ON THE NATURE OF DESCRIPTOR SYSTEMS

J. W. NIEUWENHUIS, JAN C. WILLEMS

In this paper we clarify the nature of description systems. In order to do that we introduce the notion of transfer-like sum. Another ingredient in our clarification is the pair causalityreversed causality.

1. INTRODUCTION

We will consider discrete-time lumped dynamical systems in the framework put forward in [1]. In this view, a dynamical system is a triple $\Sigma = (\mathbf{Z}, \mathbf{R}^q, \mathfrak{B})$ with \mathbf{Z} the time axis. \mathbf{R}^q the signal space, and $\mathfrak{B} \subseteq (\mathbf{R}^q)^{\mathbf{Z}}$ the behavior. We will assume that the system is linear (\mathfrak{B} is a linear subspace), time-invariant ($\sigma\mathfrak{B} = \mathfrak{B}$) with the shift: $(\sigma f)(t) = f(t + 1)$), and complete (see [1]). Equivalently, that $\mathfrak{B} \in \mathfrak{L}^q$ with \mathfrak{L}^q the set of all linear shift-invariant closed subspaces of (\mathbf{R}^q)^{\mathbf{Z}}. equipped with the topology of pointwise convergence. It is well-known (see [1]) that \mathfrak{L}^q coincides with the kernels of the polynomials in the shift, i.e., $\mathfrak{B} \in \mathfrak{L}^q$ if and only if there exists for some g a polynomial matrix $R(s, s^{-1}) \in \mathbf{R}^{g \times q}[s, s^{-1}]$ such that $\mathfrak{B} = \ker R(\sigma, \sigma^{-1})$ with $R(\sigma, \sigma^{-1})$ viewed as a map (from $(\mathbf{R}^q)^{\mathbf{Z}}$ to $(\mathbf{R}^g)^{\mathbf{Z}}$. In the language of [1] this means that Σ is described by the behavioral equations

$$R(\sigma, \sigma^{-1}) w = \mathbf{0} \tag{AR}$$

(L)

Without loss of generality one can take g such that $R(s, s^{-1})$ has full row rank, hence such that $g \leq q$.

2. LATENT VARIABLES

Consider the following set of behavioral equations

$$R(\sigma, \sigma^{-1}) w = M(\sigma, \sigma^{-1}) a$$

with $M(s, s^{-1}) \in \mathbf{R}^{g \times k}[s, s^{-1}]$. The variables in *a* are called *auxiliary* or *latent* and help to describe the behavior of the variables in *w*. Let \mathfrak{B} be defined as follows:

$$\mathfrak{V} = \{ \boldsymbol{w} \in (\boldsymbol{R}^q)^{\boldsymbol{Z}} \mid \exists \boldsymbol{a} \in (\boldsymbol{R}^k)^{\boldsymbol{Z}} \text{ such that } (L) \text{ holds} \}.$$

One easily sees that $\mathfrak{B} \in \mathfrak{L}^{q}$. This follows from the following observations:

(1) Let $U(s, s^{-1}) \in \mathbf{R}^{g \times g}[s, s^{-1}]$ and $V(s, s^{-1}) \in \mathbf{R}^{k \times k}[s, s^{-1}]$ be unimodular, then \mathfrak{B} is also described by the following behavioral equations

$$U(\sigma, \sigma^{-1}) R(\sigma, \sigma^{-1}) w = U(\sigma, \sigma^{-1}) M(\sigma, \sigma^{-1}) V(\sigma, \sigma^{-1}) a.$$

(2) In (1) one can take $U(s, s^{-1})$ and $V(s, s^{-1})$ such that $U(s, s^{-1}) M(s, s^{-1}) V(s, s^{-1})$ is diagonal (Smith-form).

