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CONFIDENCE INTERVALS

FOR RELIABILITY FUNCTIONS

OF AN EXPONENTIAL DISTRIBUTION
UNDER RANDOM CENSORSHIP

JOSE VILLEN - ALTAMIRANO

The asymptotic normality of Bayes estimators of the reliability function of an exponential
distribution based on randomly censored data is studied. A Monte-Carlo simulation is used
to examine how well two large-sample confidence bands for Bayes estimators do in small and
moderate samples. The results are compared with the confidence intervals for the maximum
likelihood estimator.

1. INTRODUCTION

Arbitrarily right censored data arise commonly in industrial life testing and medical
follow-up studies. In reliability testing some objects are removed from the experiment
before they fail. In medical research we find there are some individuals who die by
reasons which are desirable to exclude from consideration, or may themselves
decide to leave and move elsewhere. The model of random censorship is useful for
analysing these data. Let X, ..., X, be independent identically distributed (i.i.d.)
random variables with the distribution function F, and let Ty, ..., T, be i.i.d. random
variables which are independent of X;’s and possess the distribution function G.
In our model X;’s represent times to failure, while T,’s are times censors, G being
a nuisance distribution. Under random censorship we can only observe the pairs

(Wb 11)5 rees (VVn’ In)
where
W; = min(X;, T}),

=IX;ST)=1 if X;<T

©, thatis, X, is uncensored,

=0 if X;>T;

%, thatis, X is censored.

Let X, and T, have the Lebesgue densities f and g, respectively. Then (W, I,) has
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the density
o, 1) = {(709) [1 = GOTY () [1 = FOI™", we R, i=0,1,

with respect to Lebesgue times counting product measure.

The unknown parameters are often estimated by the method of maximum likeli-
hood. If there is no functional dependence between parameters of F and G, it is
sufficient, to obtain estimators of the parameters of F, to maximize the sub-likeli-
hood functions

L = [T 0 - AT)

where U = {j:I; = 1} is the set of the indices of uncensored observations, while
C = {j:1; = 0} is the set of indices of censored observations.

Here we deal with the case of exponentially distributed X ;’s. Suppose that
F(x)=1-—exp(—x/0), x>0,
=0 otherwise. _ (1.1

We assume that the censoring distribution is a Weilbull one with parameters k@
and g, i.e.,

G(1)

1 —exp{—[t/k6)}, t>0,

= 0 otherwise.

I

This assumption is a slight extension of the usual Koziol-Green model under which
the times censors are also exponentially distributed. In that case, f = 1.

The reliability corresponding to (1.1) taken at mission time x > 0 is
R(x) = exp (—x/6) .

Without any loss of generality, after a proper change of the time scale, we can restrict
ourselves to x = 1 so that we shall study

R =exp(—1/0).

We shall use the following notation:

W=W +...+W,, I=sI,+..+1,, Y=IW, W= W/n,
I=1In.

Since engineering designs are rather evolutionary than revolutionary processes
it is often useful to utilize a priori information on reliability of the current design
to get more reasonable conclusions on the future device. Bayes approach is a simple
way how to impose a priori knowledge of the subject. The results of the present

paper are directly applicable in various engineering problems as well as in bio-
metrical research.
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2. ESTIMATION

The maximum likelihood estimator of R is
R, =exp(-Y).

To obtain the Bayes estimator we suppose that the hazard rate A = 1/ is a random
variable distributed according to the Gamma a priori distribution with the density
function

aP
g(A) = ——e 27" 1>0,
I'(p)

= (0 otherwise.

Then the prior density function of R is
aP
s(r):E— P (=InrPt 0<r<l1, .

= (0 otherwise

and the posterior distribution of R given (W, 1,), ..., (W,, I,) has now the density
function

I+p
o(r, W, 1, ..., W, 1,) = Mw Wi (=la )ttt 0<r< 1.
(I + p)

Taking the expectation of R with respect to the posterior distribution we get the
Bayes estimator optimal with respect to the quadratic loss function

Ry(a, p) :( W+ a->z+,,.

W+a+1

In case p = 1 an alternative Bayes estimator may be obtained by maximizing the
posterior density function:

exp(—— I+ ”71) if Wta—-1>0,

R3(a, p) W+a-—1

Il

0 otherwise.

3. ASYMPTOTIC DISTRIBUTION

The maximum likelihood estimator for the hazard rate A = 1/6 is Y = I/W. For
the convergence of this estimator we can use the result from Miller:

Y~ NG, 2D, e
n'3(Y = 2) > N(0, 22[EI,) (3.1)
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where I = No. of uncensored observations, may be replaced by EI if the latter is
available. (The notation ~ denotes “is asymptotically distributed as”.) In our model:

EI = nEl, = 07 'n |2 exp (—x/6) exp (—(x/k8)F) dx =
= n [ (exp (= y) exp (= y/k)) dy.

