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LIKELIHOOD RATIO RANK TESTS 
FOR THE TWO-SAMPLE PROBLEM 
WITH RANDOMLY CENSORED DATA* 

KONRAD BEHNEN, GEORG NEUHAUS 

In the two sample problem with random censorship likelihood ratio rank tests are constructed 
for testing randomness versus cones of alternatives which are generated by a finite number of 
suitable score functions. These nonlinear rank tests improve the range of power sensitivity 
of the corresponding linear rank tests. The applicability of the asymptotics is demonstrated by 
Monte Carlo simulation. 

1. INTRODUCTION 

The aim of the present paper is to construct a class of likelihood ratio rank tests 
for the two sample problem of testing randomness versus general stochastically 
larger alternatives under the assumption of random censorship. The new tests are 
designed to have larger ranges of sensitivity than the usual linear rank tests. In order 
to achieve this goal we replace the single direction of asymptotic alternatives corres
ponding to the optimal score function of a linear rank test by a cone which is genera
ted by a finite number of suitable score functions. The actual choice of the proposed 
cone is based on the consideration of so-called generalized shift alternatives, where the 
amount of shift may depend on the value of the observation. This seems to be more 
realistic than the classical shift model, which assumes that the two treatments differ 
by constant shift only. In contrast, the family of generalized shift alternatives may 
be identified with the nonparametric alternative that the distribution of the first 
sample is stochastically larger than the distribution of the second sample. 

The sample sizes will be m (first sample) and n (second sample), and N = m + n 
is the pooled sample size. Let (Xx, Ax), ..., (Xm, Am) and (Xm+ x, Am+ x), ..., (XN, AN) 
be the observable random variables (rv's) of the respective first and second sample, 

* Presented at the "Kolloquium Liber Mathematische Statistik im Rahmen der Wissenschaft-
lichen Kolloquien der Universitat Hamburg und der Karls-Universitat Prag", Hamburg, June 
1989. 
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i.e., the value of Xt is the ith observation, where At = 1 indicates an uncensored 
observation and At = 0 means that the value of Xt results from censoring. 

In order to specify the general model we use the unobservable random variables 
Xtl, ..., X1N for the potential measurements and the unobservable random variables 
X21, ...,X2N for the potential censoring points, i.e. the observable pairs (XhAt) 
are defined as (for i = 1, ..., N) 

X{ = mm(XlhX2^), A, = l(Xu < X2i) , (1.1) 

where l(Xij ^ X2i) is the indicator function of the event {X1( < X2i}. 

We assume the first sample Xlt, ...,Xlm of potential measurements to be i.i.d. 
with continuous df Fu the second sample Xlm+ u ..., X1N of potential measurements 
to be i.i.d. with continuous df E2, and the censoring rv's X21, ...,X2N to be i.i.d. 
with continuous df G (equal censoring). Additionally we assume the censoring rv's 
(X21, ...,X2N) and the measurement rv's (X1]L, ...,X1N) to be stochastically in
dependent (random censoring). 

Our aim will be the construction of tests with suitable power properties for testing 
the null hypothesis of randomness 

^0:F1=F2 (1.2) 

versus the nonparametric alternative 

*1:Fl < :E 2 , Ex # E 2 (1.3) 

that the underlying distribution Ex of the first sample Xn, ...,Xlm is stochastically 
larger than the underlying distribution E2 of the second sample Xlm+1, ...,X1N. 

In fact, only the ranks R1; ..., R^ of the pooled sample Xlf ...,XN and the censor
ing indicators A x, ..., AN will be used in the definition of the proposed tests. 

In order to achieve our goal we use asymptotic theory (N —> oo) for suitable 
cones in J4? 1: 

For any total sample size N — 2 we assume sample sizes m = mN and n = nN 

such that m -> oo and n -> oo as N -> oo. For given dimension r e N and any column 
vector 9- e Ur we define asymptotic generalized shift alternatives at E according to 

<?(Xu)~F(x-cm9TD(x)), (1.4) 

lfnm\ 11/m as 1 < i < m , , _v 
CNi~ y]\N J l-l/n as m + 1 < i < N , 

where E is a given df with absolutely continuous density / and finite positive Fisher-
information. 

0 < 1(f) = ft/'//)2 dE < oo , (1.6) 

and where D = (Dl5 ..., Dr)
T is a given vector of bounded generalized shift functions 

De: U -> (0, oo) with bounded and continuous derivative dQ, Q = I, ..., r. 
Defining 

Tt(x):= x - t$TD(x), xeU, (1.7) 
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we notice that the assumptions on D and d = (Di, ..., Dr)
T imply the function Tt: 

R -> U to be bijective, strictly increasing, and continuously differentiable with 
derivative Tt = 1 — t3Td, if the factor t e U fulfils the condition 

M i i^ iu < i (1.8) 
with || • fl„ being the supnorm. Thus, if N is sufficiently large (or if \3\ is sufficiently 
small), formula (1.4) defines a proper distribution with df E o TCN. and continuous 
density fCN. according to 

ft = (f0Tt)(l-t3
Td). (1.9) 

Obviously the assumption 3 i_ 0 (componentwise) implies 

Ei(x) := F(x - cN13
T D(x)) = F(x - cNN3T D(x)) = : F2(x) Vx e R , 

i.e. the distribution of the first sample is stochastically larger than the distribution 
of the second sample. Conversely, if F1 fS E2 holds true then there exists some 
function D: M. -> [0, oo) with the property Ei(x) = E2(x — D(x)) Vx. Therefore 
arbitrary stochastic larger alternatives may be described by generalized shift functions. 

Thus, testing the null hypothesis 3 — 0 versus the alternative hypothesis 3 ̂  0, 
5 + 0 under the model (1.4) (with fixed E and fixed vector D = (Du ..., Dr)

T of 
generalized shift functions) can be viewed as a sub-problem of the general problem 
of testing J^0 versus Jf t. Obviously 3 i_ 0 specifies a cone in the general model 
J4?0 U 3tf?

