort and expenses necessary to deride, within a given scope of abilities corresponding 

to the reference system p, whether P(x) hold supposing we know that x is in A. When 

p(A,P, x) is not defined, it is beyond the abilities of the reference system in question 

to decide, whether P(x) holds or not, even when knowing that x € A. The degrees of 

effort and expenses are supposed to be at least partially comparable and a 6-subset of a 

set is such one for which the corresponding membership relation defined by a predicate 

can be decided for all elements within uniformly majorized limits of ^efforts (complexity, 

cost, . . .) . 

In general, there is no reason to expect that any classical subset of the space X will 

be also its 6-subset for a given (B,<),b and p (cf. the next chapters for more details) . 

So, we may approximate classical subsets V of A' by "upper" and "lower" 6-subsets, i .e . 

by pairs (V„, V) of 6-subsets of X such tha t V, C V C V*. We may also either ascribe 

the s ta tus of existence only to 6-subsets of A', taking a fixed 6 € B, or less radically, to 

introduce different modes of existence for 6-subsets of A' (the "strouger" or intuitionistic 
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existence), and for classical subsets of X (the "weaker" or platonistic existence). We 
can, again, focus our attention to pairs (V», V*) of "strongly existing" subsets, i.e. to 
6-subsets of X such that V, C V*. So we have arrived back to the rough sets, moreover, 
this interpretation can be easily ontologized, as the existence of 6-subsets and rough sets 
does not depend on and does not descend from classical sets and indiscernibility relations 
on them, hence, rough sets can be taken as ontologically primary entities. 

3. MONOTONOUS REFERENCES SYSTEMS 

Let us define, in the partially ordered set (B,<), two binary operations V (supremum) 
and A (infimum) by the following conditions valid for all x,y,z € B: 

x /\y <x -<xV y, x hy <y <xV y, (6) 

x < z and y •< z implies x V y <z, (7) 

z •< x and z •< y implies z -< x A y. 

Of course, both the operations V and A are partial, but supposing that x A y and x V y 
are defined, they are defined uniquely. Or, if some q 6 B satisfies the conditions (6) and 
(7) for x Ay, then x A y •< q, but also q •< x A y, so that q = x Ay, and similarly for 
x V y. In order to keep the A and V symbols unambigously free for this use, let us denote 
by et and yel the functions of conjunction and disjunction of the language £, so that if, 
P, Q are unary predicates from Pred with the same free indeterminate, then P et Q and 
P yel Q are also unary predicates from Pred. 

Definition 2. The reference system p is called monotonous on A C X, if for each 
P,Q € Pred and x S A such that the expressions below are defined, 

p(A,PetQ,x)=:p(A,P,x) Vp(A,Q,x), (8) 

P (A, P yel Q, x) = p(A, P, x) A p(A, Q, x). (9) 

The system p is called weakly monotonous, if for P,Q,x as above 

p(A,P yelQ,x) <p(A,P,x) <p(A,P§t Q,x), (10) 

the same relation for Q immediately follows when interchanging P and Q in (10). 

Fact 1. (a) If the reference system p is weakly monotonous, then for all b € B the 
system F(b, A,p) of all 6-subsets of A is closed with respect to finite unions, 
(b) If the reference system p is monotonous, then F(b, A,p) is closed with respect to 
finite unions and joints. 

P roof , (a) Let B,C e F(b,A,p), then there exist P,Q e Pred such that B -
A\P,C = A\Q, and p(A,P,x) < b,p(A,Q,x) < 6 for all x € A. Then, due to (10), 
p(A, P yel Q,x) •< b as well, and B U C = A\ (P yd Q), so that B U C 6 ^(6 , A,p). 
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(b) If p is monotonous, then it is, clearly, also weakly monotonous. Moreover, 

p(A,P §t Q, x) = p(A, P,x) V p(A, Q,x) is majorized by b due to the definition of V, cf. 

(9), bu t BC\C = A\(P et Q), so tha t Bn C G F(b,A,p). • 

Having decided the validity of P(x) for some P G Pred and x G A, we have at hand 

also the decision about t he validity of its negation non P(x), so tha t the assumption 

p(A,P,x) = p(A, nonP,x) (11) 

seems to be quite natura l . However, combining (11) with the definition of monotonous 

or ever weakly monotonous reference systems, we arrive at some consequences which 

look ra ther unna tura l . E.g . , (8), (9) and (11) yield tha t 

p(A,P velnonP,x) = p(A, P et non P,x) = p(A,P,x), (12) 

and (10) combined with (11) yield tha t 

p(A,P,x) lp(A,Pet non P,x). (13) 

Both (12) and (13) contradicts the intuition that it should be very simple to decide about 

the validity of a tautology, or about the non-validity of a contradiction, for each x G A 

and tha t the complexity of this decision should not depend on part icular P G Pred. 

Let us recall tha t C is the formalized language (the first-order one) the set of unary 

predicates of which is Pred. Let T C C be a theory defined in C in such a way tha t T 

is the set of all logical consequences of a recursive subset Ax C C, the formulas from 

Ax are called axioms. As a rule, we write (- x instead of x G T. If => and <£>• are the 

implication and equivalence functors of the language C, we may define a binary relation 

= on the set Sent of all sentences of C ( i .e . closed formulas without free indeterminates) 

as follows: for each X, Y G Sent, 

X = Y iff | - d f X o Y. (14) 

Evidently, = is an equivalence relation on C, so that we may generate the quotient 

algebra Sent / = . It is nothing else than the well-known Lindenbaum-Tarski algebra 

generated by the language C and theory T, therefore, we shall write LT(C,T) instead 

of Sent / = . 

Set, for X, Y G Sent, 

X <, Y iff l-ar X =4> Y. (15) 

Evidently, X , is a partial ordering on Sent, which is invariant with respect to the = 

relation ( i .e . , if X ;<, Y, X = Xu and X = Yu then Xi ;<„ Yi)- Hence, <, uniquely 

defines the partial ordering relation <n on LT(C,T). For X G Sent we denote by \X\ 

the class in LT(C,T) which contains X. Let P G Pred, let x G A, let C contain an 

individual constant x the fixed interpretation of which is the element x. E .g . , if A is the 

set M of all non-negative integers, n G Af, then n is the numeral corresponding to n (cf. 

e.g. , Kleene). Now, P(x) is a sentence of C, so tha t \P(x)\ G LT{C,T). 
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Suppose that there is x in C for each x £ A and that C contains the membership 
predicate £. Consider the reference system p0 defined on V(X) x Pred x X and taking 
its values in the partially ordered set (LT(C,T), ^LT); p0 is defined by 

p0(A,P,x) = \(xeA)etnonP(x)\. (16) 

Fact 2. The reference system p0 is monotonous. For each A C X and P £ Pred, A\P 
is a |non(V y £ y4)P(y)|-subset of A (with respect to p0). 

