
KYBERNETIKA- VOLUME 27 (1991), NUMBER 3

SHUFFLE ALGORITHM FOR TWO-DIMENSIONAL
SINGULAR SYSTEMS WITH
A FORNASINI-MARCHESINI MODEL

GERSON BEAUCHAMP, FRANK L. LEWIS

The condition for existence of solution for 2-D singular systems is usually stated as the non-
singularity of a matrix pencil in two complex variables. The determinant of this matrix pencil
equals the characteristic polynomial of the system. Although many authors assume this regularity
condition to be satisfied, there has been no apparent effort towards developing computational
methods to evaluate such a condition. In this paper we present several, easy to evaluate, sufficient
conditions to determine whether the regularity condition is satisfied. The main contribution
of the paper is a new 2-D shuffle algorithm which is a natural extension of that of Luenberger [5].
The algorithm is a useful tool to test for regularity and should also contribute to the study of the
geometric structure of 2-D singular systems.

1. INTRODUCTION ; *

By the nature of 2-D systems (e.g. images [7], discrete models for partial differential
equations [6], etc.), the independent variables (i, /) may be spatial coordinates
which do not need to preserve the notion of time. Due to this fact, 2-D systems may
have no natural notion of causality. Singular systems can describe noncausal beha
vior naturally and are therefore well suited for representing 2-D systems.

This paper extends the shuffle algorithm of Luenberger [5] to the 2-D case. The
model under consideration is the singular Fornasini-Marchesini model [3,4}.
In contrast to the algorithm for the 1-D case, the algorithm presented here is quite
complex. The level of complexity is due to the fact that the shuffle operations of the
algorithm must account for two indices instead of one. ,

2. PRELIMINARIES

The model under consideration is the 2-D Singular Fornasini-Marchesini Model
[3, 4] given by

Exi+1J+1 = Fxi+1J + GxiJ+1 + HXiJ + Buitj (la)

y^j = C*i,j ; (lb)

243

for 0 ^ / ^ iV, — 1 and 0 ^ j ^ N2 - 1 where x e R" is the semistate vector,
u e Rm is the input vector, and y e Rp is the output vector. It is assumed that p <;
^ m ^ n. In (l) E is a constant square matrix, generally singular, E, G, H, B, and C
are constant matrices of appropriate dimensions, and Nt and N2 are given integers.
The region of interest in the (/,v)-plane is the 2-D region bounded by the rectangle
[0 ,N J x [0 ,N 2] .

The model may also contain inputs like Bxui+lJ, and B2uiJ+1 [3]. However,
for ease of notation we shall restrict the discussion to model (1) since such input
terms are easily incorporated in the algorithm and do not play a crucial role in the
development.

Note that if E is nonsingular, then (l) can be solved recursively by iterating forward
in both indices / and / given initial conditions x ; 0; I <Z i £ Nlt and x0J; 0 ^ j ^ N2

(i.e. the values of xitj along the (/,/)-axes). Similarly, if E is nonsingular, then the
recursion can be performed by iterating forward in / and backward in / given initial
conditions xi>Nl; 1 ^ i 2| Nl5 and x0J; 0 fS j ^ N2. The cases for nonsingular G
or H are similar to the above.

In any of these events, (1) may be considered to be a state-space system and solved
iteratively provided the appropriate initial conditions are available. The initial
conditions for all of these cases can be selected arbitrarily as long as they are ap
propriate for the given case.

From the above argument it is clear that any of the matrices can play the role
of E is the appropriate initial conditions are specified and a suitable input sequence
given. This phenomenon is, the basis for the second shuffle of the 2-D shuffle algo
rithm presented in this paper. -rr

If all of the matrices E, E, G, and H are singular the situation is more complex
and interesting than those discussed above. In this case the system may still have
a solution provided it is regular. Beauchamp [1] has shown that if (1) is regular (i.e.
det (z1z2E — zxE — z2G — H) =j= 0 for at least one (z l s z2)), then a unique solution
may be obtained by specifying a suitable set of boundary conditions which involve
all of the boundary values. We call boundary values those vectors xtJ in a solution
sequence to (1) which lie on the perimeter (or boundary) of the region [0, N\\ x
x [0, N2]. That is, if a sequence xtJ is a solution to (1), then the vectors xi0, xiMz;
1 ^ / ^ Nu and x0J, xNlJ; 0 ^ j ^ N2 are the boundary values.