1 which corresponds to (E, D). 
In the next section we prove the local asymptotic normality of the corresponding 

sequence of statistical experiments and derive asymptotic likelihood ratio tests for 
testing 3 = 0 versus 3 = 0, 3 =j= 0. 

The final version of the proposed asymptotic likelihood ratio test will be based 
on an r-vector SN = (S1N, ..., SrN)T of linear rank statistics SgN of the form (for 
0 = 1,...» r) 

SsN = Z ̂ (A^l + (1 - At) b%t), (1.10) 
i = l 

where b{
eN\,..., b$N and b{

gN\, ..., b{
gN

}
N are two sets of scores and where Rlf ..., RN 

are the ranks of the observable sample Xx, ...,XN. 
The resulting (conditional) rank test will be distribution free under the general 

null hypothesis of randomness M'0, i.e. the (conditional) null distribution will be 
the same for any Ex = E2 and any censoring df G. 

2. LOCAL ASYMPTOTIC NORMALITY AND THE ASYMPTOTIC 
LIKELIHOOD RATIO TEST 

In addition to (1.4) and (1.6) we assume that the censoring df G has a Lebesgue (X) 
density g and, naturally, 

E{x: G(x) < 1} > 0 . (2.1) 
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If v denotes the counting measure on the set {0, 1} and if n = X x v denotes the 
product measure of X and v o n R x {0, 1} it's easily proved that /(z; cm) according to 

f(z; t) = <5(l - G(x))ft(x) + (l-d)(X-Fo Tt(x)) g(x), 

z = (x,S)eU x {0, 1} , (2.2) 

is a //-density of the distribution of the observable rv Z, = (X(, At), cf. (1.7) to (1.9). 
Under the assumptions (1.6) and (2.1) Fisher's information J(f, g, 9TD) of/(«; t) 

at t = 0 is finite and positive, if (<9TD)2 > 0 holds true: 

, : - , ( , , , . * * ) - . W I - - ^ Y 
\ Ot 1,-0/ 

_ r/_ _ ^^ _ 3Td\
2 (i _ G) dp + r _ZL_ (^Dy dG e (o,«). 

Since f2(STD)2j(i - F) > 0 [E], formula (2.1) implies J > 0. The first of the two 
integrals clearly is finite because of (1.6). The finiteness of the last integral follows 
from the boundedness of STD and / 2 / ( l - E), the latter following from f(x) = 
= - f » / ' < U a n d 

f2(x) _ (fff dX)2 = (fj° g j dEJ _ /(/) (1 - E(x)) (2.3) 

by the Cauchy-Schwarz inequality. 
Under the above assumptions the densities (1.9) are 2-differentiable at t = 0, 

more exactly, 

? (//!2 _ /i/2) _+ yi/2 / T &TD __ 5T r f\ _ . . A a s , ^ 0 p.4) 

in quadratic mean with respect to the Lebesgue measure X on U. 

Proof of (2.4). If STd = 0 we are in the classical shift situation for which (2.4) 
is well-known, see e.g. [2] p. 211/212. 

Now assume STd 4= 0. Since the derivatives dg are bounded we may assume that 
the condition (1.8) is fulfilled. Then the function Tt defined in (1.7) is bijective, 
strictly increasing, and continuously differentiable on U. The same holds true for 
the inverse function T._1. Therefore we have the following inequality for 5 + 0, 
\s\ \\&rd\\x < 1, cf. [2] p. 212, 

/.(,«• -'"'>)'-'£[].(?)'«>' 
i r rr (IT o _2(_j__)a - __j) + (f_ rt)(-M)y dXidt 

sJoUn (/oT,)(l-t^/) J 
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since (T t
-1)' = 1/(1 — tSrd a Tt~

l). According to the Lebesgue convergence theorem, 
under the above assumptions o n / a n d D, the integral in square brackets is continuous 
in t in a neighbourhood of t = 0. Consequently, the lim sups_0 of the L.H.S. doesn't 
exceed \h2 61. Since the convergence in (2.4) holds true X — a.s., Vitali's theorem 
implies the convergence (2.4) in quadratic mean. • 

Without any further assumption on G the quadratic mean convergence (2.4) 
implies 

2 ( / 1 / 2 ( ' ; 0 - / 1 / 2 ( s O ) ) - ^ i ^ L2(Xxv) as H O (2.5) 

with 

h^x, 5) = 5(1 - G(x)Y'2 h(x) + (1-6) ( - ^ - r Y ' V M $T D(x) , 
\1 - F(x)J 

which is equivalent to 

-{/-*(', 6;t)-fl'-(-,.6;0))-+^(',6) in L2(X) as t -> 0 

for (5 = 0 and 5 = 1. For 5 = 1 the assertion immediately follows from (2.4). For 
5 = 0 the pointwise convergence is clear, and Vitali's theorem is applicable, since 
we have 

? (fl>(x, 0; 0 - /*/*(*, 0; 0)) = g^(x) (Sr D(x)) U?- 0 iftoY'* 

for some suitable tx between 0 and t, and since the R.H.S. is bounded by g1/2(x) . 
. ||dTZ)||00P /2(/), cf. inequality (2.3). 

Recently [3] has derived (2.5) in a more general (not necessarily translation) 
setting. 

In the sequel let PN$ denote the joint distribution of the observable rv's (Xx, At), ... 
..., (XN, AN) under the (local asymptotic) model (1.4), i.e. for any N = 2 and any 
i = 1, . . . , N t h e d f o f Z i ; i s E o TCN. and the df ofX2f is G. 

Let H denote the df of Xt under the null hypothesis PN0, i.e., 

H = 1 - (1 - E) (1 - G), 

and define the random vector T^ = (T1N, ..., TrN)r by (for Q = 1, ...,r) 

TQN = i UAtfXHfr)) + (1 - At) bi2\H(Xi))) (2.6) 
1 = 1 

with 

if'.(-Cr')(n,.r')-(.(.r')1 

if».(L.F')(l)1.H-'), 

where H_1 is the left-continuous inverse of H. 

