


2. NOMENCLATURE

MFD ... matrix fraction description

DCF ... doubly coprime factorization

I.[-] ... highest column degree coefficient matrix
F,[-] ... highest row degree coefficient matrix

6.;[*] ... jth column degree

6] ... jth row degree

m[-] ... polynomial part

SP[-] ... strictly proper part

Ls.v.f. ... linear state variable feedback

3. PRELIMINARIES

We consider linear, time invariant, completely controllable and observable systems

X = Ax + Bu , .
Y1 Cy
=Cx = = X 1
r-ee ][] L
with xe R", ye R™, ue R?, y, e R" %, y, e R*. The control u = —# + r consists

of the l.s.v.f. # = Kx and of the reference input r € R?. The l.s.v.f. is parametrized
by the p x n matrix K which can be chosen to assign stable closed loop poles. The
(n — #)-dimensional state observer

:=Fz+[D, D,] B;] + TBu | 2)

yields z = Tx in the steady state if TA — FT = DC holds and F is stable. If the
state estimate

(5] -]

is substituted in the l.s.v.f. a dynamic compensator of order n — x results. For the
following it will be of importance that (3) implies ’

C,¥,=1,, C,O=0; T¥,=0; TO=1,_,; ¥,C, + OT=1, .

4)

An alternative representation of the observer (2) is

i=T(A - L,C,) Oz + [TL, T(A — L,C,) ¥,] U‘] + TBu (5)
2

where the so far undefined matrix L; must meet TL, = D, which is true for L, = @ D;.
This, on the other hand, implies

C,L, =0. (6)
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In the sequel the abbreviation F = T(4 — L,C,) © will be used which follows from
a comparison of (2) and (5). Using the observer representation (5) the dynamic
compznsator is described by its transfer function behaviour u(s) = —F(s) y(s) +
+ F(s) r(s) with
F.(s) = KO[sI — F + TBKO] ' [TL, T(A — L,C, — BK) ¥,] + [0 K¥,]
(7)
The system transfer matrix F(s) = C(sI — A)™' B can be represented in a right
coprime MFD F(s) = N(s) D~'(s) with D(s) column proper or in a left coprime
MFD F(s) = D™ '(s) N(s) with D(s) row proper. Likewise the compensator (7)
can be describad by the left coprime MFD F.(s) = D] '(s) N(s) with D(s) row
proper and by the right coprime MFD F.(s) = N.(s) D; '(s) with D(s) column
proper.
The L.s.v.f. can be parametrized in the frequency domain by the p x p polynomial
matrix D{s). It is well known that / '
D(syD™"s)=1+ K(sI — A)"' B (8)
holds and consequently :
r[b{s)] = rJb(s)]; and 6,[D(s)] =6,[D(s)], j=12,....,p. (9)
This implies that D{s) contains the same number of free parameters as the p x n
feedback matrix K, namely pn [1] A choice of the pn degrees of freedom in 13(5)
such that det D’s) becomes a stable polynomial corresponds to a pole placing design*
of the state feedback matrix K. An optimal l.s.v.f. results by solving the correspond-
ing polynomial matrix equation for D{s) [7]. It should bz noted, however, that the
optimal solution D(s) has to be aligned to meet the restrictions (9). Equation (8)
can be used to compute the corresponding D{s) for a given K and vice versa.
The right doubly coprime fractional representations (DCF) of the plant transfer
matrix are given by [1], [8]
D(s)D~'(s)=1 —K(sI — 4 + BK)"'B (10)
and
N(s)D~'(s)=C(sI — A+ BK)™'B (11)
The frequency domain parametrization of the reduced order observer of order
n — x with 0 < % < m can be derived with the aid of a nonminimal observer re-
presentation introduced in [4].
/+ It has been shown that the reduced order observer of order n — x with0 < ¥ < m
is parametrized in the frequency domain by the m x m polynomial matrix D(s)
which meets the following relation [4]

I

59 86) = [ &t 6 - ar v+ [ @)

For % = 0 this coincides with the well known result for full order observers and
for % = m the minimal order observer results [2] are obtained.
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Introducing the row proper m x m polynomial matrix e

ORI |3 o W
the relation (12) implies [3] ST, Do

PIDE)] = LIPOT: and 5,(0()] = 5,[0()] 5 = 1.2,

(14)
As a consequence of this D(s) contains m(n — x) free parameters which also exist
in the time domain if only v, is used to reconstruct x via (3). A choice of these free
parameters such that det D(s) is a stable polynomial corresponds to the pole place-
ment problem. An optimal linear estimator results when solving the corresponding
polynomial matrix equation for D(s) by spectral factorization. This polynomial
equation has the same simple structure for any ﬁlter order n0 wnthm the llmlts
n—m=n, <n[3]

Equation (12) can be used to compute D(s) from a given time domain para-
metrization of the filter and vice versa [3]. Thus together with (8) one can establish
a one to one relationship between the time and the frequency domain design of
observer based compensators related to arbitrary observer orders.