It is also shown in [1] how to compute the solution in a recursive manner. In
general, the boundary conditions for this case cannot be specified arbitrarily, but
must satisfy certain restrictions in order for them to lead to a unique solution. This
matter is discussed thoroughly in [1].

244

3. EXISTENCE OF SOLUTION

A sequence xLj is said to be a solution to (1) if and only if (la) holds for a given
input sequence uitj.

Theorem 1. There exists a solution to system (l) for all input sequences uiyj if and
only if

rank \zxz2E — zxF — z2G — H, B] = rank [zxz2E — zxF — z2G — H] .

(2)
Proof. See [3, 1].

A sufficient condition for existence of solution is given by

Corollary 1. If B is of full row rank (or equivalently invertible), then condition
(2)reduces to

det (zxz2E - zxF - z2G - H) -j= 0 (3)

for at least one (z t , z2).

Proof. See [I] .

Condition (3) is called the regularity condition and it is a sufficient condition for
existence of solution for all specified input sequences {«,,,} and all input matrices
B. A system satisfying (3) is called regular and nonregular otherwise.

The main objective of this paper is to present computational methods to determine
when the regularity condition is satisfied. This condition, or similar ones, appear
frequently in the literature. However, there seems to be no effort towards actually
evaluating it. In what follows we present some necessary and/or sufficient conditions
for system (1) to be or not to be regular. These conditions prove to be useful starting
points when checking condition (3). The next result provides a necessary condition
for system (l) to be nonregular.

Lemma 1. If det (z tz2E — zxF — z2G — H) = 0 for all (z,, z2), then all of the
matrices E, E, G, H are singular.

Proof. Suppose that det (zjZ2E — ztF — z2G — H) = 0 for all [zx, z2) and that
either of the matrices E, E, G, H is nonsingular, then the pencil zxz2E — zxF —
— z2G — H can be multiplied by the inverse of the nonsingular matrix to obtain
a pencil whose determinant cannot be identically equal to zero since the correspond
ing power of z[z\ (0 _ j , k = 1) cannot be eliminated identically. This contradicts
the assumption. •

Lemma I may also be constructed as a sufficient condition for regularity. That
is, if for a given system we find that either of the matrices E, E, G, or H is nonsingular,
then the system is regular. The next result gives a necessary condition for regularity.

Lemma 2. If det {zxz2E — zxF — z2G — H) =j- 0 for at least one (z l5 z2), then

245

the array of matrices [E — E — G — H] is of full row rank and the array of matrices
[ET - ET - GT - HT]T is of full column rank.

Proof. See [1].

Lemma 2 establishes that if either of the two arrays in that statement fails to be
of full rank, then the system is nonregular. This is a sufficient condition for non-
regularity. Note that the two rank conditions in Lemma 2 are not equivalent. Other
sufficient conditions for regularity is given next.

Lemma 3. If at least one of the 1-D pencils (ztF + H), (z2G + H), (z2E — E),
(ztE — G) is regular, then system (1) is regular.

Proof. The pencils (ztF + H), (z2G + H) correspond respectively to the special
cases z2 = 0 and zt = 0. Suppose that either of these two pencils is regular, then
evaluating det (ztz2E — ztF — z2G — H) accordingly at either z2 = 0 or zt = 0
shows that the determinant cannot equal zero for all (zt, z2).