(2.7) 
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Using the regression functions pf- (r> ' - ' 1 r 

Pl(u) = PN0{Ax = l\H(Xi) = u}, 

p2(u) = 1 - Pi(u) , 0 < « < 1. (2-8) 

we define an inner product <•, ->o °n t h e s P a c e L" = L2^ 1) x Li(0,1) by (for all 

(ax,a2),(bx,b2)eL2

2) 

< ( a l 9 « 2 ) , (&,., fo2)>0 = Jo «i*>iJ>i d l + Jo «2&2P2 <U , 

= J( f l l o H) (bx o H) (1 - G) dE + J(a 2 o H) (b2 o H) (1 - E) dG . (2.9) 

Finally, we assume that the r x r-matrix 

r = mi)^^(b(:\b(2))y0)e,a,x_r (2.io) 

corresponding to the functions (2.7) exists and is non-singular. (Especially the 
proportional hazard assumption (3.3) will imply the existence of E.) 

Under the above assumptions and notations the q.m.-differentiability (2.5) and 

[8] (Theorem 79.2 and Lemma 80.11) yield the following LAN-result. 

Theorem 2.1. Assume mNJN -> n e (0, 1) as N -> oo. Then, for any given # e W, 
we have the limiting law 

&(TN\Pm)->*jr(rs,r) (2.11) 

and the approximation 

dPm 

dP л 

exp (FTS - i Fr$ + °PN0{1)) . (2.12) 

Notice, because of (2.7) we have 

W4*iWQ) + (i - --*) &?W**))) 
= J(o<l> o H) (1 - G) dE + J(/><2> o H) (1 _ E) dG 

= SfgDedX-SfgDed! = 0. 

Remark 2.2. For any Q = 1,..., r let bgN\,..., beNN and b(2

N\,...,b(2

N\ be two sets 
of scores such that the corresponding jump-functions 

* $ ( " ) - Z * # « l ( ^ r . S « < - V 0 < u < l , (2.13) 
t=i \ IV Nj 

converge to b(

Q

j) in L2(0, 1), ; = 1, 2. Then the assertions of Theorem 2.1 remain 
true if TV is replaced by the statistic SN defined in formula (1.10), cf. [5] Theorem 3.3. 

• 
Now we use Theorem 2.1 in order to construct an asymptotic likelihood ratio 

test for testing {PN0} versus {Pm: 9 ^ 0, S 4= 0}: 
According to (2.12) and the remark the likelihood ratio dPN&jdPNQ is approximated 

by exp (STSN — jSTrS). Therefore, the asymptotic likelihood ratio test is based 
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on the likelihood ratio statistic LR(T, Sjv) of the limiting model, i.e. 

LR(T, x) = sup (2STx - $Tr$), x € W . ( 2 1 4 ) 
ago 

It's well-known how to evaluate the supremum LR(T, x), cf. [4], [6], [7J: If T — 
= 6v)e,<r=i,...,r is positive definite then (Vx e W) 

LR(T,x) = max [xXrjxjY1
 Xj: ( T ^ j ) - 1 i , = 0, 0 * J c R} , (2.15) 

where R = {1, ..., r}, Xj = (x,-: i e J ) T , and T/x/ is the \j\ x [j[ - matrix (yea)e,°eJ-
If the dimension r is small the evaluation of (2.15) is quite easy. In Section 3 we 
choose r = 3. 

Another representation of LR(T, x) is given by 

LR(T, x) = (max (0, sup {STx: $Tr$ = l}))2 . (2.16) 

Making use of the compactness of {#: #TT# = 1} we can prove that the function 
LR(T, x) is continuous in (T, x) on the set 

{(T, x) e UrXr x W:r positive definite} . 

Using the continuity of LR(T, x) in x the limiting law (2.11) and Remark 2.2 
imply the convergence in distribution of LR(T, SJV) under {Pjva}. In the presence 
of censoring these asymptotic results are of limited value, since SN and LR(T, •) 
are constructed on the basis of fixed df's T and G. In practice, however, the actual 
df s T* and G*, say, are unknown. Therefore, even under the null hypothesis corre
sponding to E* and G*, the limiting distribution of LR(E, SN) will depend on E* 
and G*. Moreover, this dependence is too complicated as to estimate the unknown 
quantities of the limiting distribution by the data. Only in the case E = E*, G = G* 
the limiting distribution will be quite simple, namely a mixture of ^-distributions. 
cf. [4], [6], [7]. 

We escape these difficulties by the conditioning device of [5]. The crucial fact 
is that for arbitrary continuous df s E* and arbitrary continuous censoring df s G* 
the rank vector R = (R l5 ...,Rjv) and the vector A{ > = 'Atf = (zl(1), ...,A{N)) of 
censoring rv's corresponding to the ordered observations (X(1), ...,X(1V)) of 
(Xt, ...,XN) are independent under the null hypothesis J^0. In this situation the 
distribution of R is the uniform distribution %N on the set of all permutations of 
(1, . . . ,N ) , shortly: R ~ (JUN. Likewise, the vector of antiranks 

D = (£>!, ..., Djy) defined by RD. = i VI = i = N 

has the uniform distribution °UN under Jf 0. 
Thus, rewriting the definition (1.10) of SN = (S1N, ...,SrN)r according to 

SN(D, A{ }), where 

SeN = SeN(D, J ( >) = X cNDi(A^b% + (1 - A") Z>(2)) , (2.17) 

leads to the idea of conditioning the test statistic SN(D, <d( }) on the observed value 
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S 6 {0, 1}* of zl( >. The corresponding test function may be written in the form 

9#.*)-fc * ^ ' S ~ ( ' " ) ) - C N M ) ' (2-18) 
™v ' ( 0 , otherwise, v ' 

where d = (du ..., dN) is any permutation of (1, ...,N) and where c^a, 5) is the 
upper (1 — a)-quantile of the distribution of LR(E, Sjv(D, <5)) under D ~ <WN and 
fixed 5 e (0, 1}*. Then, under the null hypothesis point corresponding to Fx = F2 = 
= F* and censoring df G* we have 

E-.,G.,w(l>, _< >) = a . 