(3) Let $0 \neq p(s, s^{-1}) \in \mathbf{R}[s, s^{-1}]$, then $p(\sigma, \sigma^{-1}]: (\mathbf{R})^{\mathbf{Z}} \to (\mathbf{R})^{\mathbf{Z}}$ is surjective. Based on the above observations one can eliminate the auxiliary variables and write \mathfrak{B} as the kernel of a polynomial matrix in the shift, and hence $\mathfrak{B} \in \mathfrak{Q}^{q}$.

We call, in (L), *a* observable from *w*, if $R(\sigma, \sigma^{-1}) w_1 = R(\sigma, \sigma^{-1}) w_2 = M(\sigma, \sigma^{-1}) a$ implies that $w_1 = w_2$. One easily sees that *a* is observable from *w* if rank $M(\lambda, \lambda^{-1}) = h, \forall 0 \neq \lambda \in \mathbb{C}$.

A special type of latent variables is considered in the next section.

3. STATE EQUATIONS

Consider the following set of behavioral equations

$$E\sigma x + Fx + Gw = 0$$

with $E, F \in \mathbf{R}^{f \times n}$ and $G \in \mathbf{R}^{f \times q}$. The distinguishing feature of this system is that, as far as the shift is concerned, it is *first order* in x and zero-th order in w. In [1] it is shown that this corresponds exactly to linear time-invariant complete systems in which x plays the role of state variable (see [1] for a formal definition).

The external behavior of (S) is defined by

$$\mathfrak{B} = \{ w: \mathbf{Z} \to \mathbf{R}^q \mid \exists x: \mathbf{Z} \to \mathbf{R}^n \text{ such that } (S) \text{ is satisfied} \}$$

From part 2 it follows that $\mathfrak{B} \in \mathfrak{L}^q$ and conversely in [1] it is shown that if $\mathfrak{B} \in \mathfrak{L}^q$ there will exist E, F, G such that \mathfrak{B} is the external behavior of (S).

4. DESCRIPTOR SYSTEMS

We now introduce a special type of state representations. Let $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ a partition of w into (its first) q_1 and (its last) q_2 components. Correspondingly $\mathbf{R}^q \cong \mathbf{R}^{q_1} \times \mathbf{R}^{q_2}$. Now consider the set of behavioral equations

$$E\sigma x = Ax + Bw_1$$

$$w_2 = Cx + Dw_1$$
(DS)

283

(S)

with $E, A \in \mathbb{R}^{f \times n}$, $B \in \mathbb{R}^{f \times q_1}$, $C \in \mathbb{R}^{q_2 \times n}$ and $D \in \mathbb{R}^{q_2 \times q_1}$. In a recent paper Kuijper and Schumacher [2] prove that (with this pre-imposed partition) each (!) $\mathfrak{V} \in \mathfrak{Q}^q$ admits such a representation. In the next section, we will give a short proof of this result.

We will call a system of the type (DS) a descriptor system. As already mentioned each $\mathfrak{B} \in \mathfrak{L}^q$ may be represented this way. Such systems acquire more structure if we assume more properties of w_1 and/or w_2 . In particular we will investigate what representations correspond to the case that w_2 processes w_2 , that w_2 is maximally free, and that (DS) is a non-anticipating input/output representation with w_1 input and w_2 output. See [1] for formal definitions of these concepts.

5. DESCRIPTOR REPRESENTATIONS OF LINEAR SYSTEMS.

The following theorem gives a broad classification of descriptor systems.

Theorem. Let w be partitioned as
$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 and $\mathfrak{B} \in \mathfrak{L}^q$. Then:

- 1. \mathfrak{B} admits a representation (DS);
- 2. \mathfrak{B} admits a representation (DS) with Es A of full column rank if and only if w_2 processes w_1 ;
- 3. \mathfrak{B} admits a representation (DS) with *E*, *A* square and det $(Es A) \neq 0$ if and only if w_1 is maximally free;
- 4. \mathfrak{B} admits a representation (DS) with E square and det $E \neq 0$ if and only if w_1 is a non-anticipating input for the output w_2 .

