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SHUFFLE ALGORITHM FOR TWO-DIMENSIONAL 
SINGULAR SYSTEMS WITH 
A FORNASINI-MARCHESINI MODEL 

GERSON BEAUCHAMP, FRANK L. LEWIS 

The condition for existence of solution for 2-D singular systems is usually stated as the non-
singularity of a matrix pencil in two complex variables. The determinant of this matrix pencil 
equals the characteristic polynomial of the system. Although many authors assume this regularity 
condition to be satisfied, there has been no apparent effort towards developing computational 
methods to evaluate such a condition. In this paper we present several, easy to evaluate, sufficient 
conditions to determine whether the regularity condition is satisfied. The main contribution 
of the paper is a new 2-D shuffle algorithm which is a natural extension of that of Luenberger [5]. 
The algorithm is a useful tool to test for regularity and should also contribute to the study of the 
geometric structure of 2-D singular systems. 

1. INTRODUCTION ; * 

By the nature of 2-D systems (e.g. images [7], discrete models for partial differential 
equations [6], etc.), the independent variables (i, /) may be spatial coordinates 
which do not need to preserve the notion of time. Due to this fact, 2-D systems may 
have no natural notion of causality. Singular systems can describe noncausal beha
vior naturally and are therefore well suited for representing 2-D systems. 

This paper extends the shuffle algorithm of Luenberger [5] to the 2-D case. The 
model under consideration is the singular Fornasini-Marchesini model [3,4}. 
In contrast to the algorithm for the 1-D case, the algorithm presented here is quite 
complex. The level of complexity is due to the fact that the shuffle operations of the 
algorithm must account for two indices instead of one. , 

2. PRELIMINARIES 

The model under consideration is the 2-D Singular Fornasini-Marchesini Model 
[3, 4] given by 

Exi+1J+1 = Fxi+1J + GxiJ+1 + HXiJ + Buitj (la) 

y^j = C*i,j ; (lb) 
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for 0 ^ / ^ iV, — 1 and 0 ^ j ^ N2 - 1 where x e R" is the semistate vector, 
u e Rm is the input vector, and y e Rp is the output vector. It is assumed that p <; 
^ m ^ n. In (l) E is a constant square matrix, generally singular, E, G, H, B, and C 
are constant matrices of appropriate dimensions, and Nt and N2 are given integers. 
The region of interest in the (/,v)-plane is the 2-D region bounded by the rectangle 
[0 ,N J x [0 ,N 2 ] . 

The model may also contain inputs like Bxui+lJ, and B2uiJ+1 [3]. However, 
for ease of notation we shall restrict the discussion to model (1) since such input 
terms are easily incorporated in the algorithm and do not play a crucial role in the 
development. 

Note that if E is nonsingular, then (l) can be solved recursively by iterating forward 
in both indices / and / given initial conditions x ; 0; I <Z i £ Nlt and x0J; 0 ^ j ^ N2 

(i.e. the values of xitj along the (/,/)-axes). Similarly, if E is nonsingular, then the 
recursion can be performed by iterating forward in / and backward in / given initial 
conditions xi>Nl; 1 ^ i 2| Nl5 and x0J; 0 fS j ^ N2. The cases for nonsingular G 
or H are similar to the above. 

In any of these events, (1) may be considered to be a state-space system and solved 
iteratively provided the appropriate initial conditions are available. The initial 
conditions for all of these cases can be selected arbitrarily as long as they are ap
propriate for the given case. 

From the above argument it is clear that any of the matrices can play the role 
of E is the appropriate initial conditions are specified and a suitable input sequence 
given. This phenomenon is, the basis for the second shuffle of the 2-D shuffle algo
rithm presented in this paper. -rr 

If all of the matrices E, E, G, and H are singular the situation is more complex 
and interesting than those discussed above. In this case the system may still have 
a solution provided it is regular. Beauchamp [1] has shown that if (1) is regular (i.e. 
det (z1z2E — zxE — z2G — H) =j= 0 for at least one (z l s z2)), then a unique solution 
may be obtained by specifying a suitable set of boundary conditions which involve 
all of the boundary values. We call boundary values those vectors xtJ in a solution 
sequence to (1) which lie on the perimeter (or boundary) of the region [0, N\\ x 
x [0, N2]. That is, if a sequence xtJ is a solution to (1), then the vectors xi0, xiMz; 
1 ^ / ^ Nu and x0J, xNlJ; 0 ^ j ^ N2 are the boundary values. 