Proof . Using some well-known first-order predicate calculus tautologies we obtain 
that 

Po(A,PetQ,x)= (17) 

= \(x £ A) et(non(P et Q)(x))\ = 

- \(x £ A) et ((non P)vel(non Q)) (x)\ = 

= \(x£A)et((nonP)(x)ve[(mnQ)(x))\ = 

= | (x £ A et non P(x)) yel(x € A et non Q(x)) \ = 

= |x e A etnon P(x)| VLT \x £ A et non Q(x)| = 

= p0(A,P,x)\JLTPo(A,Q,x), 

where \/LT is the supremum operation in LT(C, T) defined by -<LT. Similarly, 

p0(A,Py<AQ,x) = (18) 

= \(x £ A)et (non(P vel C?)(x)) | = 

= |(x € A) et non (P(x) vel Q(x)) \ = 

= \(x £ A)et (non P(x)et non Q(x)) \ = 

= | (x € A et non P(x)) et (x £ A et non Q(x)) \ = 

= |x 6 A et non P(x)| ALT \x £ A et non <5(x)| = 

= p0(A,P,x)ALTp0(A,Q,x), 

where /\LT is the infimum operation in LT(C, T) defined by <LT. Hence, the reference 
system p0 is monotonous. 

Let P £ Pred, A C X, x £ X, then a well-known first-order predicate tautology 
yields that 

h ((x € A et non P(x)) => non(V y) (y £ A => P(y))), (19) 

or, using the common conventions concerning the bounded (or restricted) quantifiers, 

h ((x £ A et non P(x)) =* non(V y £ A)P(y)). (20) 

Hence, 
| (x £ A et non P(x))| <LT |non(V y £ A)P(y)\, (21) 

so that, due to (16) 
p0(A, P, x) <LT |non(V y £ A)P(y)\ (22) 

for each x £ A. So, A|P is a |non(V y £ A)P(y)|-subset of A with respect to p0. D 
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4. N U M E R I C A L R E F E R E N C E SYSTEMS 

When considering the most intuitive and natural part icular cases of reference systems, 

those with numerical values of the function p would deserve at least the same degree 

of a t tent ion as the boolean-valued ones mentioned in Chapter 3. As the most simple 

case let us consider the well-ordered set (Af,<) where Af = { 0 , 1 , 2 , . . . } is the set of 

non-negative integers (in their s tandard interpretat ion, to avoid any misunderstandings) 

and < is t he usual ordering relation on M• In this chapter we shall investigate reference 

systems p such tha t p(A,P,x) £ Af; the value p(A,P,x) can be interpreted as, say, the 

number of steps which must be executed by a testing oracle in order to decide whether 

P(x) holds or not, supposing tha t x £ A. E.g. , if P is a recursive predicate relative to 

A, i .e . , A\P is a recursive subset of A, then p(A, P,x) may be defined as the number of 

steps taken by an appropriate Turing machine computing the t ru th value of P(x). 

Generalizing these informal ideas and giving them a mofe formalized covering we 

arrive at the following model. 

Let A be a finite set (alphabet) consisting of abstract elements (letters); the well-

known examples of a lphabets are the binary, decadic or English (26 letters) ones. The 

set of A* of all finite sequences of letters, including the empty sequence A, will play the 

role of the basic space X from above, hence, X = A* = \J^=0A
n, *^° = { M - I'd; A 

be a fixed subset of A*, let £ j be a language the individual indeterminates of which 

are supposed to range over A*, hence, if Predj is the set of unary predicates of C\ and 

P £ P r ed j , then for each x £ A*, P(x) is either t rue or false. Let U = (U\,U2,...) 

be a finite or infinite sequence of subsets of A*, for our sakes U can be always taken as 

infinite possibly with [/, = A* for all i large enough. Turing machine with the oracle U 

(W-TM, abbreviately) over the alphabet A is a Turing machine which is able to execute, 

besides the usual actions, also this one: 

Having reached (one of) certain specific instantaneous description(s) Q</,/? (cf. Davis 

[1], e.g., for definition), the machine produces, first of all, a word x = x(aqi/3) £ A*, 

uniquely and effectively defined by the instantaneous description aqi/3. Then, the ma

chine divides this word into the pair (0:1,3:2) £ A* x A*, using a fixed decomposition 

function. Finally, the machine computes the index i(x\) of xi with respect to a fixed 

ordering of A*, say, the well-known lexicographical one, and decides, whether x2 £ Ui(Xi) 

or not . If x2 £ Ui(xi), the machine enters the given internal state qj, if it is not the case, 

it enters qk ^ qj, in both the cases continuing its work according to the definition of 

Turing machine. 

Now, having A C A*, P £ P red j , x £ A, p(A,P,x) may be defined as the number 

of steps (actions) taken by a given W-Turing machine Tp during the computat ion of 

the t ru th value of the formula P(x) (of the characteristic function XA\P(X), in the set-

theoretic set t ing) . If Tp does not terminate its work for some x £ A, p(A, P,x) = 00. 

We shall write pu(A, P, x), if necessary or appropriate to express explicitly the role of U 

in what follows. 

Another example of numerical reference systems will be perhaps more intuitive. 



An Alternative Approach to Rough Sets 9 

Let X,A C X, C, and Pred be as in the general definition of reference systems above, 
let PrecLj be a finite or infinite subset of Pred. As a rule, predicates in Pred0 are sup
posed to be logically independent and atomic pieces of knowledge from which all other 
predicates under consideration are built through logical connectives and quantifiers (but 
quantifiers will not be taken into account in what follows). Atomic formulas gener
ated by predicates from PrecLj together with their negations will be called literals. If 
Ri, (x), Ri2(x),..., Ri^Jx) is a finite sequence of literals with the same indeterminate x 
and with no predicate occurring twice or more times, then 

»(.) 
«,(*) =df A I M * ) (23) 

j = i 

=df Rij(x) and Ri2 and • • • and i?;n(j)(x) 

is the so called elementary conjunction (over Pred0). Normal predicate (over Pred0) is 
defined by a disjunction of elementary conjunctions, i.e., by a formula S(x) of the form 

K 

S(x) =df Y oti(x) =df a,(x) yel a2(x) yel • • • yel aK(x) = (24) 
i=i 

K »(i) 

= V AIM*); 
i=i j = i 

the set of normal predicates over Pred0 is denoted by Predj. As can be easily seen, every 
predicate from Pred, formed by propositional connectives from predicates in PrecLj, is 
logically equivalent to a predicate from Predj. 