The other two pencils correspond to the limiting cases zt -*• oo and z2 -*• oo.
Suppose now that either of the two pencils (z2E — E) or (ztE — G) is regular,
then letting accordingly either zt -» oo or z2 —> oo in the original determinant shows
that the determinant cannot equal zero for all (zt, z2). •

These sufficient conditions are very useful starting points to test for regularity
of 2-D pencils since the regularity of one variable pencils (e.g. (ztE — G)) is easily
tested using the Luenberger shuffle algorithm [5]. Campbell [2] calls simply regular
those systems with either (z2E — E) or (ztE — G) regular. However, he does not
mention the pencils (ztF + H) and (z2G + H).

From all these necessary and/or sufficient conditions for regularity it may appear
that 2-D systems are generically regular. Nevertheless, nature is not generic; moreover,
there are systems whose regularity or nonregularity cannot be determined using the
test given above. When all of the above tests fail to provide a conclusive result it
may still be desired to determine whether or not the system at hand is regular. In the
following section we present a 2-D shuffle algorithm which is a natural extension
of that of Luenberger [5] for the 1-D case.

4. THE 2-D SHUFFLE ALGORITHM

The mere evaluation of condition (3) may not, by itself, justify the development
of an algorithm that will prove to be far from simple. However, the 2-D shuffle
algorithm will prove useful for instance in the computation of subspaces for 2-D
systems. The algorithm will also provide a better understanding of the structural
properties of 2-D systems and should serve to construct a recursive representation
of the system when such a representation exists.

The eventual objective of the algorithm is to obtain an equivalent system with
advanced inputs whose E matrix (or the matrix playing the role of E) is nonsingular.

246

If this is achieved, the algorithm has been successful in determining that the system
is indeed regular and a unique solution is guaranteed to exist. Another implication is
that the equivalent system thus found may then be solved iteratively provided the
appropriate initial conditions are specified and a suitable input sequence given. The
action of the algorithm is described next.

Consider system (1) with E singular. Perform a row compression on E to obtain

[QJЯИ-IJ+I ~ [E j p + 1 > I +
G_x

'ij+l + ЁЬ+ЙЬ- w
If at this point either of the matrices Fx or Gx equals zero, then the appropriate
shuffle (i.e. a forward shift of index i or j respectively) of the lower portion of (4)
can be performed. The shuffles must be restricted so as to preserve the given shifts
of the indices of the vector x(;J- in (4).

Consider now the three possible shuffles in (4). If Fx = 0, then a forward shift
(or advance) on index i would shuffle — Gx underneath E1% Hx underneath Fx, and
would create a new index-column for Bx corresponding to input ui+lj. If Gx = 0,
then the forward shift is done on index j which would shuffle — Fx underneath Ex, Hx

underneath Gx and would create a new column for Bx corresponding to input uij+1.
In the event that both Fx and Gx are zero, a forward shift on both indices i and /
would shuffle —Hi underneath E1 corresponding to input ui+1J+1. These three
constitute the allowed shuffles.

This shuffle operation would then be followed by another row compression on the
array containing E1 and the matrix shuffled under it. In the case that this new " E
matrix" is nonsingular the algorithm has determined that the system is regular and
the procedure stops.

On the other hand, if all of El5 Gl5 and H1 equal zero, then the determinant is
zero and the algorithm stops, it is concluded that the system is nonregular. It is
worthwhile examining one of the allowed shuffles. To wit assume that Ft = 0,
then the appropriate shuffle takes (4) to

•Gг

'І+IJ+Í ii]*'«j+p,]*w+'+[f,]*w+pi]-u+[y-.«j.
(5)

If at this point the new E matrix in (5) (given by [ET — GT]T) happens to be non-
singular, then (5) becomes a recursive state equation with advanced inputs (e.g.
ui+1J) which can be solved by iterating forward in i and forward in j provided the
appropriate boundary conditions are given. If [ET — GT]T is singular, then a row
compression on it would bring (5) to

'І+ÍJ+Í
F,

x, i+ÍJ + Ш - +
H:

H,
Xti + uu + Й : : Ь -

(6>
Note that if neither Ft nor Gx in (4) is zero, then no shuffle can be performed

247

while preserving the given indexing. When this is the case further row compressions
must be performed on either Fl or Gt in order to be able to shuffle. Suppose for
instance that Ft in (4) has the smallest rank among Ej, Gl5 and Hlt and perform
a row compression on it to obtain

2-1 f ł
0 x / + \J+ 1 — ғ\
0 0

' i + l j +
~Gt" Hг вt
G\ XiJ+ 1 + н\ Xi J + в\

ß'i H'[B'[(?)

