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A SIMPLE DEFINITION OF HIDDEN MODES, POLES 
AND ZEROS 

MICHEL FLIESS 

Simple definitions of hidden modes, poles and zeros of multivariable constant linear systems 
are given by means of elementary module theory. 

INTRODUCTION 

This paper should be read in conjunction with [8], where basic structural pro
perties, such as controllability, observability and state-variable representation, of 
constant or time-varying generalized linear systems were examined in the context 
of module theory. Our aim here is to illustrate this approach by giving a simple and 
transparent definition of hidden modes, poles and zeros of constant multivariable 
linear systems. The algebraic interpretation of poles and zeros is of course easy via 
transfer matrices (see, e.g., Kailath [10]). The need has nevertheless been felt by 
several authors (cf. Francis and Wonham [9], MacFarlane and Karkanias [12], 
Wonham [15], Wyman and Sain [16], Conte and Perdon [3]) for other types of 
developments. The first attempt with multivariable hidden modes is due to Rosen-
brock [13] (see also Blomberg and Ylinen [1] and Callier and Desoer [2]). The fact 
that this field of research is still active is demonstrated by a recent and well document
ed survey due to Schrader and Sain [14]. 

Elementary module theory permits to define a system without reference to a pecu
liar choice of equations [8]. It is therefore possible to circumvent some of the diffi
culties which were previously encountered. Hidden modes, poles and zeros are 
characterized as the eigenvalues of the derivation d/dt acting on appropriate finitely 
generated torsion modules. 

Preliminary versions were presented in [6, 7]. 
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1. NOTATION AND TERMINOLOGY 

1.1. Denote by k\d\dt] the set of linear differential operators of the form 

V d a 

finite a t 

with coefficients in a commutative field k of constants. This means that, for any 
a e k, da\dt = a = 0. 

1.2. Denote by \w] the fc[d/dt]-module spanned by a set vv = (w; j i el}. 

1.3. A dynamics B is a finitely generated fc[d/dt]-module, which contains a finite, 
but possibly empty set u = (wl5 ..., t/m) of quantities which play the role of input 
variables, and such that the quotient module Q)\\u] is torsion. The input is 
independent, i.e., \u] is free. Output variables can be chosen as a finite set y = 
= (y±, ..., yp) of a quantities in B. 

2. HIDDEN MODES OR DECOUPLING ZEROS 

2.1. Assume that the dynamics B is uncontrollable, i.e., that Q) is not a free k\djdt]-
module [8], Then B contains a unique maximal torsion submodule 2T, which 
is finitely generated and therefore finite-dimensional as a fc-vector-space. Denote 
by T: &" -> 3~ the /c-linear mapping induced by the derivative d/dt. The input-
decoupling zeros are the eigenvalues of x over an algebraic closure k of k. 

2.2. Remark. The dynamics B, with a possible output y, possesses the following 
state-variable representation [8]: 

dx 
— = Ax + Bu 
dt 
y = Cx+ £ Da^ (1) 

f i n i t e <Jt 

where x, u, y are column vectors with n, m, p components respectively. With respect 
to the Kalman decomposition into controllable and uncontrollable subspaces, 
the matrix A can be written 

uncontrollable / A i 0 
controllable I * A, 

The input-decoupling zeros are the eigenvalues of At. 

2.3. Assume that the dynamics B is unobservable with respect to the output y, 
i.e., that \u, y] is strictly included in B [8]. The quotient module Sf = 3)\\u, y] 
is torsion and finitely generated. Denote by a: 9* —> $P the k-linear mapping induced 
by d/dt. The output-decoupling zeros are the eigenvalues of a over k. 

2.4. Remark. With respect to the Kalman decomposition of (1) into observable 
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and unobservable subspaces, A can be written 

observable / * j 0 

unobservable \ * A2 

The input-decoupling zeros are the eigenvalues of A2. 

2.5. The set of hidden modes or decoupling zeros is the union of the sets of input-
decoupling and output-decoupling zeros. 

2.6. Example. The system y = u, where m = p = 1, has the minimal realization 

x = 0 

y = x + u (2) 

which is uncontrollable. There is only one hidden mode, zero, which is an input-
decoupling zero. 

3. POLES AND ZEROS 

3.1. We use the notations of Section 2.1. The quotient module J5" = Q)\2T is free. 
Since the intersection of [u\, which is assumed to be free, and J7" is trivial, i.e., 
[u\ n T = 0, there is a canonical injection of [u\ into J5". We therefore might consider 
with a slight abuse of notations the components of u as elements of J5". The quotient 
A = !F\[u\ is a finitely generated torsion module. Denote by 3: A -*• A the k-linear 
mapping induced by d/dt. The poles of the dynamics Q are the eigenvalues of d over k. 

3.2. Remark. The poles are the eigenvalues of the matrix A3 defined in 2.2. 

3.3. When working with a dynamics 2 with output y, we must "kill" the effects 
of uncontrollability and unobservability, which are taken into account by the hidden 
modes. Let J"\ be the maximal torsion submodule of [u, y\. The quotient module 
J7 ' = [u, y\\$~\ is free. As in 3.1, we might consider the components of u as elements 
of J*'. The quotient A' = &r'\[u\ is a finitely generated torsion module, on which 
d/dt induces a £>linear mapping <5': A' -> A'. The poles of the dynamics & with 
output y are the eigenvalues of 8' over k. 

3.4. Remark. With respect to the Kalman decomposition, take in (1) the maximal 
controllable and observable subspace. The matrix A thus reads 

controllable and observable {/A4 j * 

uncontrollable and/or unobservable | \ * 

The poles are the eigenvalues of A4. 

3.5. Example (continued). From (2) we see that the system y = u has no poles. 
This is confirmed by the fact that its transfer function is 1. 

3.6. Denote by J, [y, J t ' J c J c [u, y\, the maximal module such that the 
quotient 3 = ^\[y, J ^ ] is torsion (and, of course, finitely generated). The system 
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with input u and output y is left-invertible [4, 5] if, and only, if, the two modules J 

and [w, y] coincide (1 ) . The inverse dynamics is, by definition, 3 . Denote by e: 

3 -* 3 the ^-linear mapping induced by d/dt. The zeros are the eigenvalues of 

£ over k. 

3.7. Remark. When the system is left-invertible, the zeros are the poles of the 

left-inverse system. (Received November 8, 1990.) 
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1 In [4,5] we employed the more or less equivalent language of differential k-vector spaces. 
It should be clear to the reader that the differential dimension of such a vector space corresponds 
to the rank of the module [11]. The differential dimension is, therefore, zero if, and only if, 
the module is torsion. 
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