For f = 1, we have the result obtained in [3]:
n'2(Y — 2) > N(0,(88)"*) with 1/6 =1/0 + 1/k6.

For B =+ 1, EI must be calculated by numerical integration. For each value of 8
we can choose k to achieve the desired expected proportion of uncensored obser-
vations.

Theorem 1. For n — oo we have:

n'(R, — R) - N(0, A>R*[EI,) (3.2)
n'*(R, — R) - N(0, A2R?[EI,) ‘ (3.3)
n'*(Ry — R) » N(0, *R*[EL,). (3.4)

Proof. Let g(t) = exp (—1); g'(t) = —exp (—t). Using (3.1) and (6a. 2.1) in [6]
we have (3.2). In the case that the censoring distribution is also exponential (§ = 1),
this formula coincides with that one in [2]. Q

The formula (6a. 2.1) is not generally applicable if instead of g, we have a function
g, depending on n explicitly. This is the case for R, and R;. After some algebra R,
and R; can be written in the following forms:

Ry = [1 + W+ a)] 9P = [1 + n"Y(W + afn)™ '] 0" =

R, = e‘Y|:1 ; ;}_V_V(y(a ) —p4D)+t o,,(n-Z))].

Now we want to find the asymptotic distribution of R, and R;. We have R, =
= g(Y, n); dg/0Y exists and converges to exp(—1) as n > o, Y— i. With this
condition, we can use (6a. 2.5) in [6] which together with (3.1) gives

J() (R, — g(A, n)) - N(0, A*R*[EL,) .
Furthermore, g(4, n) can be replaced by R = exp (—2) because
J(m) (g(A,n) — R)>0 as n- o

and so we have (3.3).
The proof of (3.4) is similar to that of (3.3). ~ A
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4. CONFIDENCE INTERVALS

We study two classes of confidence intervals for R with each of R,, R,, R; esti-
mators. The first ones are constructed using the log(——log) transformation that
usually improves the convergence to normality because the asymptotic variance
does not depend on the unknown parameter. Consider
Y~ N(4, A2[E)

and put g(f) = log t in (6a. 2.1), [6]. Thus we have
log Y ~ N(log 4, 1/EI) .

Hence, the confidence interval for R = exp (—A) is

exp (—exp (log Y + Z,,, 1/\/EI)) -
where Z,, is the (1 — «/2)th quantile of the standard normal distribution.
Note that EI = n.EI, = n.expected proportion of uncensored observations.
For R,, we first apply (6a. 2.1) with g(t) = —log ¢ to the formula (3.3), and we
have:
n'*(—log R, — 2) - N(0, A*[EI,).
Applying now (6a. 2.1) with g(t) = log t we have
log (—log R,) ~ N(log 4, 1/(n EL)).
Hence, the confidence interval for R = exp (—4) is

exp (—(exp (log (—log R,) + Z,,,(1/n EI,)"?))).
With R; we obtain a similar interval. We shall denote these intervals as Ry, R,

and R;.
The other class of intervals with confidence coefficient 1 — « is based on the

asymptotic normality of R; (i = 1, 2, 3). They are given by
R, + Z,,RY[(nEL)2, i=1,23,

where instead of R and 4 we use their estimators R; and Y. We shall denote these °
intervals as R (b), R,(b), and R,(b).

5. A SIMULATION STUDY

To examine how well the intervals based on asymptotic distributions do in finite
sample situations, a Monte Carlo simulation was performed to determine the achie-
ved levels of the bands under several situations.

We consider mission times corresponding to some chosen percentiles. We per-
formed simulation for percentiles of order g = 0-05, 0-5 and 0-95, which cover the
part of the distribution with high reliability (R = 0-95) as well as the tail (R = 0-05).
We use four values for the shape parameters of the censoring Weilbull distribution:
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B = 05,1, 1'5, 2. For each value of B, we take the corresponding scale parameter
k to achieve an expected proportion of uncensored observation of EI, = 0-2, 0-5,
%, and 0-8. The sample sizes were n = 30 and 50, and the confidence coefficient 0-95.
The prior parameters in R,(a, p) and R;(a, p) were chosen a = 46, a = 80, a = 20,
p = 4, according to two principles: (i) the standard error of the a priori distribution
should be half of the prior expected value; (ii) the first prior distribution has the
expectation equal to the hazard rate 4 = 1/0, the second one equal to half of it,
and the third one equal to double of it.

For each combination of the various specifications, 400 data sets and their corre-
sponding confidence intervals were generated. The observed coverage probability
was calculated as the fraction of 400 confidence bands containing the true reliability
R = exp (—1/0). This number of replicas provides a standard deviation in the
estimated coverage probability of about 0-01. All of the simulation results were
computed on the IBM-AT computer using the uniform random number generator
which is in the Turbo Pascal library. The numerical results are given in Tables 1 —4.