Now, consider a testing oracle or device which is able, at least for some x € A and 
P € PrecLj, to verify whether P(x) holds or not. Let c(P,x) denote the quantitative 
cost of such a verification, e.g., time or other demands or expenses and suppose that 
c(P,x) = oo iff the device is not able to test P(x) (c(P,x) is non-negative in all cases). 
The testing device is able to prove the validity of S(x) defined by (24) iff there is at least 
one a,(z), i < K such that Ri}(x) holds for each j < n(i). Set 

m,i(S, x) = min {k : k < n(i), Rik(x) is false} , (25) 

if such an index k exists, 
rm(S,x)=n(i) (26) 

otherwise. Set, moreover, 
m,(S,X) 

qi(S,x)= Y, c(Ri,(x)), (27) 
3=1 

where Ri} is the predicate from PrecLj occurring in Ri}(x). Now, define 

M^(S,x) = m<Lx{qi(S,x): % < K) , (28) 
Ki 

M2(S,x) = Y,qi(S,x) (29) 
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if 

Kx = min II: L< K, mL(S,x) = n(L), RLn(L) holds! (30) 

is defined, and 
K 

M3{S,x) = Y/qi(S,x) (31) 
i=i 

otherwise. 
The intuition behind is simple, but let us introduce it explicitly. Let the testing device 

verify a;(x) defined by (23), so, first of all, Rit(x) is tested, where fi„(x) is either P(x) 
or non P(x) for some P € Pred0. If Rtl(x) does not hold, the testing device proclaims 
a,(x) to be false and terminates its work (invalidity of one component trivially implies 
the invalidity of all the conjunction). If /£,,(x) holds, the device tests Ri2(x) and either 
terminates its work (if Ri2(x) is false or if it is the last component in ai(x)), or goes on 
with Ri3(x), if Ri2(x) holds and Rt3(x) exists. Hence, m,(5, x), which can be also write 
as m(a,(x)), is nothing else than the index of the last component of a,(x) which is tested 
before the validity of a,(x) can be proved, and q{(S,x) is the sum of expenses connected 
with the verification of the actually tested members R,, (x), Ri2(x),..., #,m.(S:r) of a,(x), 
so that qi(S,x) can be taken as the cost of verifying of a,(x). 

Suppose that the elementary conjunctions in S are tested in parallel and, having 
verified all of them, a supervizor decides, whether there is a valid elementary conjunction 
among et,(x), a 2 (x ) , . . . , <*A'(x). If it is the case, S is proclaimed to be valid, in the 
opposite case S is proclaimed to be false. If, moreover, the expenses connected with 
testing of a,-(x) are taken as time demands (time computational complexity), and the 
expenses connected with the inspection and cumulation of particular outputs by the 
supervizor are neglected, then the maximum value of qt(S, x), i.e. M\(S,x), expresses 
the expenses (time computational complexity) corresponding to the verification of S by 
the parallel testing device in question. The simplifications just introduced, concerning 
the neglection of the expenses connected with the supervizor activity, are the common 
ones in the theory of nondeterministic algorithms. 

On the other hand side, M2(S,x) reflects the case when particular a,(x)'s in S are 
checked sequentially, first, ai(x), if it is not true, then a2(x), and so on till such an 
ajc,(x), which is valid (true), i.e. all RKUJ(X), j < n(K\), are valid. In this case the 
testing device terminates its work and proclaim S to hold (the validity of one component 
trivially implies the validity of all the disjunction). The value M2(S,x) then cumulates 
the total expenses connected with the testing of all elementary conjunctions till the 
A"i-th. If this is not the case, i.e., if each a,(x) can be disproved through finding some 
Rij(x) to be false, then evidently all the elementary conjunctions ai(x),a2(x), . . . ,a#-(x) 
must be checked in order to find that S does not hold, hence, in this case the total 
expenses are given by (31). 

So, combining all our reasonings and going back to the problem of an appropriate 
definition of a numerical reference system for X, A C X, and Pied! C Pred as above, 
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we may set, quite reasonably, for 5 C Predj and x e A 

p(A,S,x) = Mi(S,x), (32) 

choosing i = 1 or i = 2 according to the sequential or parallel interpretation or imple
mentation of the corresponding verification algorithm. 

Keeping in mind the fact that reference systems play only auxiliary and intermediate 
role on the way leading to the rough sets, the time and space devoted to these systems 
in Chapters 3 and 4 may seem to be too large. However, we believe that at least 
an informal idea concerning some particular reference systems enables, to the reader, 
to understand better and more easily the explanations and reasonings concerning the 
rough sets defined through such reference systems leaving aside, for this moment, very 
interesting philosophical and set-theoretical problems connected with the relativization 
of axiom of extensionality enabled by our approach. 

5. CONSISTENT AND OPTIMAL 6-ROUGH SETS 

Definition 3. Let X,A C X, £, Pred, p, and (B, <) be as in Chapter 2, let V be a 
(classical) subset of A. Now, b-rough set consistent with V is a pair (V., V*) of sets such 
that V„ V e T(h,A,p), V.CVC V, where 

T(h, A, p) = {C C A : (3Pe Pred )(C = A \ P, (Var € A)(p(A, P, x) < b))} . (33) 

A 6-rough set (Vt, V") consistent with V is called optimal (for V), if for each 6-rough 
set (V**, V**) consistent with V the inclusions V», C V* and V* C V** hold (informally, 
if (V,, V*) is "the best" approximation or description of V achievable by 6-subsets of A). 

' In the classical approach to rough sets, briefly reviewed in Chapter 1, the given subset 
V C A C X and the given equivalence relation « on X uniquely define the sets V., V*, 
and the corresponding rough set. In the alternative setting presented here, V, p, (B, X), 
and b e B need not define only one 6-rough set consistent with V. Hence, the existence 
of the 6-rough set optimal for V C A is not trivial; in what follows, we shall present an 
intuitively interpretable and justifiable system of conditions under which the existence 
of optimal 6-rough sets is evident. 