In the next theorem we prove the convergence 

cN(oc, 4,>) -> c(a, E*, G*) in probability (2A9) 

under Fx = E2 = E*, G*, where c(a, E*, G*) is the upper (1 — a)-quantile of the 
unconditional limiting distribution of LR(E, SN) under Ex = E2 — E*, G*. This 
implies the asymptotic equivalence of the test sequences {(pN} and {\j/N} where ij/N = 
= 1(LR(E, SN) = c(a, E*, G*)). Under Fx = E2 = E*, G* the random vector SN con
verges in distribution to some normally distributed random vector S with mean zero 
and covariance matrix 

r* = « ( ^ \ b^), (b?\ z><2>)>* - <(^>, df >), (l, i)>, <(^>, /3<2>), 

(Ul)>*)e,a=u...,r, (2.20) 

where <(•, •), (•, •)># is defined in the same way as <(•, •), (•, •)>,, but with E, G, 
and H = 1 - (1 - E) (1 - G) replaced by E*, G*, and H*, cf. formula (2.9). This 
result is an immediate consequence of [5] Theorem 3.3. 

If E and E* are non-singular the df of LR(E, S) ( = 0) is continuous on the interval 
(0, oo), since (2.15) implies 

P{LR(E, s) = c}= X P{sT
J(rJXJy

l Sj = c} = 0 Vc> 0 . 

Moreover, the df of LR(E, S) is strictly increasing: 
For any 0 < a < b we get 

P{LR(r, S) e (a, b)} = P{S e (LR)'1 (E, (a, b))} > 0 , 

since (LR)_ 1 (E, (a, b)) is nonvoid and open, and since S has a nondegenerate normal 
distribution. 

Theorem 2.3. Let („ , sd', P) be the basic probability space on which the rv's Xu, 
X2i, X; = mia(X l f , X2i), i = 1, are defined such that all Xyv are independent, and 
Xu ~ E*, X2i ~ G* Vi with arbitrary continuous df's E*, G*. 

For Q = 1, ..., r and N _• 1 let /3̂ > and bffi be score functions (2.13) which con
verge in L2(0, 1) to /3<1} and bf\ respectively. Let FN(5, •) be the df of LR(E, SN(D, d)) 
under D ~ %N and fixed d e {0, 1}^, and let E0 be the df of LR(E, S). 

Assume E and E* to be non-singular. 



Then 

AN : = sup 1 ^ ( 4 \ t) - F0(t)\ -> in probability , (2.21) 
— 00 <t < 00 

and also the convergence (2.19) holds true. 

Proof. The proof closely follows the pattern of the proof of [5] Theorem 5.2. 
For any 5 = (5U ...,5N)e{0, i}N and Q = 1, ...,r define 

^^«)-*.^(^J+a-A)*a?(^) ' (2-22) 
and p*N(d) = l / N f / i * ^ ) . Putting fi*N(i) = ffN(i, 4> ) and fo = ^ O ] We 

i = l 

get in the same way as in Theorem 5.1 of [5] the convergence 

i I WWO - AM (JC(0 - fflf) - <W1}> ̂ 2))> ( # \ ^2))>* (2-23) 
N i= l 

in probability, £> ff = 1, . . . . r. Likewise, 
- max \p*N(i) - J3*N\ -4 0 in probability . (2.24) 
N l< i< /V 

In order to prove (2.21) take an arbitrary subsequence Nt of N = {1, 2, . . . } . Then, 
according to (2.23) and (2.24), there exists a further subsequence N2 = {rl5 r2, ...} 
of N! with i\ < r2 < ... and a set M e s/ with P(M) = 0 such that the condition 
(N) of [2] p. 195 holds true for 

r 

I A X I V M ^ H ) , l = i ^ r v , v = l , VA1,...,AreM, 
e = i 

as long as co $ M. According to the Cramer-Wold device and to Problem 8 in [2] 
p. 195 we get Srv(D, 4v>) ---> S as v -* oo, if co £ M. Using the continuity of LR(E, •) 
the continuity of E0 on (0, oo), and P{S e d{x: LR(E, x) = 0}} = 0 we get Arv(co) -> 0 
as v -> oo Vco §£ M. Since N t <= M is arbitrary and since convergence in probability 
is a metric convergence, the proof of (2.21) is concluded. Since convergence in 
distribution implies the convergence of all quantiles, if the limiting distribution 
function is strictly increasing, the above assumptions imply crv(a, A^v\co)) -*• 
-*• FQ1(1 — a) as v-> oo Vco£M. This proves the assertion (2.19). Q 

Now let's consider the conditional distribution of SN (given the 4 ) ~~ vector) 
under the null hypothesis Ej_ = E2 = E* and G*. In the first step we evaluate the 
covariance matrix Ejv(<5) of ^fF*G*[SN | 4 * = d]: 

From (2.17) and (2.22) we get 

SeN = S cNtp*N(Rt) Atf) , Q = l,...,r. (2.25) 
i = l 
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Therefore Theorem II.3.1.d of [2] implies (for all 8 = (<5l5 ..., SN) e {0, 1}N) 

rNea(S) = -^— £ (/40, 5) - j5*N(d)) (pUi, 8) - RN(8)) . (2.26) 

iV — 1 i= 1 

Thus Ejy^y) does not depend on (E*, G*), and from (2.23) we have 

rjvMr1)-> r * i n (E*, G*)-probability . (2.27) 
Therefore the proof of Theorem 2.3 implies the following theorem: 

Theorem 2.4. Given the assumptions and notations of Theorem 2.3 let FN(d, •) 
be the distribution function of the conditional distribution of LR^^A^), SN) given 
Ay = 8 under the hypothesis E* and G* and let EJ(E*, •) be the distribution of 
LR(r*,X), where X ~ jr(0, E*). 

Then the convergences 

sup \FN(AN\t)-F*0(r*,t)\-*0, 
-oo<«oo / 2 2 8 ) 

sup |EJ(EN(4>),0-Fo*(E*,r)|-O. ; 

— 00 < t< 00 

hold true in (E*, G*)-probability. 