Proof. 1. Start from a representation (S). Introduce $\tilde{\mathbf{x}} = \begin{bmatrix} x \\ w \end{bmatrix}$ and write (S) as as $\sigma \tilde{E}\tilde{\mathbf{x}} = \tilde{A}\tilde{\mathbf{x}}$; $w = \tilde{C}\tilde{\mathbf{x}}$. Now observe that this is of the form (DS).

2. (only if): take $w_1 = 0$. Then the corresponding x-behavior satisfies $E\sigma x = Ax$ and is thus finite-dimensional [1]. Hence also the possible w_2 's: $E\sigma x = Ax$; $w_2 = Cx$ forms also a finite-dimensional space, equivalently, w_2 processes w_1 . (if): \mathfrak{B} admits a representation $R_1(\sigma, \sigma^{-1}) w_1 = 0$; $P(\sigma, \sigma^{-1}) w_2 = Q(\sigma, \sigma^{-1}) w_1$ with P square and det $P \neq 0$. Now wr shall see while proving 3 that this second relation may be represented as

$$E_2\sigma x_2 = A_2 x_2 + B_2 w_1$$

 $w_2 = C_2 x_2 + D_2 w_1$

with det $(E_2 s - A_2) \neq 0$. The first relation may be represented as

$$E_1 \sigma x_1 = A_1 x_1 + B_1 w_1$$

with $E_1 s - A_1$ of full column rank [1]. Defining $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ yields the result.

284

3. (only if): if det $(Es - A) \neq 0$, then $E\sigma - A$ is surjective (this follows from the observations in part 2.), whence w_1 is free. By (2) w_2 also processes w_1 . Hence w_1 is maximally free. (if): such representations will be studied in Section 7.

4. This is the classical case studied in linear systems theory.

6. TRANSFER-LIKE SUMS

Let $\mathfrak{B}_1, \mathfrak{B}_2 \in \mathfrak{L}^q$, and w be partitioned as $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$. Then the *transfer-like sum* of \mathfrak{B}_1 and \mathfrak{B}_2 , denited as $\mathfrak{B}_1 + \mathfrak{B}_2$, is defined as

$$\mathfrak{V} = \left\{ \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \middle| \exists \begin{bmatrix} w_1 \\ w_2' \end{bmatrix} \in \mathfrak{V}_1 \text{ and } \begin{bmatrix} w_1 \\ w_2'' \end{bmatrix} \in \mathfrak{V}_2 \text{ with } w_2 = w_2' + w_2'' \right\}$$

If \mathfrak{B}_i is described by $P_i(\sigma, \sigma^{-1}) w_2 = Q_i(\sigma, \sigma^{-1}) w_1$ with P_i square and det $P_i \neq 0$, with transfer function $G_i(s) = P_i^{-1}(s, s^{-1}) Q_i(s, s^{-1})$ then it is easy to see that in $\mathfrak{B} w_1$ will also be maximally free and that the corresponding transfer function G(s)satisfies $G(s) = G_1(s) + G_2(s)$. However our notion of transfer-like sum also concerns the non-controllable part of \mathfrak{B}_1 and \mathfrak{B}_2 . In fact, if Q_1 and Q_2 are zero, then $\mathfrak{B}_i +$ $\stackrel{.}{+} \mathfrak{B}_2 = \mathfrak{B}_1 + \mathfrak{B}_2$.

Representations of transfer-like sums will be studied in detail elsewhere.