Definition 4. The language £ is called complete, if there exist, for each nonempty set 
V C Pred of unary predicates of £ two unary predicates Q,(V) 6 Pred, Q*(V) e Pred, 
such that 

(VxeA)[Q.(V)(x) iff (3PeV)(P(x))}, (34) 

and 
(VxeA)[Q*(V)(x) iff (VP € V)(P(x))], (35) 

where P iff Q abbreviates (P -> Q) and (Q => P). 
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The reference system p over a complete language C is called parallel, if for each 
nonempty V C Pred. 

p(A,Q„(V),x)± sup {p(A,P,x): P e V} , (36) 

and 
p(A,Q*,(V),x)-< suv{p(A,P,x): P e V} . (37) 

Here, inf and sup extend the definitions of A and V, given by (6) and (7), in such a 
way that 

inf {p(A,P,x) : P e V} -. p(A, P,x) X sup {p(A, P,x) : PeV} (38) 

for all P e V, moreover, if 

for all PeV, then 

and 

y<p(A,P,x)±z (39) 

y<M{p(A,P,x): PeV} (40) 

sup {p(A,P,x): PeV}<z. (41) 

The adjective "parallel" connected with certain reference system is almost self-evident 
and reflects the ability of such systems to test, given x G A, simultaneously, hence, in 
parallel, for all PeV, whether P(x) holds or not. Within the (time) complexity 
sup {p(A, P, x) : P e V} this question is answered for all PeV. Then, a supervizor 
may ask either whether there is P e V such that P(x) holds, or whether P(x) holds for 
each P e V, in order to decide, whether Qt(V)(x) or Q"(V)(x) hold. The expenses and 
demands of all kinds connected with the supervizor activity are neglected according to 
the classical paradigma of nondeterministic and parallel algorithms. Let us remark that 
it is not possible to replace sup by inf in (36). Or, having do so, the reference system 
would stop its parallel verifying of P(x) for different PeV, having decided PQ(X) for 
some P0 € V. However, if this decision is the negative one, i. e. if non Po(x) holds, we 
will not be able to say, whether Q*(V)(x) holds or not (perhaps P\(x) holds for another 
ei € V). 

Pact 3 . If p is a parallel reference system over a complete language C, then there 
exists, for each be B such that 0, A e T(b,A,p) and each V C A, the optimum 6-rough 
set for V. 

Proof . Let V C A, let 6 G B be such that %,A € F(b,A,p), set 

F(b,A,p).V = {C: CeF(b,A,p),CcV}, (42) 

F(b, A, p)*V = {C : Ce :F(6, A, p), C D V} . (43) 
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Let V,v (V{, resp.) denote the subset of those unary predicates from Pred which define 

sets from T(b, A,p),V (from T(b, A,p)*V, resp.), in symbols 

V,v = {Pe Pred :(3C ef(b,A,p))(C = A\P c V)}, (44) 

VV = {P& Pred : (3C € T(b, A, p))(C = A | P D V)} . (45) 

Due to the assumptions, 0 € T(b, A,p),V and A € T(b, A, p)*V, hence, V,v + 0 and 

V*v -4 0. Set 

V. = U{o: C £F(b,A,p),V), (46) 

V* = n { C : C : 6 ^ ( 6 , A , / 3 ) * U } . (47) 

Evidently, for each 6-rough set (V,„ V") consistent with V, V„ C V, and V* C V**, the 

only we have to prove is tha t (V„ V*) is a 6-rough set. C is supposed to be a complete 

language, so tha t we may write 

V, = A\[Q,(V,v)}, (48) 

V* = A\[Q.(V*V)}, (49) 

where Q,(V,V) and Q*(V*-) are in Pred. As p(A,P,x) •< b for each x & A, (36), (37) 

and (41) imply 

p(A,Q,(V,v),x)<b, (50) 

/> (A Q W ) , *)=<&, (51) 

for all x G A. Hence, (V„ V*) is a 6-rough set consistent with V, and the assertion is 

proved. - • 

6. NUMERICALLY QUANTIFIED ROUGH SETS AND D E M P S T E R - S H A F E R 

T H E O R Y 

Let us consider, in this chapter, a rough set (V,, V*) in the basic space X defined by, 

or associated with, a "classical" subset V C X. This can be done either through an 

equivalence relation on X, or through a predicate a t t r ibuted to elements of X, supposing 

tha t the ineffective or at least infeasible nature of this predicate does not enable to decide 

effectively about its validity for each x € X. In every case, the inclusion V, C V C V* 

evokes the idea to take (V„ V) as a "confidence interval" for V; another immediately 

arising idea is to quantify somehow, using real numbers, the "tightness" of the "interval" 

(V,, V*). This is meant in the same sense as tha t in which the length or, more generally, 

a Lebesgue or Lebesgue-Stieltjes measure of an interval on the real line quanti tat ively 

expresses the degree or quality of setting of a point just known to be covered by this 

interval. 

Even when intentionally limiting ourselves to such numerical quantifications of rough 

sets which are compatible with an appropriate probabilistic interpretat ion, we may arrive 



14 I. KRAMOSIL 

at such quantifications using different ways. Let us consider the two ones closely con

nected with the two approaches to the definition of rough sets as explained and discussed 

above. 

Let (V,,V*) be defined, using (1) and (2), by V C X and by an equivalence re

lation w defined on X. In the most simple case, when Pr is a probabili ty measure 

defined for each subset of the space X0 = X/ w of equivalence classes generated by 

X and w, we may simply ascribe to the rough set (V„ V) the pair (or interval) of re

al numbers (Pr(V,),Pr(V)), evidently Pr(V,) < Pr(V*). Let us recall, tha t Pr is a 

probabil i ty (measure) on the set of all subsets of X0, if 0 < Pr(V0) < 1 for each V0 C 

X0, Pr(9) = 0, Pr(X0) = 1 (0 is the empty set) , and Pr ( ( J £ , V) = £ £ , Pr(V) 

for each infinite sequence V\,V2,... of mutually disjoint subsets of X0. It is worth an 

explicit noting tha t the value Pr(V) need not be defined (if V, ^ V*), moreover, the 

probabili ty measure Pr need not be consistently extendable in such a way tha t Pr(V) 

were defined (there are subsets of, say, the unit interval of real numbers to which cannot 

be ascribed a probability measure consistent with this one ascribing to each interval its 

length) . Hence, the pair or interval (Pr(V,), Pr(V*)) must be taken as a numerical char

acteristic or confidence interval for the rough set (V,, V), not for a defined but perhaps 

unknown value Pr(V). 

This definition can be easily seen to copy the definitions of inner and outer measures 

in t he measure theory (cf., e.g. Halmos [3]). Going on in this spirit we may generalize 

this definition as follows. Let S be a system of subsets of X0 for which the probabili ty 

Pr is defined and suppose, for the sake of simplicity, tha t 0 € 5 , X0 £ S. The axiom of 

cr-additivity reduces to those infinite sequences of mutually disjoint subsets from <S, the 

union of which is also in S. Now, the rough set (V,,V) can be quantified by the pair 

(Pr.(V„S), Pr*(V,S)) of real numbers defined by 

Pr,(V„S)= (52) 

= sup I ]T Pr(Vt) : V £ S, V C V, if j =-> V, 0 V3 = 0, i, j = 1,2,... I , 

Pr*(V, S) = l- Pr, (A - V, S). (53) 

The explicit condition tha t S contains only subsets of X0 can be immediately generalized 

by saying tha t 5 contains some subsets of X; their definability in X0 may be a par t of 

the definition of S. Of course, some variants of (52) and (53) may be also considered. 