The left coprime DCFs of the plant are given by [4]
D~'(s)D(s) = '
_[1=C,0(s1—F)"' TL, C,[—~I—6(sI —F)™' T(A-L,C,)] ¥,
| =Cy40(sI—F)"'TL, C,[sI-A—AO(sI—F)™' T(A-L,C,)] ¥,

(15)

and

(16)

Thus both the L.s.v.f. and the observer of order n — x can directly be parametrized
in the frequency domain without recurrence to time domain parameters. In order
to give the complete set of relations with the time domain approach, we here repeat
the connections between the time domain representation of the compensator and
its DCFs. Hippe [4] derived the following relations

A7 Y (syN(s) =KO(sI — F)"'[TL, T(4 — L,C,) ¥,] + [0 K¥,] (17)

B1(s) N(s) = [01@(51 —~ F)"'TB ] _

C,B + C,AO(sI — F)"' TB

A7Y(s)D(s) =1+ KO(sI — F)"' TB hoe (18)
and :

NJs)47'(s) =K(sI — A + BK)™"' [L, ¥,] (19)

D(s)yAa™'(s) = [gj (sI — A+ BK)"'[L, ¥,] + [8""‘ gz] (20)

and it was shown that these DCF's directly describe the compensator transfer matrix
(7). The stable p x p polynomial matrix A(s) contains the observer dynamics, i.e.
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det A(s) = det D(s), and the m x m polynomial matrix 4(s) contains the controlled
plant dynamics, i.e. det A(s) = det D(s). We now establish the solution procedure
for the DCFs (17)—(20) on the basis of the parametrizing matrices D(s) for the
Is.v.f. and of D(s) for the (reduced order) observer in the frequency domain.

4. COMPUTATION OF THE LEFT COPRIME COMPENSATOR MFD

Consider any polynomial solutions Y(s) and X(s) of the linear diophantine equation
Y(s) N(s) + X(s) D(s) = D(s) ' (21)

where the p x p polynomial matrix 13(s) characterizes the controlled plant dynamics.
Since D(s) and N(s) are relatively coprime, such polynomial matrices exist [6].
With [7[-] denoting the polynomial part and SP[-] denoting the strictly proper
part of a rational matrix it is obvious that for a given transfer matrix P(s) we have

P(s) = [ P(s)] + SP[P(s)].

Lemma 1. Consider the plant transfer matrix F(s) = D~'(s) N(s), a solution Y{(s)
of (21) and the m x m polynomial matrix D(s) characterizing the observer dynamics.
Then the strictly proper part of Y(s) D™ (s) D(s) is given by

SPL¥(5) 51(s) D(s)] = K(sT = A)'[L, ¥5]. | (22)
Proof. Using the basic relation (12) we can write
) D7) D) = ¥() ot = A [y ] + 7)o
Since Y(s) is a polynomial matrix it remains to be shown that
SP{Y(s) C(sI — A)"'[L, ¥,]} = K(sI — A)""'[L; ¥,]
or equivalently that
W(s) = [Y(s) € = K] (sT = A)"1 [L; ¥5]
is a polynomial matrix. Right multiplication of (21) by D™'(s) yields
Y(s) N(s) D~(s) + X(s) = B(s) D'(s).
or with the right coprime plant MFD and (8)
[Y(s)C —K](sf — A)""B=1— X(s). _ (23)

The right hand side of (23) is a polynomial matrix. As we have assumed a completely
controllable plant, (s/ — 4)~! B is a coprime pair and consequently, [Y(s) C — K]
has the form N(s)(sI — A) with N(s) being a polynomial matrix. Therefore
[¥(s)C — K](sI — A)~"' constitutes a polynomial matrix which completes the
proof. : O
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With this preliminary result we can formulate the solution procedure for the left
coprime compensator factorization.

Theorem 1. With the polynomial matrix

V(s) = I[¥(s) D~'(s) D(s)] (24)
the doubly coprime left factorization of the compensator is given by

NX(s) = A7 Y(s) N(s) = Y(s) — V(s) D™'(s) D(s) : (25)
and

D¥(s) = 47'(s) D(s) = X(s) + V(s) D™ '(s) N(s) . (26)
The left coprime compensator MFD and the observer matrix A(s) can easily be
computed from (25) and (26) by prime factorization of [NJ(s) D}(s)] =
A7'(s) [N(s) D(s)] (cf. [6]).

The proof of the Theorem basically goes along the lines in [1] and [2]. For the

sake of brevity it is omitted here.