It is also shown in [1] how to compute the solution in a recursive manner. In 
general, the boundary conditions for this case cannot be specified arbitrarily, but 
must satisfy certain restrictions in order for them to lead to a unique solution. This 
matter is discussed thoroughly in [1]. 
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3. EXISTENCE OF SOLUTION 

A sequence xLj is said to be a solution to (1) if and only if (la) holds for a given 
input sequence uitj. 

Theorem 1. There exists a solution to system (l) for all input sequences uiyj if and 
only if 

rank \zxz2E — zxF — z2G — H, B] = rank [zxz2E — zxF — z2G — H] . 

(2) 
Proof. See [3, 1]. 

A sufficient condition for existence of solution is given by 

Corollary 1. If B is of full row rank (or equivalently invertible), then condition 
(2)reduces to 

det (zxz2E - zxF - z2G - H) -j= 0 (3) 

for at least one (z t , z2). 

Proof. See [ I ] . 

Condition (3) is called the regularity condition and it is a sufficient condition for 
existence of solution for all specified input sequences {«,,,} and all input matrices 
B. A system satisfying (3) is called regular and nonregular otherwise. 

The main objective of this paper is to present computational methods to determine 
when the regularity condition is satisfied. This condition, or similar ones, appear 
frequently in the literature. However, there seems to be no effort towards actually 
evaluating it. In what follows we present some necessary and/or sufficient conditions 
for system (1) to be or not to be regular. These conditions prove to be useful starting 
points when checking condition (3). The next result provides a necessary condition 
for system (l) to be nonregular. 

Lemma 1. If det (z tz2E — zxF — z2G — H) = 0 for all (z,, z2), then all of the 
matrices E, E, G, H are singular. 

Proof. Suppose that det (zjZ2E — ztF — z2G — H) = 0 for all [zx, z2) and that 
either of the matrices E, E, G, H is nonsingular, then the pencil zxz2E — zxF — 
— z2G — H can be multiplied by the inverse of the nonsingular matrix to obtain 
a pencil whose determinant cannot be identically equal to zero since the correspond
ing power of z[z\ (0 _ j , k = 1) cannot be eliminated identically. This contradicts 
the assumption. • 

Lemma I may also be constructed as a sufficient condition for regularity. That 
is, if for a given system we find that either of the matrices E, E, G, or H is nonsingular, 
then the system is regular. The next result gives a necessary condition for regularity. 

Lemma 2. If det {zxz2E — zxF — z2G — H) =j- 0 for at least one (z l5 z2), then 
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the array of matrices [E — E — G — H] is of full row rank and the array of matrices 
[ET - ET - GT - HT]T is of full column rank. 

Proof. See [1]. 

Lemma 2 establishes that if either of the two arrays in that statement fails to be 
of full rank, then the system is nonregular. This is a sufficient condition for non-
regularity. Note that the two rank conditions in Lemma 2 are not equivalent. Other 
sufficient conditions for regularity is given next. 

Lemma 3. If at least one of the 1-D pencils (ztF + H), (z2G + H), (z2E — E), 
(ztE — G) is regular, then system (1) is regular. 

Proof. The pencils (ztF + H), (z2G + H) correspond respectively to the special 
cases z2 = 0 and zt = 0. Suppose that either of these two pencils is regular, then 
evaluating det (ztz2E — ztF — z2G — H) accordingly at either z2 = 0 or zt = 0 
shows that the determinant cannot equal zero for all (zt, z2). 

The other two pencils correspond to the limiting cases zt -*• oo and z2 -*• oo. 
Suppose now that either of the two pencils (z2E — E) or (ztE — G) is regular, 
then letting accordingly either zt -» oo or z2 —> oo in the original determinant shows 
that the determinant cannot equal zero for all (zt, z2). • 

These sufficient conditions are very useful starting points to test for regularity 
of 2-D pencils since the regularity of one variable pencils (e.g. (ztE — G)) is easily 
tested using the Luenberger shuffle algorithm [5]. Campbell [2] calls simply regular 
those systems with either (z2E — E) or (ztE — G) regular. However, he does not 
mention the pencils (ztF + H) and (z2G + H). 

From all these necessary and/or sufficient conditions for regularity it may appear 
that 2-D systems are generically regular. Nevertheless, nature is not generic; moreover, 
there are systems whose regularity or nonregularity cannot be determined using the 
test given above. When all of the above tests fail to provide a conclusive result it 
may still be desired to determine whether or not the system at hand is regular. In the 
following section we present a 2-D shuffle algorithm which is a natural extension 
of that of Luenberger [5] for the 1-D case. 