At the very beginning of this chapter we considered the rough set (V,, V) generated 

by a set V C X. This rough set admits an immediate and trivial re-interpretations in 

the logical terms, as if a: £ V„ then evidently x £ V, on the other side, x £ X — V* 

implies x £ X — V. Hence, the validity of x £ V, can be taken as a sufficient, and the 

validity of x £ V* as a necessary condition for x £ V to hold. Because of our limited 

abilities either to discern different points of the universe X, or to evaluate, given x £ X, 

the t ruthvalue of the predicate P which defined V in A', we are often not able to give a 

necessary and (simultaneously) sufficient condition for x £ V, so tha t this interpretation 
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of rough sets quite agrees with the original one taking rough sets as a set-theoretical tool 

to express, in formalized terms, our gnoseological limitations. On the other side, taking 

the numerical value Pr(V,) as the probability, or at least as a probabilistic numerical 

evaluation, of a sufficient condition for the validity of the predicate x £ V, taken as a 

decision or as a conclusion resulting from some considerations, we have arrived very close 

to the ideas and ways of reasoning presented and formalized in the so called Demps te r -

Shafer theory, very popular in our days (cf., e .g. [15], [16], [17]). The closeness is so 

tight tha t it deserves a more detailed investigation. At tempt ing to do so in the rest of 

this chapter , we begin with a short description of the basic ideas of Dempster-Shafer 

approach. 

For the sake of simplicity let us consider the finite case. Let V = {p\,p2,... ,pm} , Q = 

{q\, q2,..., qn} be two sequences, not necessarily disjoint, of elementary formulas or, for

mally, propositional indeterminates. These elementary formulas, or a tomic pieces of 

information concerning the problem and situation in question, are supposed to be logi

cally independent , so tha t for each sequence r i , r 2 , . . . , r* of elements from 

{pi, -*pi, qj, -iqj, i < m, j < n}, with each p< and q; occurring at most once, the conjunc

tion r\ A r2 A • • • A rk is logically consistent. Here pi,qi,~'Pi,~'<li in common are called 

literals, r,- A r , s tands for r, and rj,-*pi stands for non p;. Set 

U(V) = {r\ A r2 A • • • A rm : r, € {p;, - p . } , i < m} , (54) 

U(Q) = {r, A r2 A • • • A r n : r, € {qj, - f t } , j < n} . (55) 

Elements of U(V) can be called elementary or atomic states (states of world, worlds), 

elements of U(Q) can be called elementary or atomic hypotheses. Formulas of the propo

sitional language C(V), generated in the usual way by p i , p 2 , . . . ,pm, A, ->, and possibly 

other additionally defined propositional connectives, are called conditions. They can be 

easily and unambiguously identified with subsets of U(V), ascribing to each formula of 

C(V) the set of elementary conjuctions of literals, occurring in the disjunctive normal for-

m of this formula. Formulas of the propositional language C(Q), generated analogously 

by <7i, q2,..., q„, are called hypotheses and are identified with subsets of U(Q). Evidence 

are formulas of the propositional language C(V U Q), generated by all the propositional 

indeterminates occurring either in V, or in Q, again, evidence can be identified with 

subsets of U(V U Q). Having arrived at this stage of explanation, we could work, in 

what follows, with abstract sets S (= U(V)) of states, and Ti (= U(Q)) of elementary 

hypotheses, taking conditions as subsets of S, hypotheses as subsets of Ti, and evidence 

as subsets of the Cartesian product S x Ti. However, because of having at hand a more 

t ransparent intuitive image, we shall go on with the previous interpretat ion based on the 

meta- language of the propositional language. 

Consider a fixed finite set of pieces of evidence E\,E2,• • •, Ek G C(V U Q). These 

formulas describe, even if only partially, some relations among the states of world (de

finable in the language C(V)), and certain hypotheses (definable in the language C(Q)). 

Hence, given a formula B of C(Q) and denoting by \- the usual meta-theoretical relation 
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of logical consequence, we may define the set C(B) of formulas of C(V) in this way: 

C(B) = {A: A£ C(V); A,EU..., Ek\- B} , (56) 

denoting by Co(B) the subset of consistent formulas from C(B). An al ternative definition 

can be given in the set-theoretic language. Or, denoting by SA the subset of S (of U(V), 

in the part icular interpretat ion) corresponding to A € C(V), and denoting, for B £ C(Q), 

by SB the corresponding subset of H or U(Q), (56) turns into 

SC(B) = {SA: AeC(B)} = (57) 

= {S C S : f- (V.s e S, t g H) [(a g S) A Ex A • • • A £* -> (t € B)]} . 

Now, let 7T be a probability distribution over consistent formulas of the language 

C(V) with 7T* denoting the corresponding uniquely defined probability distr ibution over 

nonempty subsets of U(V). Hence, x : C(V) —> (0, 1), if A is inconsistent, then 

n(A) = 0 and Y,AeC(P) n(A) - L Analogously, TT* : 21'^ - (0 ,1) , TT*(0) = 0, 

and T.ACV(T) 7 r*('4) = l ' w h e r e ""M) = ^ ' (S/ i ) - For B g £ ( Q ) , believeability Bel*(B) 

of S , or BelK(Ss) in the set language, is defined by 

Beln(B)= ] T ir(A), (58) 
4eCo(B) 

the summat ion can be taken over whole C(B) due to the assumptions. 

Plausibility PlK(B) of B is defined by 

Pl,(B) = 1 - Bd«(->B). (59) 

The index 7r will be omit ted supposing the corresponding probability distribution is fixed 

or unambigously given by the context. 