As a consequence we may use F*(rN(8), •) as an approximation of the conditional 
distribution of LR(rN(AN

}), SN) given A^ = 8 under the null hypothesis. The 
distribution F*(rN(8), •) is a mixture of ^-distributions, cf. [4], [6], [7]. If the 
dimension r is smaller than 4 there is a simple explicit representation, cf. Section 
3.2 of [1]. 

3. THREE REPRESENTATIVE SCORE FUNCTIONS AND 
THE CORRESPONDING LIKELIHOOD RATIO TEST 

In the present section we discuss a sensible choice of the score functions (!3^1), b(
8

2)), 
Q = 1, . . . ,r , see (2.7), Q = 1, ..., r, see (2.7), by choosing suitable generalized 
shift functions DQ, Q = 1 , . . . , r, as well as a suitable df E and a suitable censoring 
dfG. 

From the variety of all possible generalized shifts we choose three special types 
according to the following considerations: 

If E is the distribution of the standard treatment and if the new treatment mainly 
shows a positive reaction for values of x where F(x) is small, then we call this a lower 
shift situation. If the new treatment mainly shows a positive reaction for values of x 
where F(x) is near \, then we call this a central shift situation. Similarly, upper 
shift situations are defined. 

Assumpting E(0) = \ we formalize these notions by the following selections 
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of the shift functions DQ: 

D1 = 1 - E (lower shift) , 

D2 = 4E(1 - E) (central shift) , (3.1) 

D3 = E (upper shift) . 

In the sequel let BQ = (b[x\ bg
2)), Q = 1, 2, 3, be defined by formula (2.7) with Dg 

according to formula (3.1). 
3 

Notice, the cone V = { £ SgBg: & >. 0} spanned by Bu B2, B3, contains the con-
e = i 

stant-shift optimal score function 

(tf^ҶҶ^.Я-Ҷ-^.IГ 
c.f. formula (3.13) of [5]. 

Because of simplicity and since the corresponding cone V contains suitable ap
proximations of the optimal score functions for other df's E (e.g. the normal df or the 
Cauchy df) we restrict the discussion to the case of the logistic df E, i.e. we propose 
the asymptotic likelihood ratio test for the cone V which corresponds to the lo
gistic df F(x) = exp (x)l(l + exp (x)), x e U. 

In the first step let us consider the functions (2.7) with H-1 substituted by E_1, 
i.e. for Q = 1, 2, 3 we define 

Ь„:-(-0- l)(VҒ-1)-(<i.oř-1) 

Ь^Ҷ-L-.F-iW.F-*). 

By elementary evaluation we get the representations (for 0 < w < 1) 

btl(u) = (1 — u) (3u — 1) , 

b12(u) = 8u(l — u) (2u — 1) , (3.2.a) 

fri3(M) = u(3u — 2) = — !311(l — u) , 
and 

b2l(u) = u(\ - w) , 

b22(u) = Au2(l - u) , (3.2.b) 

b23(u) = u2 . 

Finally, for the definition of our three representative score functions Bg = (by\ bg

2)), 
Q = 1, 2, 3, we need a censoring df G. In order to have some additional flexibility 
we use the 

proportional hazard assumption: 

(1 - G) = (1 - Ff for some X > 0 . (3.3) 
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This assumption is equivalent to the assumption that the rv's (Xu ,...XN) and 
(At, ..., AN) axe independent under Fx = F2 = F and G. Obviously assumption (3.3) 
and H = 1 - (1 - E) (1 - G) imply (for 0 < u < 1) 

Fp(u) : = E o H~\u) = 1 - (1 - u)p, with p = 1/(1 + X), 

and the Be = (b(^\ b(2)), Q = 1, 2, 3, according to (2.7) are evaluated as 

b™-bu*F,, b(2) = b2eoFp. (3.4) 

Choosing approximate scores 

we get S„ = (S1 J V, S2JV, S3 i V)T with (ig = 1, 2, 3) 

s«4^nbH^+ii-*,,)bfi^} (35) 

The corresponding 3 x 3-matrix E = (</5,-, Bj}0) =: (ytj) has the following explicit 
evaluation: 

/ ^ 4 4 1 
VnW = - : : + 5 + X 4 + X 3 + X 

,, . 144 384 352 128 16 
V22W = • - • + ; - ; + 7 + X 6 + X 5 + X 4 + X 3 + X 

,* 4 8 4 

V33W = 7 — : - : — : + 5 + X 4 + X 3 + X 

,,v 24 44 24 4 
V12W = + + 

V ; 6 + X 5 + X 4 + X 3 + X 
,,v 4 6 2 

V13W = + ' 
v ' 5 + X 4 + X 3 + X 

„v 24 56 40 8 
V23W = 7 — ; ~ - — ; + 

(з.б) 

6 + X 5 + X 4 + X 3 + X 

The determinant of E = r(X) is strictly positive for all X > 0 which can be seen 
by drawing the graph of the function X -> det E(X). An exact proof seems to be very 
tedious. 

Under the assumption (3.3) the regression function pt, see (2.8), equals the constant 
p, i.e., p1 = p = 1/(1 + X). Since 

1 N 1 N 

a. = - I 4° - £ I J, 
N .= 1 N i = i 

is a consistent estimator of p, we replace the parameter p in the definition (3.4) 
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of the score functions by AN. Similarly we replace A = (1 — p)jp in (3.6) by XN = 
= (1 - AN)JAN. 

Now we prove that the assertions of Theorem 2.3 and Theorem 2.4 remain true, 
if we substitute the original score functions (3.4) by the score functions blQ o FjN 

and b2e 0 F1N. 

According to the proofs of Theorem 2.3 and Theorem 2.4 it's sufficient to prove 
(2.23) and (2.24) for the modified quantities fi*N(i, A^^co)), and to use the joint 
continuity of the function of (E, x) -* LR(E, x). 

According to the special form of the bQ
j),s in (3.4) we get (2.23) if we can prove 

for all k > 0, and p = J(l - G) dHi > 0 . 