4. THE 2-D SHUFFLE ALGORITHM 

The mere evaluation of condition (3) may not, by itself, justify the development 
of an algorithm that will prove to be far from simple. However, the 2-D shuffle 
algorithm will prove useful for instance in the computation of subspaces for 2-D 
systems. The algorithm will also provide a better understanding of the structural 
properties of 2-D systems and should serve to construct a recursive representation 
of the system when such a representation exists. 

The eventual objective of the algorithm is to obtain an equivalent system with 
advanced inputs whose E matrix (or the matrix playing the role of E) is nonsingular. 
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If this is achieved, the algorithm has been successful in determining that the system 
is indeed regular and a unique solution is guaranteed to exist. Another implication is 
that the equivalent system thus found may then be solved iteratively provided the 
appropriate initial conditions are specified and a suitable input sequence given. The 
action of the algorithm is described next. 

Consider system (1) with E singular. Perform a row compression on E to obtain 

[QJЯИ-IJ+I ~ [ E j p + 1 > I + 
G_x 

'ij+l + ЁЬ+ЙЬ- w 
If at this point either of the matrices Fx or Gx equals zero, then the appropriate 
shuffle (i.e. a forward shift of index i or j respectively) of the lower portion of (4) 
can be performed. The shuffles must be restricted so as to preserve the given shifts 
of the indices of the vector x(;J- in (4). 

Consider now the three possible shuffles in (4). If Fx = 0, then a forward shift 
(or advance) on index i would shuffle — Gx underneath E1% Hx underneath Fx, and 
would create a new index-column for Bx corresponding to input ui+lj. If Gx = 0, 
then the forward shift is done on index j which would shuffle — Fx underneath Ex, Hx 

underneath Gx and would create a new column for Bx corresponding to input uij+1. 
In the event that both Fx and Gx are zero, a forward shift on both indices i and / 
would shuffle —Hi underneath E1 corresponding to input ui+1J+1. These three 
constitute the allowed shuffles. 

This shuffle operation would then be followed by another row compression on the 
array containing E1 and the matrix shuffled under it. In the case that this new " E 
matrix" is nonsingular the algorithm has determined that the system is regular and 
the procedure stops. 

On the other hand, if all of El5 Gl5 and H1 equal zero, then the determinant is 
zero and the algorithm stops, it is concluded that the system is nonregular. It is 
worthwhile examining one of the allowed shuffles. To wit assume that Ft = 0, 
then the appropriate shuffle takes (4) to 

•Gг 

'І+IJ+Í ii]*'«j+p,]*w+'+[f,]*w+pi]-u+[y-.«j. 
(5) 

If at this point the new E matrix in (5) (given by [ET — GT]T) happens to be non-
singular, then (5) becomes a recursive state equation with advanced inputs (e.g. 
ui+1J) which can be solved by iterating forward in i and forward in j provided the 
appropriate boundary conditions are given. If [ET — GT]T is singular, then a row 
compression on it would bring (5) to 

'І+ÍJ+Í 
F, 

x, i+ÍJ + Ш - + 
H: 

H, 
Xti + uu + Й : : Ь -

(6> 
Note that if neither Ft nor Gx in (4) is zero, then no shuffle can be performed 
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while preserving the given indexing. When this is the case further row compressions 
must be performed on either Fl or Gt in order to be able to shuffle. Suppose for 
instance that Ft in (4) has the smallest rank among Ej, Gl5 and Hlt and perform 
a row compression on it to obtain 

2-1 f ł 
0 x / + \J+ 1 — ғ\ 
0 0 

' i + l j + 
~Gt" Hг вt 
G\ XiJ+ 1 + н\ Xi J + в\ 

ß'i H'[ B'[ (?) 

Since F1 was assumed to have smaller rank than G1? the matrix G'[ will probably 
have higher rank than its counterpart F'[ (obtained if the row compression was 
performed on Gx instead). This is why the row compression is performed on the 
matrix with smaller rank. Now, the appropriate shuffle yields 

0 
-G'[ 

Xi + i j + i 

Г ^ l ~Gt 

ғ\ XІ+1J + G\ 
H'í 0 

•ij+i + 

+ 
~#Г в, "0 " 

н\ *, j + в\ ", J + 0 

_°. 0 ßi 
i+lj (8) 

(9) 

A row compression on [ET 0 ( — G'i')T]T yields 

[0
2j *i+u+i = [F^j *.+u + [c2J

 xu+i + 

+l£]*w+[3"w+Bd" i+i-'-
Notice that this equation has the same notation as (6), but that it was obtained 
through a different sequence of steps. Thus, the matrices in (9) need not be the same 
as those in (6). 