Consider the set-theoretic definition (57). Clearly, if S ] , S 2 G Sc(B), then also Si U 

S2 g SC(B), if S, C Si g S c ( B ) , then S, g SC(B) as well. Hence, given B € £ ( Q ) or 

the corresponding set TB £ U(Q), there exists unique SB C U(V) such tha t Sc(B) = 

{A: A C S B } . Let S be a. random variable defined on an abstract probability space 

(J7,S, P), taking its values in the space ' i " ' p ' of all subsets of U(V) and such that 

P({io : u) £ H, S(u>) = A}) = w(A) (60) 

with w defined as above. As can be easily seen, (58) is equivalent to 

Belpi(B) = P({LO : w £ n, S(u) C SB}). (61) 

Dem])ster-Shafer theory can he translated or interpreted into the terms of rough sets 

and their numerical quantifications as follows. Let us suppose tha t there exists, at an 

objective level, a mapping F0 ascribing to each elementary s tate of world s £ S = 

U(V) the corresponding elementary hypothesis Eo(*') = t £ 7i = l^(Q); this elementary 
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hypothesis is supposed to be the only one valid under the condition that s is the actual 
state of world. However, the mapping F0 is not known completely, the only partial 
knowledge about F0 is given through the evidence E taken as a subset of the Cartesian 
product S x H. Namely, we know that, for each s £ S, (s, F0(s)) £ E. 

In the spirit of the Dempster-Shafer approach, the only we know (or suppose to 
know) about the actual state of world s0 is that it lies in the subset S(w) of S sampled at 
random by a random variable S taking a probability space (n, A, Pr) into 2s — {%}. This 
uncertainty concerning the state s0 and, consequently, also the corresponding elementary 
hypothesis F0(s0), can be formally expressed by introducing two random variables X, Y, 
both defined on (CI, A, Pr) and taking their values in S (for X) or in H (for Y), even 
if these values are not completely accessible for the observer. Hence, the actual state of 
world is X(w), the corresponding elementary hypothesis is Y(w) = F0 (X(w)), and the 
only we know is that (X(w), Y(w)) £ E. 

Take, for a while, the abstract set n, supporting the probability space in question, 
as a set <S0 of elementary states and suppose that we are able to prove or disprove 
all assertions of the form Y(w) £ B, B £ H, just given w £ tt and knowing that 
(X(w), Y(w)) £ E. All elements of n are supposed to be completely distinguishable. 
Then the set A = A(B, E) C n, defined by 

A = {w : we 11, (X(w), Y(w)) £ E, Y(w) e B} (62) 

coincides with the set SB defined by the Dempster-Shafer theory when B is replaced by 
S0. Similarly, omitting the symbols . . . w 6 f » . . . i n what follows, the set 

A, = {w : (X(w), Y(w)) e E, Y(w) GH-B) (63) 

can be taken as S-H-B- SB and S-H-B are disjoint and 

SB U Sn-B = A U Ai = {w : (X(w), Y(w)) £ E} . (64) 

As a matter of fact, however, elements of n are distinguishable from each other only 
partially, through different values of observable random variables taken for different 
elements from ft. So we may introduce an equivalence relation w x defined on n by the 
random variable X as follows: for W\,W2 £ n, wt « x <*>2 >ff ^(w,) = X(wi). In fact, « x 
evidently is an equivalence relation. Now, let (Ax, Ax) be the rough set generated by 
A and « * in n, hence, 

Ax = {w : (X(w), Y(w)) £ E, Y(w) £ B, (Vw, € il) [(Xfa) (65) 

= X(w)) =• (X(wr), Y(ui)) £Eet Y(wx) £ B}}, 

Ax = n - (n - A)x = W • (3w, £ n) [(X(w) = X(ut)) et (66) 

( (*(« , ) , Y(wx)) £ E)et(Y(w1) € B)}}. 
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Being a random variable, the mapping X is measurable, and as S is supposed to be 
finite we obtain that for each s £ S 

{w : w € ft, X(u) = s} eA. (67) 

Moreover, both Ax and Ax are finite unions of sets of this kind, so that Ax, Ax £ A 
and Pr(Ax), Pr(Ax) are defined. Evidently, Ax q Ax and Pr(Ax) < Pr(Ax), so that 
the pair (Pr(Ax), Pr(Ax)) can be taken as a probabilistic numerical quantification of 
the rough set (AX,AX). 

This rough set (AX,AX) generates another rough set (SX,A, S ,A) in S as follows. 
Denote, for each s £ S, by X~l(s) the subset of ft defined by (67) and define 

SX,A = X(Ax)={s:s£S,X-\s)cAx}= ( J {X{w)}, (68) 
*€AX 

SX'A = S-X(Sl-Ax)=S-{s:s£S,X-\s)cn-Ax}= (69) 
= {s:X-i(s)cAx}, 

as for each s £ S either X~l(s) C Ax or X~l(s) C ft - Ax. The inclusion Ax C Ax 

immediately implies that SX,A C SX'A, SO that the pair (SX,A, SX'A) can be taken as a 
rough set in S. Intuitively, if X(ui) = s £ SX,A, we are able to prove that Y(u) £ B 
using this deduction: X(u>) = s £ SX,A yields X~l(s) C Ax, the "actual state of world" 
wo is in X~r(s), hence, w0 £ Ax C A so that Y(w0) £ B due to (62). Similarly, if 
X(u) C S - SX'A, we are able to prove that Y(u) £ W - B, as (X(to), Y(uj)) £ E is 
supposed to hold in every case. 

Worth an explicit mentioning is the fact that, in general, the rough set (SX,A, SX'A) 
is not generated by a set So C S satisfying 

(Vs £ S) {[(s £ So) et (X(w) = s) ft ((X(u), y(w)) £ E) => (70) 

(Y(w) £ B)\ et[(s t= S - So) gt (X(w) = a) et ((X(w), y(w)) £ E) 

^(Y(w)£n-B)]}, 

as such a set need not exist neither in the classical sense. 
We may arrive to the original rough set (Ax, Ax) also by the alternative way consist

ing in an appropriate quantification of the difficulties connected with decision making 
for a predicate defining A as a subset of ft. This role can evidently play the predicate 

Px(.) = ((X(-), Y(-)) £ E) et (Y(-) £ B) (71) 

used in (62). 
Let B = (b\ < b-2 < b3, non (63 ̂  62)} be a partially (in fact, linearly) ordered set, let 

p be a monotonous reference system taking its values in B and such that 

P(il,(X(.),Y(-))£E,w) = b1 (72) 
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for all w € n, as this is supposed to be known or easy to verify as an a priori evidence, 

p(Sl,Y(-)<=B,w) = b2, (73) 

for all w G Ax U (n — Ax), as in this case the decision whether Y(w) G B or not can be 
converted into the decision whether X(w) G SX,A or X(w) G S — SX'A, finally, 

P(il,Y(-)eB,w) = b3 (74) 

for all w G Ax — Ax, as in this case such a conversion to a decision problem concerning 
only the observable values of the random variable X is not possible. Perhaps more 
intuitively, we could also take B = NU {oo} with the usual ordering, 6i = 0, 0 < 62 < 
oo, 63 = 00. Hence, Ax and Ax are 62-subsets of n so that (Ax,A*) is a 62-rough set 
generated, in n, by the predicate P](-) and reference system p. On the other side, A 
itself is a 63-subset, but not 62-subset of n, hence, ascribing the status of existence only 
to 62-subsets we could say that A "does not exist". 