Since |(l - u)kp' - (1 - u)kp\ = k\(i - « ) ^ l n ( l - u)\ \p' - p\ with pe(p'p) 
and 0 < u < 1, the L.H.S. in (3.7) is of the order O^Z^ — p\ AN) = oP(i), hence 
(3.7) is proved. 

Finally (2.24) holds true since all the bg
j),s in (3.4) are bounded. 

Remark 3.3. In case of right censoring more often a scale model with positive 
observations is used instead of the translation model of Section 1, i.e. it's assumed 
that Xji = 0,j = 1, 2, i = 1 , . . . ,N with E(0) = G(0) = 0 and that Xu has the df 
F(x exp (-cNiS

T D(x))). In this case Ft <. E2 is equivalent to STD = 0. But, by 
switching over to the transformed rv's logx,-; the model becomes a translation 
model of the form of Section 1 with F(x) replaced by E(ex) and D(x) replaced by 
D(ex). Since the hypothesis of randomness and the stochastically larger alternative 
remain invariant under the log-transformation, we may use the above test also for 
the scale model with positive observations. 

4. APPLICATION AND MONTE CARLO SIMULATION 

In this section we discuss the applicability of the proposed likelihood ratio rank 
test. Especially we discuss the approximation of the conditional distribution of 
LR(Ejv(ziy), SN) given AN

} = 5 under the null hypothesis by F*(rN(S), •), cf. 
Theorem 2.4. 

The practical application of the approximate likelihood ratio rank test (LRRT) 
is rather simple: 

We use the statistic LR^T^Zlj^), SN), where SN = (S1N, S2N, S3N)T and Ejv(<5) are 
defined in (3.5) and (2.26), respectively, on the basis of the score functions blg o F-jN 

and b2o o FjN, Q = 1,2, 3, cf. formulae (3.2) to (3.4). The numerical evaluation 
of the statistic is quite simple, cf. (2.15), since R = {1, 2, 3}. 

Additionally, if E is any positive definite 3 x 3-matrix then we have, cf. Section 
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3 - 2 o f W > з (4 1) 
1 _ Ғo*(E, ř) - 1 ЩP{Ќ >t} vt > 0 , 

fc = l 

with 

Wc 

(arccos (<??2) + arccos (0*3) + arccos (^*3))/(47lI' 

(arccos (£12) + arccos (^13) + arccos (Q2?))1\^%' ' ^ ' ' 

w3 = i - vvj., 

where (ey),-j=1,2,3 is the correlation matrix corresponding to E and where (gy)ify=1>2,3 

is the correlation matrix corresponding to E_1. 

Therefore, if we observe t0 = LRtf^Atf), SN), it's easy to evaluate the approximate 
conditional p-value 1 - F*(rN(A(

N
}), t0) of the likelihood ratio rank statistic from 

(4.1) and (4.2). 
We checked this approximation by Monte Carlo simulation in the following way: 
Under the null hypothesis Fi = F2 = F and the proportional hazard assumption 

1 — G = (1 — E)0-p)/p for the censoring df G the distribution of the random vector 
(R l9 ...,RN,A(

N\ ...,A(
N

N)) does not depend on E. With E = E0 according to the 
uniform distribution on (0, 1) and 3000 Monte Carlo repetitions we have listed the 
percentages of the events that the above approximate conditional p-value of the LRRT 
is smaller than 001, 005,0-10, respectively. This has been done for p = 0-2 to p = 0-9 
and some (nx, n2) between (10, 10) and (50, 50). Notice, the value of p is not known 
in the LRRT-procedure but estimated by AN. (Under the proportional hazard 
assumption 1 — p is the probability of censoring under the null hypothesis, i.e. 
P = Po{^i = 1}-) 

Additionally we have checked the approximation under the null hypothesis 
Fx = E2 = E0 with (non-proportional hazard) censoring df G according to 

[A] G(x) = x 1(0 < x < 0-25) + (0-25) 1(0-25 < x < 1) 

+ (x - 0-75) 1(1 < x < 1-75) + 1(1-75 < x ) , 

[B] G(x) = (x - 0-25) 1(0-25 <x = 0-75) + (0-5) 1(0-75 < x = 1) (4.3) 

+ (x - 0-5) 1(1 < x < 1-5) + 1(1-5 < x) , 

[C] G(x) = (2x - 1) 1(0-5 < x < 1) + 1(1 < x ) . 

The three LRRT-columns of Table 1 show that the approximation works well 
with some conservative tendency. Only for small sample sizes and very small p 
(80% censoring) the aproximation seems to be too conservative. 

For comparison we show the corresponding simulation for the linear rank statistic 
S1JV + S3N with SXN and S3N as defined in (3.5) but with p substituted by AN. Here 
the conditional null distribution is approximated by a JV(Q, ̂ -distribution, where 
aN is the conditional variance of SXN + S3N given AN\ cf. formulae (2.25) and (2.26). 
This statistic can be viewed as the correct adaptation of the usual Wilcoxon 
statistic to random censoring (Cens. Wilcoxon), cf. [5]. 
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Table 1. Monte Carlo simulation under the null hypothesis F± = F2 = F with proportional 

hazard assumption 1 — G = (1 — /T)(1-.P)/P for different values of p, and also under different 

types of non-proportional hazard assumptions. The Monte Carlo sample size is 3000. 