7. SPLITTING THE BEHAVIOR IN A CAUSAL AND REVERSED CAUSAL PART

Let $\mathfrak{V} \in \mathfrak{Q}^q$ and $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, and assume that w_1 is maximally free. Let $P(\sigma, \sigma^{-1})$. $w_2 = Q(\sigma, \sigma^{-1}) w_1$ with det $P \neq 0$ be an AR-representation of \mathfrak{V} . Then $\begin{bmatrix} 1 \end{bmatrix} w_2$ does not anticipate w_1 if the matrix of rational functions $P^{-1}(s, s^{-1}) Q(s, s^{-1})$ is proper. We will call such systems *causal*. If $P^{-1}(s, s^{-1}) Q(s, s^{-1})$ is strictly proper, then we will call the system *strictly causal*. Let rev: $(\mathbf{R}^q)^{\mathbf{Z}} \to (\mathbf{R}^q)^{\mathbf{Z}}$ be the time-reversal operator: $(\operatorname{rev} f)(t) = f(-t)$. If rev \mathfrak{V} is causal, then \mathfrak{V} will be called *reversed causal*. This requires that $P^{-1}(s^{-1}, s) Q(s^{-1}, s)$ is proper. If $P^{-1}(s^{-1}, s) Q(s^{-1}, s)$ is strictly proper, then we will call \mathfrak{V} *reversed strictly causal*.

We will now show how one can split a given behavior $\mathfrak{B} \in \mathfrak{Q}^q$ with $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ and w_1 free into the transfer-like sum of a causal and a reversed strictly causal part. Let \mathfrak{B} be represented by

$$P(\sigma, \sigma^{-1}) w_2 = Q(\sigma, \sigma^{-1}) w_1,$$

with det $P \neq 0$. Write $P = U\Sigma_1\Sigma_2V = U\Sigma_2\Sigma_1V$ with U, V unimodular, and Σ_1 , Σ_2 coprime diagonal polynomial matrices with nonnegative powers in s only and $\Sigma_1(0)$

285

non-singular. Now define $P_1 = \Sigma_2 V$, $P_2 = \Sigma_1 V$, and let D_1 , D_2 be diagonal polynomial matrices such that $D_1 \Sigma_1 + D_2 \Sigma_2 = I$. Observe that

22 N 18 18

$$\begin{bmatrix} U\Sigma_1 & U\Sigma_2 \\ -V^{-1}D_2 & V^{-1}D_1 \end{bmatrix} \begin{bmatrix} D_1U^{-1} & -P_1 \\ D_2U^{-1} & P_2 \end{bmatrix} = I$$

Now define, for an arbitrary constant matrix C of appropriate dimensions, the polynomials Q_1 and Q_2 as:

$$\begin{bmatrix} U\Sigma_1 & U\Sigma_2 \\ -V^{-1}D_2 & V^{-1}D_1 \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \begin{bmatrix} Q \\ C \end{bmatrix}$$

ſ

Now define \mathfrak{B}_i as the system with AR-representation

$$P_{i}(\sigma, \sigma^{-1}) w_{2} = Q_{i}(\sigma, \sigma^{-1}) w_{1}$$

Define $\widetilde{\mathfrak{B}} := \mathfrak{B}_{1} + \mathfrak{B}_{2}$, hence $\widetilde{\mathfrak{B}} = \left\{ (w_{1}, w_{2}) \mid \exists (w_{21}, w_{22}) \text{ such that} \left(\frac{Q_{1}}{Q_{2}} \frac{0}{0}{I} \right) \left(\frac{w_{1}}{w_{2}} \right) = \left(\frac{P_{1}}{I} \frac{0}{P_{2}} \right) \left(\frac{w_{21}}{w_{22}} \right) \right\}.$

Notice that \mathfrak{V} is expressed in terms of the latent variables (w_{21}, w_{22}) . In the following steps we will eliminate these variables, see also part 2.