Since F1 was assumed to have smaller rank than G1? the matrix G'[will probably
have higher rank than its counterpart F'[(obtained if the row compression was
performed on Gx instead). This is why the row compression is performed on the
matrix with smaller rank. Now, the appropriate shuffle yields

0
-G'[

Xi + i j + i

Г ^ l ~Gt

ғ\ XІ+1J + G\
H'í 0

•ij+i +

+
~#Г в, "0 "

н\ *, j + в\ ", J + 0

_°. 0 ßi
i+lj (8)

(9)

A row compression on [ET 0 (— G'i')T]T yields

[0
2j *i+u+i = [F^j *.+u + [c2J

 xu+i +

+l£]*w+[3"w+Bd" i+i-'-
Notice that this equation has the same notation as (6), but that it was obtained
through a different sequence of steps. Thus, the matrices in (9) need not be the same
as those in (6).

A comment about this last step is appropriate. Due to the zero in [ET 0 (— G'^)7]7,
it is clear that the row compression on (8)cannot yield a nonsingularE2 in(9). There
fore, the only way in which the algorithm would terminate while obtaining a regular
system would be after shuffles of equations like (6) without having to perform the
row compression leading to (7).

To perform this sort of shuffles it is required that at least one of the matrices
E2, G2 be zero as noted before. This will happen if and only if Rl([Ej — G[]T) <=
c «X([ET -HT]T) or Rl([Gl 0]T) in (5). Similar conditions must also hold through
out the algorithm in order for the shuffles to proceed. For instance, for the shuffle
leading from (4) to (5) to be possible (i.e. E\ = 0) it is necessary and sufficient that
R^E) cz RL(F).

From this point on, the action of this part of the algorithm follows a similar
pattern. The detailed algorithm is given below. The input matrix B is omitted in ordei
to ease on notation.

248

The 2-D Shuffle Algorithm

Step 0. Initialize: Set k = 0. Define E0 = —E, E0 = F, G0 = G, H0 = H,
/o = 0, g0 = 0, /.<, = 0, and let all of E0, G0, H0, E0, E0, G0 be null matrices of
appropriate dimensions.

Comment 1. The superscript S denotes shuffled or to-be-shuffled matrices. The
matrix E0 has been set to be "minus" E in order to avoid confusion with sign changes
during the algorithm.

Step 1. Iteration k: Row compression on [Efe 0 (Efe)
T]T

Ek Fk Gk Hk r -i
£fc+i rk+i «fc+i -̂ fc+i

I Gk+1 Hk+1\
0 K G'k H'k

K П Gs

k 0
0 Efc +

with Efe+! of full row rank.

Stop if rank (Ek+1) = n.
Then, "system is regular", End.

Else, go to Step 2.

Step 2. Second level row compression:

Set/ f e + 1 = rank(E f e + 1), gk+1 = rankfG^+i).

If /fc+i = dk+i = 0, set/i fe+1 = rank(H f t + 1) .

Then, if Ek+1 > 0, set E< + 1 = Hfe+1, Efe = Gs

k = 0, let all of Efe+ ,,

Gfe+1, Hfc+i be null matrices, set k = k + 1, go to Step 1.

Else, Stop, "system is not regular", End.