(«._, «2) Cens Df 

L R R T 

1% 5% 10% 

Cens. Wilcoxon 

1% 5% 10% 

Wilcoxon 

1% 5% 10% 

(10, 10) p = 0-9 

p = 0-8 

p = 0-7 

p = 0-6 

p = 0-5 

p = 0-4 

p = 0-2 

G = [ A ] 

G = [ B ] 

G = [C] 

(10, 30) /> = 0-9 

p = 0-8 

/> = 0-7 

p = 0-6 

p = 0-5 

p = 0-4 

p = 0-2 

G = [A] 

G = [ B ] 

G = [C] 

(30, 10) p = 0-9 

/? = 0-8 

p = 0-7 

p = 0-6 

/> = 0-5 

p = 0-4 

p = 0-2 

G = [A] 

G = [B] 

G = [ C ] 

(30, 30) p = 0-9 

i> = 0-8 

p = 0-7 

/> = 0-6 

p = 0-5 

p = 0-4 

;> = 0-2 

G= [A] 

G = [ B ] 

G = [ C ] 

0-5 4-8 9-9 

0-5 4-6 9-9 

0-5 4-7 10-1 

0-5 4-8 Ю-9 

0-6 4-7 9-8 

0-7 4-4 9-9 

0-1 3-8 9-7 

0-3 4-6 10-8 

0-8 4-4 9-7 

0-7 5-5 10-7 

0-8 4-9 Ю-5 

0-8 4-9 10-1 

0-8 4-7 9-9 

0-6 4-6 9-6 

0-7 50 10-1 

0-6 4-2 100 

0-2 2-6 7-7 

0-6 4-2 9-2 

0-5 4-2 91 

0-8 5-2 10-6 

1-3 50 9-8 

11 51 10-4 

1-2 51 Ю-l 

1-2 5-4 10-6 

1-2 5-6 10-8 

1-3 5-9 10-5 

1-4 6-4 110 

0-9 4-9 10-1 

10 4-9 10-5 

1-3 5-6 9-9 

10 4-9 Ю-8 

10 4-8 10-6 

0-8 5-1 10-5 

1-1 51 110 

0-9 4-9 Ю-7 

0-8 4-8 Ю-8 

0-8 5-3 10-3 

0-7 4-6 100 

0-7 4-9 10-2 

0-9 4-8 9-6 

0-8 5-1 10-3 

0-7 51 10-3 

0-7 5-1 10-5 

0-6 5-5 10-5 

0-7 5-3 10-5 

0-7 4-9 10-3 

0-3 4-9 110 

10 51 10-5 

1-0 4-8 9-4 

1-2 5-5 10-8 

0-9 51 100 

0-8 4-7 10-4 

0-8 4-7 10-1 

0-8 4-9 10-3 

0-8 5-4 10-8 

0-8 5-3 11-2 

0-2 4-2 9-8 

0-6 50 101 

0-7 41 9-5 

0-8 51 11*1 

10 5-5 101 

11 5-5 10-7 

10 5-6 10-2 

11 5-8 110 

1-2 5-6 10-8 

1-2 5-8 10-5 

1-5 5-8 10-3 

0-9 50 10-7 

0-9 4-9 10-3 

1-3 5-2 10-9 

1-3 5-3 10-7 

1-3 5-3 Ю-3 

11 5-3 11-1 

1-2 5-6 10-8 

11 5-4 111 

0-7 5-4 11-3 

0-9 51 110 

0-8 4-9 9-7 

0-8 4-8 10-1 

10 4-9 9-8 

1-0 5-2 10-8 

1-1 5-6 10-4 

1-1 5-4 11-2 

11 5-9 П-2 

0-9 5-6 110 

0-8 5-6 110 

0-8 5-2 11-7 

0-8 4-9 10-7 

0-6 4-7 101 

1-3 6-2 11-9 

0-8 4-8 10-2 

10 4-9 100 

0-9 51 10-2 

1-1 5-4 10-4 

1-5 5-4 10-2 

1-4 5-3 10-3 

1-2 5-4 10-5 

1-2 4-5 9-5 

0-8 4-6 8-9 

0-8 4-6 100 

1-1 5-2 10-6 

0-9 5-2 10-5 

10 5-6 10-3 

0-9 51 10-3 

11 4-9 9-6 

10 50 9-8 

0-8 5-1 9-8 

11 4-5 8-5 

0-8 4-8 9-7 

1-2 5-6 10-1 

1-3 5-8 110 

10 5-7 10-6 

1-1 5-4 10-4 

10 5-3 10-9 

10 50 10-6 

10 50 100 

1-2 5-4 10-8 

0-8 4-7 10-5 

0-7 4-7 9-9 

0-9 4-5 9-4 
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Table 1. (Continuation) 