When saying, above, that the values of the random variable X are observable, we 
have to abandon, for a while and for the sake of simplicity, the basic idea of Dempster-
Shafer approach according to which not the value X(w) G S itself, but rather the value 
S(w) C S is observable, our evidence being enriched by the assumption that X(w) G 
5(w). Following this way of reasoning and given B C H, we may define: 

Ao = A0(B) = (w : w e n , (X(w), Y(w)) G E, X(w) G 5(w), F(w) G # } . (75) 

If S(w) C SX,A, then X(w) G 5(w) yields that X(w) G SX,A and we can prove that 
Y(w) G B using the same way of reasoning as above. If S(w) C S — SX'A, then X(w) G 
SX'A and Y(w) eH- B follows. So, we may set 

As = {w : w G n, S(w) C SX,A, (X(w), Y(w)). G E,X(w) G S(w)} , (76) 

As = (77) 

= {w : w G n, S(w) C 5 - SX'A, (X(w), Y(w)) G E, X(w) G 5(w)} . 

Evidently, As C Ao C As, and if X(w) G S(w) for all w G n or if we restrict the sets 
As, Ao, and A5 to the subset of n satisfying this demand, then also As C Ax and 
Ax C A5. So, (As, As) is a rough set with respect to A, which can be defined as 62-
rough set using the linearly ordered set B as above and a monotonous reference system 
po taking its values in B and such that (72) holds for each w G n and for the predicate 
((X(-), Y(-)) G E) et (X(w) G S(w)), (73) holds for w G As U (n - As), as in this 
case Y(w) G B can be proved or disproved using the observable facts that 5(w) C SX,A 
or S(w) C n — SX'A. Finally, (74) holds for w G As — As, as in this case we cannot 
use the observable values of S(w) when deciding about the membership of Y(w) in B. 
So, As and As are 62-subsets of n, (As, As) is a 62-rough set with respect to A, the 
predicate [((X(-), Y(-)) G E) et (x(w) G S(w)) et (Y(w) G 5 ) ] , and p. A itself is a 
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63-subset, but not a 62-subset with respect to the same predicate and reference system. 

The values Pr ( [w : S(w) C SX.A}) a n d l ~ Pr ( { w : S(u) C 5 - SX'AY) may serve 

as a probabilistic numerical quantification of the rough set (As,As). 

7. FROM ROUGH SETS TO FUZZY SETS 

As we have already introduced, rough sets have been conceived as a tool for describing 
and handling uncertainty under a very poorely structured basic knowledge enabling just a 
three-valued classification. Let us consider, in this chapter, connections between the two 
interpretations of rough sets investigated above, and the so called fuzzy sets, another 
well-known non-probabilistic apparatus for indeterminism and uncertainty processing. 
The reader is supposed to be familiar with the notion and basic properties of fuzzy sets, 
cf. e.g., Novak [8] as a good source. 

The most straighforward way from rough sets to fuzzy sets is as follows. A rough set 
(V», V*), V, C V* C X, uniquely defines the fuzzy set V such that, denoting by n(V)(x) 
the degree of membership of x 6 X in V, we have 

n(V)(x) = 1, * € % , (78) 

n(V)(x) = I, xeV*-V„ 

n(V)(x) = 0, x&X-V*. 

However, as proved by Pawlak [14] and quoted by Wygralak [18], this translation is not 
one-to-one in the sense that some information is lost when transforming (V», V*) into V. 

Let Y = (Y*,Y*) and Z = (Z»,Z*) be rough sets defined by two classical or crisp 
sets Yo,Zo and by an equivalence relation in X according to (1), let [x] denote the 
corresponding equivalence class for x £ X. Set, again according to (1), 

(Yo U Z0), = {x£X, [x] C Yo U Z0} , (79) 

(YoUzo)* = {x€X,[x]n(YoUZo)^<H}, 
(Yo n Z0), = {x 6 X, [x] C Y0 n Z0} , 

(Y0nz0)* = {xex, [x]n(Yonzo)^0}. 

Two binary operations U and n on rough sets can be defined in this way: 

YUZ = ((Y0UZ0) , , (YoUZon, (80) 

Y n z = ((Yo n Zo),, (Y0 n .£0)*). 

Pawlak proved [14] that considering the coresponding fuzzy sets, 

fi(YuZ)(x) ~£ max{ / i(F)(x), f . (Z)(x)}, (81) 
li(YTTZ)(x) ± vam{AY)(x),n(Z)(x)} 
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in general, i.e. for all x € X. The equality in (81) holds for all x £ X iff (Y0 U Z0), = 
Y0, U Z0» and (Y0 (1 Z0)* = Y0* C\ Z0, which is not the case in general, only (io U Z0)* = 
Y0* U Z0 and (Y0 D Z0)^ = Y0, C\ Z0, hold in all cases. The following figure illustrates the 
situation more intuitively, cf. [18]. 
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Let X = ADEH be the universum, let Y0 = ABKLGH, Z0 = CDEFNI, let the 
equivalence relation in X be obtained by the nine squares, i.e., points in each square 
are inseparable from each other. Hence, (Y0„ Y0*) = (ABGH, ACFH), (Z0„ Z^).= 
(CDEF, BDEG). Let x € IKLN, let y € UK U LMN, then 

џ(Y)(x) = џ(Y)(y) = џ(Z)(x) = џ(Z)(y) = - , 

but 

ì ^ ^ u а д ^ ^ Y u z K г , ) ^ - . 

(82) 

(83) 

So, it is not possible to define a binary numerical operation Uo, mapping {0, | , l } X 
{0, | , 1} into {0, | ,1} in such a way that, for all z 6 X 

n(YUZ)(z) = 0 (T)(z)) Uo 0(Z)(z)) • (84) 

Or, supposing this were possible, we obtain, for x and y as above, 

(r(Y)(x)) Uo (lx(Z)(x)) = 1, hence ( I ) U0 ( i ) - 1, (85) 

but, at the same time, 

(p(Y)(y)) U0 (p(Z)(y)) = \, hence (I) U0 ( 0 = \, (86) 

so that we have arrived at a contradiction. An analogous straighforward consideration 
easily proves the impossibility to define the dual binary operation n 0 . In other words 
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not extensional) with respect to three-valued fuzzy sets in the sense tha t the values of 

membership functions for Y U Z and Y fl Z cannot be defined as functions of membership 

values for Y and Z. 