5. COMPUTATION OF THE RIGHT COPRIME COMPENSATOR MFD

Consider any polynomial solutions Y(s) and X(s) of the linear diophantine equa-
tion
N(s) Y(s) + D(s) X(s) = D(s) - (27)
where the m x m polynomial matrix 13(5) characterizes the observer dynamics.
Since D(s) and N(s) are relatively coprime such polynomial matrices exist [6].

Lemma 2. Consider the plant transfer matrix F(s) = N(s) D™!(s), a solution
Y(s) of (27) and the p x p polynomial matrix D(s) parametrizing the linear state
feedback control in the frequency domain. Then the strictly proper part of 5(s).
. D7 (s) Y(s) is given by ,

SP[D(s) D~'(s) Y(s)] = K(sI — A)"'[L, ¥,]. (28)

The proof of Lemma 2 goes along the lines of the proof of Lemma [ and it uses
the fact that we have assumed complete observability which implies that
C(sI — 4)~" is a coprime pair.

Now we can formulate the solution procedure for the right coprime compensator
factorization.

Theorem 2. With the polynomial matrix

V() = 1{B(s) D~(5) Y(s)] (29)

the doubly coprime right factorization of the compensator is given by

Nf(s) = N_C(S)Z_l(s) = 7(5) - D(s) 5_‘(5) 17(3) ‘ (30)
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and ' : Lt
DX(s) = D.(s) 4™ "(s) = X(s) + N(s) D~'(s) V(s) . ’ (31)

The right coprime compensator MFD and the matrix A(s), containing the con-
trolled plant dynamics, can easily be computed from (30) and (31) by prime factoriza-

tion of
NX(s)] N(s)]-_,
[0l =[5
Again the proof is omitted. It basically goes along the lines presented in { 1] for
% = Oandin [2] forx = m.

6. THE DISCRETE TIME CASE
I B

When applying z-transform techniques the input output behaviour of discrete
time systems is described by transfer matrices F(z) which can also be represented
in coprime matrix fraction descriptions F(z) = N(z) D™'(z) = D™ '(z) N(z). The
same is true for the compznsator. Keeping in mind that the stability region is inside
the unit circle of the z-plane, all formulas derived above also hold in the discrete
time case if s is substituted by z.

There are differences between the continuous and the discrete time solutions when
applying optimal estimators in conjunction with an updated state estimate. These
differences are discussed in [5] for the optimal filter and their influence on the
compensator design as presented above will be investigated in a forthcoming paper.
For pole placement compensators and when using the one step prediction estimate
in a stochastic setting, the above compensator design holds both in the s- and in the
z-domain.

7. AN EXAMPLE

As a demonstration example we use a simple second order system with one input
and two outputs described by its transfer vector

F(z) = 7»%,71,,,,, R lf} | s - [ .

so that the entities in the left and right coprime MFDs are given by

1 —

N(z) = m D() = 2% — z + 025 D(z) = L_ . +“0_25];
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We look for a compensator which moves the system poles to the origin of the z-plane
“using a first order state observer (x = 1) having an eigenvalue at z = 0-1. Obviously
the state feedback control is parametrized by D(z) = z? + az + B where by choice
of the pn = 2 degrees of freedom as « = B = 0 we obtain the desired closed loop
poles.

In order to obtain the parametrization of the first order observer the polynomial

sl

must be row proper; which it is. So following (14) the polynomial matrix D(z) para-
metrizing the (reduced order) observer is given by

" I =1
biz) = [z + o /3}'
When choosing the m{n — x) = 2 free parameters x and f, e.g., as « = —0-1 and

B = 0 the desired observer eigenvalue results. A solution of (21) is X = 1, Y =
= [1 —0-25]. Now following Theorem 1 one obtains V(z) = [1 0] and hence

1

N¥(z) = [=01 0752—0225] 7—:‘—-07; DE(z) = (z +09) — —

Consequently the left coprime compensator MED is given by
Fe(z) =(z + 09)"'[-01 0-75z—0-225]

and the observer characteristic polynomial by 4(z) = = — 0-1.

8. CONCLUSION

Using a new nonminimal representation of the reduced order observer of order
n — % with 0 £ % £ m in the time domain the direct parametrization of such
observers in the frequency domain becomes possible [4]. If the polynomial matrices
D for the l.s.v.f. and D for the linear state estimator are given, the computation
of the compensator DCFs and consequently also of the compensator MFDs can
be carried out using standard software. This is true both for continuous time and
discrete time systems with one exception, namely when using the updated (discrete)
state estimate in a stochastic setting [5]. Thus the general equivalence of state space
and frequency domain approaches to observer based compensator design has been

established.
(Received November 12, 1990.)
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