$$\begin{split} \mathfrak{V} &= \left\{ (w_{1}, w_{2}) \mid \text{such that} \\ \left(\frac{Q_{1}}{Q_{2}} \mid -P_{1} \\ \frac{Q_{2}}{0} \mid 0 \\ 1 \end{pmatrix} \left(\frac{w_{1}}{w_{2}} \right) &= \left(\frac{0}{0} \mid -P_{1} \\ 0 \mid 0 \\ 1 \end{pmatrix} \left(\frac{w_{21}}{w_{22}} \right) \text{ for some } (w_{21}, w_{22}) \right\} . \\ &= \left\{ (w_{1}, w_{2}) \mid \text{such that} \\ \left(\frac{U\Sigma_{1}}{-V^{-1}D_{2}} \mid \frac{U\Sigma_{2}}{-V^{-1}D_{1}} \mid 0 \\ 0 \mid 0 \\ 1 \end{pmatrix} \left(\frac{Q_{1}}{Q_{2}} \mid \frac{-P_{1}}{0} \\ 1 \end{pmatrix} \left(\frac{w_{1}}{w_{2}} \right) &= \\ \left(\frac{U\Sigma_{1}}{-V^{-1}D_{2}} \mid \frac{U\Sigma_{2}}{-V^{-1}D_{1}} \mid 0 \\ 0 \\ 1 \end{pmatrix} \left(\frac{0}{0} \mid -P_{1} \\ \frac{P_{2}}{I} \\ 1 \end{pmatrix} \left(\frac{w_{21}}{w_{22}} \right) \text{ for some } (w_{21}, w_{22}) \right\} \\ &= \left\{ (w_{1}, w_{2}) \mid \text{ such that} \left(\frac{Q}{C} \mid \frac{-U\Sigma_{1}P_{1}}{V_{1}D_{2}P_{1}} \\ \left(\frac{w_{1}}{w_{2}} \right) &= \\ \end{array} \right. \end{split}$$

286

÷

$$\begin{cases} \frac{0}{0} \frac{0}{I} \\ \frac{1}{I} \frac{1}{I} \end{cases} \begin{pmatrix} w_{21} \\ w_{22} \end{pmatrix} \text{ for some } (w_{21}, w_{22}) \\ \\ = \{ (w_1, w_2) \mid Qw_1 = U\Sigma_1 P_1 w_2 = U\Sigma_1 \Sigma_2 V w_2 = P w_2 \} = \mathfrak{B} . \end{cases}$$

So we proved that $\mathfrak{B} = \mathfrak{B}_1 \dotplus \mathfrak{B}_2$.

It is easy to see that $\mathfrak{B}_1 + \mathfrak{B}_2 = \mathfrak{B}$ and that $P_1^{-1}Q_1 = P_1^{-1}D_1U^{-1}Q - C$, $P_2^{-1}Q_2 = P_2^{-1}D_2U^{-1}Q + C$. By a proper choice of C we can make $P_2^{-1}(s^{-1}, s)$. $Q_2(s^{-1}, s)$ strictly proper and \mathfrak{B}_1 causal. Now observe that \mathfrak{B}_2 is reversed strictly causal. In addition, if we take $\Sigma_1 = I$, \mathfrak{B}_2 will be FIR (finite impulse response), equivalently $P_2^{-1}(s, s^{-1}) Q_2(s, s^{-1})$ is a polynomial, while if we take $\Sigma_2 = I$. \mathfrak{B}_2 will be FIR, equivalently $P_1^{-1}(s, s^{-1}) Q_1(s, s^{-1})$ a polynomial in s^{-1} . It is also easy to calculate that $P_1^{-1}Q_1 + P_2^{-1}Q_2 = P^{-1}Q$. Suppose now that \mathfrak{B} is causal. Then we are allowed to take $\Sigma_1 = I$, $D_1 = I$, $D_2 = 0$ and C = 0. It is easy to see that in this case $\mathfrak{B}_1 = \mathfrak{B}$ and $\mathfrak{B}_2 = \{(w_2, w_1) \mid w_2 = 0\}$.