We do not aim to go into more details as fas as this simple relation between rough sets 

and fuzzy sets is concerned, turning our at tention to another bridge connecting the two 

notions and opened due to the alternative approach to rough sets as explained above. 

Recall tha t reference systems are mappings taking their values is a partially ordered 

set (B, <), and denote by V(B) the power set consisting of all subsets of B. A natural 

part ial ordering on V(B) is tha t generated by the set-theoretical inclusion. Set, for each 

be B, 

S,(b) = {c: ceB, b<c], (87) 

S2(b) = {c : c e B, non (c < 6)} . (88) 

Evidently, 6 6 Si (6) for each 6 G B, if / is the maximal element of (B, <), i. e.,b < I for 

each b e B, then S2(/) = 0 (the empty subset of B). Now, given A C X, P e Pred, and 

x G X, two fuzzy subsets A \ P , A \ P of A may be defined with membership function 

p taking its values in V(B). Namely, for i = 1,2, 

li(A\P)(x) = S,(p(A,P,x)), (89) 

if x e A and p(A, P, x) is defined, 

ix (A\F) (X) = 0 (90) 

otherwise, i .e . if either a; 6 X — A or if p(A, P,x) is not defined. 

Both the membership functions p(A\P J, i = 1,2, can be easily proved to be 

monotonous in an intuitive sense. 

Fact 4 . If p(A,P,xi) <p(A,P,x2), or if p(A,P,x2) is not defined, then 

H (A I Pl) (x i ) 2 p (A I P') (x2) for both i = 1,2. 

P r o o f . If p(A,P,x2) is not defined, then p (A \ PA (x) = 0 and the assertion is 

trivial, let p(A, P,.t\) = b\ < 62 — p(A, P,x2) be both defined. If 62 < c, then 6i X c as 

well due to the transit ivity of partial ordering relations, so that Si(6t) 2 Si(62). On the 

other hand side, c < 6i implies c <̂ 62, so that non (c < 62) implies non (c < 6i) , 'hence, 

S2(6i) 2 S2(62) as well. The assertion is proved. • 

Fact 5. Let X, A C X, Pred is as above, let p be a monotonous reference system, 

let Pu P2 e Pred , let A; = A | P„ i = 1,2, let p(A,Pux), p(A, P2,x) be defined, then 

p(A^UA7)(x) 2 SUV{P(A\)(X),P(X)(X)}= (91) 

= v(^'(x)Ufi(A2)(x), 
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/. ( i T u A f ) (x) = S u P { ^ ( A 2 ) ( x ) ) / . ( ^ 2 ) ( x ) } = (92) 

= / i ( ^ 2 ) ( x ) U / i ( A 2 ) ( x ) , 

/i (ATnJ?) (x) = i n f { / i ( A " ; ) ( x ) , ^ ( A 2 ) ( x ) } = (93) 

= ^ ( A | ) ( x ) n / y , ( A 2 ) ( x ) , 

/. (A7UA71) (x) C i n f { / x ( A 2 ) ( x ) , / . ( A 2 ) ( a : ) } = (94) 

= ^(^2)(x)nM(X2)(x) . 

Proof . For both j = 1,2, 

u (A^JA?) (X) = /i ( A | P , U A | p / ) (x) = /< ( A | ( P , v e } p / ) (x) = (95) 

= S3(P(A, P,ve[P2, x)) = SJ(P(A,Pux) A p(A,P2,x)) 

due to (9). But, in general, for each 6,, 62 € B, 

5, (6, A 62) = {c : ceB, 6, A 6 X c} 2 (96) 

D {c : c E P, 6, < c} U {c : c € P, 62 X c} = 5,(6) U 5,(6), 

as 6, -< c or 62 X c imply 6, A 62 -< c. For 52 we obtain 

52 (6, A 62) = {c : c € B, non (c X 6, A 62)} . (97) 

But, due to the properties of A operation, cf. (6) and (7), 

{c : c € B, c < 6,} n {c : c € P, c X 62} = {c : c € B, c < 6, A 62} , (98) 

so that, by de Morgan rules, 

{c : c e P, non (c < 6, A 62)} = (99) 
= {c: c £ P, non (c < 6,)} U {c : c € P , non (c < 62)} , 

hence, 
52(6, A62) = 52(6,)U52(62). (100) 

So, 

S,(p(A,Pl,x)AP(A,P2,x)) 2 Sl(p(A,Pux))uS1(p(A,P2,x)) = (101) 

= p(A\)(x)Up(A2)(x), 

and 

52(rt/4,Pi,*)Ap( .4,P2 ,*)) = 5 2 (p( / l ,P 1 ,x ) )U5 2 ( P (A ,P 2 ,x ) )= (102) 

= li(X)(x)U(i(A2
3)(x). 
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Similarly, for both j = 1,2, 

p. (TLTUTS) (X) = p. (11P, n A | p / ) (x) = M (A | (P , e tP2 J ) (*) = (103) 

= 5 j (p(A, P, et P2, x-)) = S3 (p(A, P,, x) V ,-(.4, P2, x)> 

due to (8). But, in general, for each 6,, 62 £ B, 

5, (6, V 62) = {c : ceB, 6, V 62 < c) = (104) 

= {c : c e B, 6, -. c} n {c : c € P , 62 ̂  c} = 5,(6,) n 52(62) 

due to (7). For 52 we obtain 

S2 (6, V 62) = {c : ceB, non (c ^ 6, V 62)} . (105) 

But, due to (6) and (7), 

{c : c 6 B, c < 6,} U {c : c € P, c X 62} C {c : c € P , c X 6, V 62} , (106) 

so that 

{c: c € B, non (c X 6, V 62)} D' (107) 
D {c : c € P , non (c -. 6,)} U {c : c e P , non (c ^ 62)} , 

hence, 
5 2 (6 ,v6 2 )C5 2 (6 , )n5 2 (6 2 ) . (108) 

So, 

5,(/)(4,P1 ,x)V/>(4,P2 ,x)) = 5, (p(A ,P , ,a ; ) )n5,( />(4,P 2 ,x))= (109) 

= (i(jl)(x)nfi(Al)(x), 

and 

52(p(4,P, ,x)V /9(4,P2 , a ;)) C 52( />(4,P, ,x))n52( />(4 )P2 , a ;))= (110) 

= p(X)(x)nlx(Ai
2)(x). 

HeBce, (16), (17) and, consequently, whole the assertion are proved. • 

(Received September 14, 1990.) 
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