Else, i fA + 1 ^ gk+1 perform a row compression of Fk+1

rp 7=i TT -\ __] ^fc+i Gk+i Hk+i
Lrfc+1 Ufc+1 " fc+l j ^ n TO E*S

[y Lfc+i ^k+i j
with Efe+1 of full row rank. Set Gfe+1 = 0, k = k + 1, go to Step 1.

Comment 2. Note that this includes the case of/fe+1 = 0 in which case all Efe+1,
G'k+1> Hk+1 must be set to null matrices and proceed accordingly. That is, set Gs

k+1 =
= 0, Efe+1 = Gfe+1, E*+1 = Hfe+1, k = k + 1, and go to Step 1.

Else, perform row compression on Gk+1.

Tiv ř Ti ~\ A ^k+i Gk+1 Hk+1 lrk+i ^fc+i " fc+i j - * ps n rs

|_L f e + 1 0 Gk+iJ
with Gfe+ j of full row rank. Set Efe+1 = 0, k = k + 1, go to Step 1.

Comment 3. Note that this includes the case of gk+1 = 0 for which all F'k+1,
G'k+i>H'k+i are set to null matrices and proceed accordingly. See Comment 2 above.

Note that in order to perform a shuffle during the second step of the algorithm
at least one of Efe, Gfe must be zero. That is, we must be able to compress either
Efe+ i or Gfe+1 or else have either of the equal to zero. If this is not the case, the shuffling

249

process cannot proceed since there can be no further row compressions. The only

possible shuffle would then be by allowing additional columns corresponding to

additional indices of the vector x(J, other than the original ones. This is best under

stood by interpreting the shuffles as advances in either (or both) of the indices i, j

as was done at the beginning of this section.

Creating additional columns with indices shifts other than the originals may be

undesirable, for then the array of matrices becomes of increasing dimension. An

alternative option is to introduce what will be called a second shuffle or re-indexing.

This relabeling will correspond to interchanging the roles of the matrices in the

algorithm while preserving their role regarding the system equations. The motiva

tion for this interchange is that there is no reason to insist in performing all the shuffles

towards E (i.e. the coefficient matrix of xi+1J+1) since the nonsingularity of any

of the system matrices (E, E, G, H) will suffice to detect regularity as shown in Lemma

1. The second shuffle is performed as follows.

Step 3. Second Shuffle:

If both of Efc+1 and Gk+1 are of full row rank, then set E° = [Efc+1 0] T . E° =
= [Efc

T

+1 Efc

T

+1]
T, G° = [GT

+1 G T

+ 1] T , and H° - [HT

+ 1 HT

+1]
T, perform one of

the assignments below, and go to Step 1.

Comment 4. Here the superscript O is read "old" and is used to label the old

arrays of matrices.

The three alternative shuffles are

I. Efc = E°, Efc = E°, Gk = H° , я f c = G°
II. E,£ = G°, Efc = H°, Gk = E° , я f c = E°

III. Ek = H°, Fk = G°, Gk = E° , я f c = E°

These are assigned in order, without repeating a previous assignment, and by

assigning to Ek the matrix E°, G°, or H° with the highest rank.

That is, either of the assignments I, II, or III is used if, respectively, E°, G°, or

H° has the highest rank and only if it has not been used previously.

What the second shuffle (i.e. Step 3) does is to interchange the matrices describing

the system at the time it is encountered in such a way that the first part of the algo

rithm (i.e. Steps 1 and 2) remains valid in spite of the new assignment. This is best

understood by considering the situation in detail.

Suppose that at some point during the algorithm the system is described by

E°xi+1J+1 + F°xi+1J + G°xiJ+1 + H°XiJ = 0 . (10)

Recall that the algorithm was initialized with E0 = — E to avoid confusions with
sign changes and that the input has not been considered in the algorithm. Thus, the
above is an appropriate system description at any iteration of the algorithm.