A comment about this last step is appropriate. Due to the zero in [ET 0 ( — G'^)7]7, 
it is clear that the row compression on (8)cannot yield a nonsingularE2 in(9). There
fore, the only way in which the algorithm would terminate while obtaining a regular 
system would be after shuffles of equations like (6) without having to perform the 
row compression leading to (7). 

To perform this sort of shuffles it is required that at least one of the matrices 
E2, G2 be zero as noted before. This will happen if and only if Rl([Ej — G[]T) <= 
c «X([ET -HT]T) or Rl([Gl 0]T) in (5). Similar conditions must also hold through
out the algorithm in order for the shuffles to proceed. For instance, for the shuffle 
leading from (4) to (5) to be possible (i.e. E\ = 0) it is necessary and sufficient that 
R^E) cz RL(F). 

From this point on, the action of this part of the algorithm follows a similar 
pattern. The detailed algorithm is given below. The input matrix B is omitted in ordei 
to ease on notation. 
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The 2-D Shuffle Algorithm 

Step 0. Initialize: Set k = 0. Define E0 = —E, E0 = F, G0 = G, H0 = H, 
/o = 0, g0 = 0, /.<, = 0, and let all of E0, G0, H0, E0, E0, G0 be null matrices of 
appropriate dimensions. 

Comment 1. The superscript S denotes shuffled or to-be-shuffled matrices. The 
matrix E0 has been set to be "minus" E in order to avoid confusion with sign changes 
during the algorithm. 

Step 1. Iteration k: Row compression on [Efe 0 (Efe)
T]T 

Ek Fk Gk Hk r -i 
£fc+i rk+i «fc+i -̂ fc+i 

I Gk+1 Hk+1\ 
0 K G'k H'k 

K П Gs

k 0 
0 Efc + 

with Efe+! of full row rank. 

Stop if rank (Ek+1) = n. 
Then, "system is regular", End. 

Else, go to Step 2. 

Step 2. Second level row compression: 

Set/ f e + 1 = rank(E f e + 1), gk+1 = rankfG^+i). 

If /fc+i = dk+i = 0, set/i fe+1 = rank(H f t + 1 ) . 

Then, if Ek+1 > 0, set E< + 1 = Hfe+1, Efe = Gs

k = 0, let all of Efe+ ,, 

Gfe+1, Hfc+i be null matrices, set k = k + 1, go to Step 1. 

Else, Stop, "system is not regular", End. 

Else, i fA + 1 ^ gk+1 perform a row compression of Fk+1 

rp 7=i TT -\ __] ^fc+i Gk+i Hk+i 
Lrfc+1 Ufc+1 " fc+l j ^ n TO E*S 

[y Lfc+i ^k+i j 
with Efe+1 of full row rank. Set Gfe+1 = 0, k = k + 1, go to Step 1. 

Comment 2. Note that this includes the case of/fe+1 = 0 in which case all Efe+1, 
G'k+1> Hk+1 must be set to null matrices and proceed accordingly. That is, set Gs

k+1 = 
= 0, Efe+1 = Gfe+1, E*+1 = Hfe+1, k = k + 1, and go to Step 1. 

Else, perform row compression on Gk+1. 

Tiv ř Ti ~\ A ^k+i Gk+1 Hk+1 lrk+i ^fc+i " fc+i j - * ps n rs 

|_L f e + 1 0 Gk+iJ 
with Gfe+ j of full row rank. Set Efe+1 = 0, k = k + 1, go to Step 1. 

Comment 3. Note that this includes the case of gk+1 = 0 for which all F'k+1, 
G'k+i>H'k+i are set to null matrices and proceed accordingly. See Comment 2 above. 

Note that in order to perform a shuffle during the second step of the algorithm 
at least one of Efe, Gfe must be zero. That is, we must be able to compress either 
Efe+ i or Gfe+1 or else have either of the equal to zero. If this is not the case, the shuffling 
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process cannot proceed since there can be no further row compressions. The only 

possible shuffle would then be by allowing additional columns corresponding to 

additional indices of the vector x(J, other than the original ones. This is best under

stood by interpreting the shuffles as advances in either (or both) of the indices i, j 

as was done at the beginning of this section. 

Creating additional columns with indices shifts other than the originals may be 

undesirable, for then the array of matrices becomes of increasing dimension. An 

alternative option is to introduce what will be called a second shuffle or re-indexing. 