L R R T Cens. Wilcoxon Wilcoxon 

(«!, n2) Cens Df («!, n2) Cens Df 
1% 5% ю% 1% 5% ю% 1% 5% ю% 

(30, 50) p = 0-9 0-7 4-8 10-4 1 0 5-2 10-6 0-8 4-8 100 

P = 0-8 0-7 4-8 101 0-8 5-1 10-4 0-5 4-7 9-7 

P = 0-7 1 0 5-1 10-3 0-8 5-2 10-2 0-6 4-2 9-9 

P = 0-6 0-9 5-2 100 0-8 5 0 10-1 0-5 4-6 9-7 

P = 0-5 0-7 5-2 100 0-7 4-5 9-8 0-4 4-4 9-8 

P = 0-4 0-5 4-9 9-5 0-6 4-5 9-8 0-5 4-3 0-6 

P = 0-2 0-7 4 0 9-6 0-9 4-6 101 0-7 4 0 9-6 

G = [A] 1 1 4-9 10-3 1-1 5-4 10-2 1-1 5-2 100 

G = [B] 0-9 5-2 10-3 0-9 4-9 10-4 0-8 5-1 10-4 

G = [C] 1 0 5-2 10-8 0-8 5-4 10-2 0-8 5-1 10-6 

(50,30) p = 0-9 0-6 5-5 11-2 0-7 5-3 10-6 0-8 4-8 10-2 

P = 0-8 0-6 5-2 11-0 0-7 5-2 10-2 0-6 4-9 9-9 

P = 0-7 0-8 5-0 10-8 0-7 5 0 10-5 0-8 4-7 9-8 

P = 0-6 0-8 5 1 10-3 0-8 5-1 10-2 0-8 4-6 100 

P = 0-5 1-1 5-7 10-3 1-2 5-5 100 0-8 4-8 9-8 

P = 0-4 1 0 5-1 9-9 1-0 5-4 10-6 1-3 5 0 9-7 

P = 0-2 1 0 5-9 11-6 1-1 5-6 10-5 1 0 4-7 9-7 

G = [A] 0-8 4-5 10-2 1 0 5-1 10-4 0-9 5 0 10-5 

G = [B] 1-0 4-9 9-8 1 0 4-9 9-7 1-1 4-8 9-6 

G = [C] 0-6 4-4 9-3 0-8 4-5 9 1 0-9 4-6 9-5 

(50,50) p = 0-9 0-5 4-5 10-3 0-7 4-4 9-3 0-6 4-2 9-2 

P = 0-8 0-6 4-3 9-7 0-7 4-7 9-5 0-8 4-5 9-5 

P = 0-7 0-6 4-3 9-3 0-8 4-6 9-9 0-7 4-4 9-7 

P = 0 6 0-7 4-4 9 0 0-8 5 0 9-3 0-8 4-6 9-6 

P = 0-5 1-1 5-4 10-8 0-9 5-3 101 0-8 5-1 9-5 

P = 0-4 0-8 4-5 9-7 0-8 4-8 9-8 0-9 4-8 101 

P = 0-2 1-0 4-4 9-7 1-2 4-6 9-5 0-6 4-8 10-3 

G = [A] 0-5 4-9 9-9 0-5 4-4 100 0-7 4-3 9-6 

G = [B] 1-0 5-2 10-4 1 1 5-3 10-1 1-3 5-1 101 

G = [C] 1-2 5-9 10-6 1-2 5-7 10-1 1-1 5-4 100 

Finally we report the simulation results for the usual Wilcoxon test based on the 
ranks Rit ..., RN of Xt, ...,XN only. Here we used the well-known (unconditional) 
normal approximation (Wilcoxon). 

In Table 2 and Table 3 we report the results of Monte Carlo power simulations 
of the three approximate tests of Table 1. The results are given in the percent scale. 

In Table 2 we considered generalized shift alternatives of the form 

S£(XU) ~ F(x - cms De(x)) 

with logistic df E and DQ, Q = 1, 2, 3, according to (3.1) [D4 = 1] under the propor
tional hazard assumption 1 - G = (1 - E)(i-P)/P Additionally we considered the 
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Table 3. Monte Carlo power simulation (in percent scale) at the approximate 1%, 5%, and 
10% levels under the different types of non-proportional hazard assumptions (4.3) and 3?(Xxi )= 
= &(U+ 500CJV1.C/4(1 - U)\ &{U) is the uniform distribution on (0, 1). The Monte Carlo 
sample size is 3000. 

L R R T Cens 1. Wilcoxon Wilcoxon 
("i> n2) Cens Df ("i> n2) Cens Df 

1% 5% ю% 1% 5% ю% 1% 5% ю% 

(10, 10) G = [A] 28-3 64-5 78-3 32-8 64-6 78-3 23-2 51-9 68-6 

G = [B] 32-4 64-3 78-1 36-6 67-7 79-2 30-8 61-9 7 6 0 

G = [C] 34-3 64-6 78-7 39-9 68-4 80-9 35-3 64-1 78 1 

(10, 30) G = [A] 46-4 71-9 82-5 32-1 56-8 68-7 18-4 40-5 51-8 

G = [B] 44-5 71-8 82-3 34-5 62-3 75-2 25-3 51-7 64-7 

G = [C] 48-9 75-2 84-9 43-2 69-8 80-9 31-4 58-2 7 1 1 

(30, 10) G = [A] 64-7 84-2 90-6 57-1 78-5 86-1 41-6 67-2 77-6 

G = [B] 61-2 82-0 89-2 55-6 78-8 87-1 52-0 77-1 85-6 

G = [C] 5 9 0 81-4 88-8 48-5 73-7 84-0 53-7 78-4 86-3 

(30, 30) G = [A] 47-5 74-1 84-3 30-9 58-7 72-2 18-7 42-2 57-5 

G = [B] 6 3 0 84-9 91-7 54-9 79-1 86-9 4 3 0 71-6 821 

G = [C] 6 4 0 86-1 92-9 56-7 82-2 90-4 49-5 76-4 85-9 

(30, 50) G = [A] 46-4 70-9 8 2 0 28-9 5 5 0 68-3 18-6 41-3 55-4 

G = [B] 65-3 86-0 92-6 52-5 77-8 87-0 40-6 66-9 78-8 

G = [C] 69-7 891 94-7 60-3 82-7 9 1 0 50-2 74-9 84-2 

(50, 30) G = [A] 59-1 82-3 89-7 38-9 65-5 78-1 22-7 51-4 65-8 

G = [B] 70-7 88-9 94-5 62-7 83-8 91-4 53-6 78-1 86-7 

G = [C] 65-1 86-7 9 3 0 56-6 81-0 89-6 54-9 7 9 0 88-3 

(50, 50) G = [A] 49-8 75-0 84-5 30-7 57-3 70-5 20-1 43-8 57-2 

G = [B] 74-7 90-9 94-9 61-3 83-9 91-4 49-1 75-3 85-8 

G = [C] 74-1 91-4 95-6 63-5 85-2 91-5 56-2 79-9 88-9 

corresponding generalized Cauchy shift (E = Cauchy df) with De = 16E2(1 — E)2.. 
In Table 3 we considered generalized shift alternatives of the form 

Sf(Xu) = Se(U + 500C]V;U4(1 - U)4) , 

where Sf(U) is the uniform distribution on (0,1). The (non-proportional hazard) 

censoring dfs G have been selected according to formula (4.3). 

For small sample sizes the Cens. Wilcoxon seems to be a good choice, whereas 

for sample sizes (nx, n2) = (30, 30) and higher the LRRT seems to be comparable 

to the Cens. Wilcoxon for the generalized logistic shift alternatives and substantially 

better than the Cens. Wilcoxon in the Cauchy situation and in the model situation 

of Table 3. Therefore we propose the LRRT for sample sizes nt = 30 and n 2 — 30. 

Obviously the usual Wilcoxon (based on the ranks Rlt ..., RN only) is a bad choice. 

(Received December 8, 1989.) 
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