Considered now alternative shuffle I above. This corresponds to rearranging (10) as

F°xi+1J + E°x,-+1J+1 + H°xitJ + G°xiJ+1 = 0 . (11)

250

Examining the allowed shuffles in (11) it should be clear that they are the same
sort of shuffles performed by the first part of the algorithm (i.e. Steps 1 and 2). For
instance, to shuffle anything from E° to E° requires a backward shift on index j .
This shift would in turn require the corresponding rows in H° to be zero because
otherwise these rows would have to go to a non-available column corresponding
to Xjj- i . Moreover, this shift would shuffle the corresponding rows of G° to H°.
These are precisely the operations performed in the first two steps of the algorithm
when such a situation arises.

Other shuffle possibilities are satisfied in a similar manner. Therefore, the algo
rithm would continue to perform normally without a need to define new shuffling
rules. The other two assignments in Step 3 can be verified to satisfy the shuffling
rules of Steps 1 and 2 as well.

It has been seen that the 2-D shuffle algorithm can stop in several ways. First,
if at some iteration it is found that Ek is nonsingular, then the system is regular and
the algorithm terminates. Second, if at some iteration it is found that the array
[Efc+1 Gfc+i Hfc+i] = 0, then the determinant is zero and the system is nonregular.
In these two situations it is said that the algorithm has terminated successfully since
it has reached a define conclusion regarding regularity. The shuffle algorithm thus
provides another test for regularity,

This result is stated as a proposition.

Proposition 7.3.2. If there exists an integer L = k + 1 such that EL is nonsingular
then the system is regular. Furthermore, if for some k it occurs that

[Fk+i Gk+i Hk+i\ = °>

then the system is nonregular.

Finally, if both Fk and Gk are of full row rank, the shuffles cannot proceed. In the
event that this occurs after going through the three alternative second shuffles,
the algorithm stops without reaching a definite conclusion about the regularity of
the system.

It is seen that the difficulty of the 2-D shuffle algorithm arises from the inability
to proceed with the shuffling at certain points during the algorithm. The second
shuffle is an attempt to remedy this situation.

5. CONCLUSIONS

Sufficient conditions for regularity of 2-D systems have been presented. A 2-D
shuffle algorithm has been developed. This algorithm shall prove useful in the study
of the geometric structure of 2-D systems. This may include computation of subspaces
and system inversion for 2-D systems. The algorithm may also be used to construct
a recursive representation of the system when such representation exists.

(Received November 16, 1990.)

251

R E F E R E N C E S

[1] G. Beauchamp: Algorithms for Singular Systems. Ph. D. Thesis, School of Electrical Engineer
ing, Georgia Institute of Technology, Atlanta, GA 30332, 1990.

[2] S. L. Campbell: Comments on 2-D descriptor systems. Proc. IFAC Workshop on System
Structure and Control: State-Space and Polynomial Methods, pp. 249—252, Prague, Sept.
1989.

[3] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem for general
singular model of 2-D systems. Electronics and Electrotechnics, Accademia Polacca della
Scienze, Vicolo D^ria 2, 03-187 R:>ma, 1988.

[4] T. Kaczorek: Solvability of the singular Fornasini-Marchesini's model and its reduction
to an equivalent 1-D model with variable structure. Electronics and Electrotechnics, Accade
mia Polacca della Scienze, Vicolo Doria 2, 00-187 Roma, 1988.

[5] D. G. Luenberger: Time-invariant descriptor systems. Automatica 14 (1978), 473 — 480.
[6] W. Marszalek: Two-dimensional state-space discrete models for hyperbolic partial differential

equations. Appl. Math. Modeling 8 (1984), 11—14.
[7] R. P. Roesser: A discrete state-space model for linear image processing. IEEE Trans. Automat.

Control AC-20 (1975), 1-10.

Dr. Gerson Beauchamp, Electrical and Computer Engineering Department, University of Puerto
Rico, Mayaguez, Puerto Rico 00709. U.S.A.
Prof . Dr. Frank L. Lewis, Automation and Robotics Research Institute, University of Texas at
Arlington, 7300 Jack Newell Blvd. 2, Ft. Worth, Texas 76118. U.S.A.

252