8. DESCRIPTOR REPRESENTATIONS WHEN w_1 IS MAXIMALLY FREE

If w_1 is maximally free, then \mathfrak{V} admits a representation of the type

$$P(\sigma, \sigma^{-1}) w_2 = Q(\sigma, \sigma^{-1}) w_1$$

with P square and det $P(s, s^{-1}) \neq 0$. Note that the transfer function $G(s) = P^{-1}(s, s^{-1}) Q(s, s^{-1})$ need not be proper. The representation question is close to what has been studied by Conte and Perdon [3] with the proviso that we will also consider the non-controllable case and not only the transfer function.

In order to obtain a (DS)-representation, write \mathfrak{V} (as explained in Section 7) as a transfer-like sum $\mathfrak{V} = \mathfrak{V}_1 \neq \mathfrak{V}_2$ with \mathfrak{V}_1 causal and \mathfrak{V}_2 reverse (strictly) causal. Write a non-anticipating input/state/output-representation for \mathfrak{V}_1 :

$$\sigma x_1 = A_1 x_1 + B_1 w_1; \quad w_2 = C_1 x_1 + F_1 w_1$$

Next consider rev \mathfrak{B}_2 and write a non-anticipating input/state/output-representation for

$$\mathfrak{B}_2' := \left[\frac{I}{0} \, \frac{0}{\sigma^{-1}} \right] \operatorname{rev} \mathfrak{B}_2 \, .$$

Note that \mathfrak{B}'_2 is always strictly causal.

$$\sigma x_2 = A_2 x_2 + B_2 w_1; \quad \sigma^{-1} w_2 = C_2 x_2$$

This yields, by defining $\tilde{x}_2 = \sigma^{-1}$ rev x_2 , the following state representation for \mathfrak{B}_2 :

$$A_2\sigma \tilde{\boldsymbol{x}}_2 = \tilde{\boldsymbol{x}}_2 + B_2 \boldsymbol{w}_1 ; \quad \boldsymbol{w}_2 = C_2 \tilde{\boldsymbol{x}}_2$$

287

Now define $\mathbf{x} = \begin{bmatrix} x_1 \\ \tilde{x}_2 \end{bmatrix}$ and observe that $\begin{bmatrix} I & 0 \\ 0 & A_2 \end{bmatrix} \sigma \mathbf{x} = \begin{bmatrix} A_1 & 0 \\ 0 & I \end{bmatrix} \mathbf{x} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \mathbf{w}_1$ $\mathbf{w}_2 = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \mathbf{x} + D\mathbf{w}_1$

yields the desired descriptor representation. Notice that

$$s\left[\frac{I}{0} \quad \frac{0}{A_2}\right] - \left[\frac{A_1}{0} \quad \frac{0}{I}\right]$$

is a regular matrix pencil. When \mathfrak{V} is given by a descriptor representation it is in principle quite easy to write \mathfrak{V} as the transfer-sum of a causal- and a reversed causal part. In order to do that one brings the matrix pencil on Kronecker canonical form, [4], and then one easily reads off a causal- and a reversed causal part.

(Received November 16, 1990.)

REFERENCES

- J. C. Willems: Models for dynamics. In: Dynamics Reported, vol. 2 (U. Kirchgraber, H. O. Walther, eds.), J. Wiley, New York 1989, pp. 171-269.
- [2] M. Kuijper and J. M. Schumacher: Realization of autoregressive equations in pencil and descriptor form. SIAM J. Control Optim. 28 (1990), 5, 1162-1189.
- [3] G. Conte and A. Perdon: Generalized state space realizations of non-proper rational transfer function. Systems Control Lett. 1 (1982) 270-276.
- [4] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs. N. J. 1980.

Dr. J. W. Nieuwenhuis, Econometrics Institute, University of Groningen, P. O. Box 800, 9700 AV Groningen. The Netherlands.

Prof. Dr. Jan C. Willems, Mathematics Institute, University of Groningen, P. O. Box 800, 9700 AV Groningen. The Netherlands.