This relabeling will correspond to interchanging the roles of the matrices in the 

algorithm while preserving their role regarding the system equations. The motiva

tion for this interchange is that there is no reason to insist in performing all the shuffles 

towards E (i.e. the coefficient matrix of xi+1J+1) since the nonsingularity of any 

of the system matrices (E, E, G, H) will suffice to detect regularity as shown in Lemma 

1. The second shuffle is performed as follows. 

Step 3. Second Shuffle: 

If both of Efc+1 and Gk+1 are of full row rank, then set E° = [Efc+1 0] T . E° = 
= [Efc

T

+1 Efc

T

+1]
T, G° = [GT

+1 G T

+ 1 ] T , and H° - [HT

+ 1 HT

+1]
T, perform one of 

the assignments below, and go to Step 1. 

Comment 4. Here the superscript O is read "old" and is used to label the old 

arrays of matrices. 

The three alternative shuffles are 

I. Efc = E°, Efc = E°, Gk = H° , я f c = G° 
II. E,£ = G°, Efc = H°, Gk = E° , я f c = E° 

III. Ek = H°, Fk = G°, Gk = E° , я f c = E° 

These are assigned in order, without repeating a previous assignment, and by 

assigning to Ek the matrix E°, G°, or H° with the highest rank. 

That is, either of the assignments I, II, or III is used if, respectively, E°, G°, or 

H° has the highest rank and only if it has not been used previously. 

What the second shuffle (i.e. Step 3) does is to interchange the matrices describing 

the system at the time it is encountered in such a way that the first part of the algo

rithm (i.e. Steps 1 and 2) remains valid in spite of the new assignment. This is best 

understood by considering the situation in detail. 

Suppose that at some point during the algorithm the system is described by 

E°xi+1J+1 + F°xi+1J + G°xiJ+1 + H°XiJ = 0 . (10) 

Recall that the algorithm was initialized with E0 = — E to avoid confusions with 
sign changes and that the input has not been considered in the algorithm. Thus, the 
above is an appropriate system description at any iteration of the algorithm. 

Considered now alternative shuffle I above. This corresponds to rearranging (10) as 

F°xi+1J + E°x,-+1J+1 + H°xitJ + G°xiJ+1 = 0 . (11) 
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Examining the allowed shuffles in (11) it should be clear that they are the same 
sort of shuffles performed by the first part of the algorithm (i.e. Steps 1 and 2). For 
instance, to shuffle anything from E° to E° requires a backward shift on index j . 
This shift would in turn require the corresponding rows in H° to be zero because 
otherwise these rows would have to go to a non-available column corresponding 
to Xjj- i . Moreover, this shift would shuffle the corresponding rows of G° to H°. 
These are precisely the operations performed in the first two steps of the algorithm 
when such a situation arises. 

Other shuffle possibilities are satisfied in a similar manner. Therefore, the algo
rithm would continue to perform normally without a need to define new shuffling 
rules. The other two assignments in Step 3 can be verified to satisfy the shuffling 
rules of Steps 1 and 2 as well. 

It has been seen that the 2-D shuffle algorithm can stop in several ways. First, 
if at some iteration it is found that Ek is nonsingular, then the system is regular and 
the algorithm terminates. Second, if at some iteration it is found that the array 
[Efc+1 Gfc+i Hfc+i] = 0, then the determinant is zero and the system is nonregular. 
In these two situations it is said that the algorithm has terminated successfully since 
it has reached a define conclusion regarding regularity. The shuffle algorithm thus 
provides another test for regularity, 

This result is stated as a proposition. 

Proposition 7.3.2. If there exists an integer L = k + 1 such that EL is nonsingular 
then the system is regular. Furthermore, if for some k it occurs that 

[Fk+i Gk+i Hk+i\ = °> 

then the system is nonregular. 

Finally, if both Fk and Gk are of full row rank, the shuffles cannot proceed. In the 
event that this occurs after going through the three alternative second shuffles, 
the algorithm stops without reaching a definite conclusion about the regularity of 
the system. 

It is seen that the difficulty of the 2-D shuffle algorithm arises from the inability 
to proceed with the shuffling at certain points during the algorithm. The second 
shuffle is an attempt to remedy this situation. 

5. CONCLUSIONS 

Sufficient conditions for regularity of 2-D systems have been presented. A 2-D 
shuffle algorithm has been developed. This algorithm shall prove useful in the study 
of the geometric structure of 2-D systems. This may include computation of subspaces 
and system inversion for 2-D systems. The algorithm may also be used to construct 
a recursive representation of the system when such representation exists. 

(Received November 16, 1990.) 
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