6. CONCLUSIONS

First, R, and R, behave better than R,(b) and R,(b), respectively. They have
a superior performance because the asymptotic variance of the log (—log) trans-
formation of R, and R, does not depend on the unknown parameter 0. It is an empirical
fact, confirmed in this study, that transforming an estimate to remove the depen-
dence of the variance on the unknown parameter tends to improve the convergence
to normality by reducing the skewness.

R, and R;(b) are rather sensitive to the choice of the prior parameters and above
all to the chosen percentile. Furthermore as g increases, the effects on R; and R,4(b)
are opposite. So for @ = 20 and a = 40, R; is better if g = 0-95 and R;(b) is better
if g = 0-05 or 0-5. For a = 80, they behave almost equally, however.

The R, interval appears slightly anticonservative giving less than the desired
coverage. However, R, is conservative giving more than the desired coverage except
for a = 80. Hence R, has a superior performance to R, except for a = 80, that
it’s similar. We can conclude, too, that we obtain excellent results if the choice
of the prior parameters is perfect (a = 40), good results if we underestimate the
hazard rate (a = 20), and worse results (but not too bad) if we overestimate it
(a = 80).

Under almost all circumstances (except for ¢ = 095 and a = 80) R, behave
quite better than R, and R,(b). In some cases R, and R,(b) give very poor coverage
probabilities, and so they are not recommended.

The level of censoring has not a clear effect on the coverage. On one hand, as the
proportion of uncensored observations (I,) increases the estimators are more reliable
and the coverage should increase. On the other hand when I increases the size
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Table 1. Observed coverage for Weilbull censoring distribution with g = 0-5.

q 0-05 0-5 0-95
u 02 05 % 0-8 02 05 % 08 02 05 % 08
n=30 a=40 p=24
R, ‘935 -955 -967 -965 ‘955 -930 -940 -955 ‘965 957 -942 -960
Ry(b) -907 945 -962 -945 ‘932 -920 -942 -957 -825 877 -867 912
R, ‘999  -987 975 -985 ‘997 -987 970 -980 ‘995 -985 -982 -980
R,(b) -945 967 -977 970 ‘970 -965 -980 -982 ‘992 -997 -982 -975
R, *750  -720 -732 -715 -887 915 -930 -957 -887 975 -990 -985
Ryb) -927 -965 -970 -960 ‘965  -965 -977 -975 ‘650 765 772 -817
n= 30 a= 20 p=4
R, ‘992 -960 942 -962 ‘997 -950 -940 -947 999  -987 977 -965
R,(b) -980 -990 -970 -975 ‘992 -940 ‘932 -940 ‘952 -915 -902 -927
Ry -452  -557 -527 -532 647 775 -845 -895 -587 -897 -952 967
Ryb) 977 987 965 -965 ‘962 -917 915 -930 255 -487 610 -622
n= 30 a= 860 p=4
R, ‘977 -955 -947 -957 ‘969 -977 -955 -940 ‘957 -925 -927 -940
R,(B) -907 -922 -917 -922 ‘925 +972 -950 -940 982 -990 992 -995
R, ‘930 -870 -885 -877 ‘932 -967 -947 -937 ‘980 -967 977 -987
Ry(b) -872 -882 -897 -892 ‘907 -967 -945 -937 982 -977 -967 -975
n= 150 a= 460 p=4
R, ‘947 -962 <940 -937 ‘947 -965 -938 -957 ‘938 -955 -943 -951
Ry -925 955 -957 -932 ‘962 -957 932 -950 ‘907 -942 -938 -952
R, ‘990 977 970 ‘960 ‘985 977 976 -980 -982 980 -972 975
Ry(b) 965 975 -970 -952 ‘983 962 971 975 ‘932 -942 -950 -945
R, ‘697 -682 -690 -677 -840  -900 897 -947 -897 -982 -985 -992
Ry(b) -947 -962 -962 -940 ‘967 -965 -962 -970 -885 875 -875 -880
n= 50 a= 20 p=4
R, ‘980 -965 <935 -940 ‘990 ‘957 962 -947 ‘999 -972 -982 -955
Ry(b) -930 -917 -912 915 ‘985 -952 ‘960 -945 ‘970 -972 -970 -960
R, ‘437 -512  -547 595 ‘632 -842 -860 ‘960 677 -940 -982 -977
Ry() -960 952 925 -945 ‘967 942 -952 -940 ‘899 -892 -892 -877
= 50 a= 80 =4
R, ‘952 -960 -960 -955 ‘952 -950 -952 -957 ‘917 -912 932 950
Ry(b) -905 -940 -942 -945 ‘942 -945 942 957 ‘922 -920 +925 -930
R, -882 -862 -837 -860 942 930 -937 -942 ‘970 -955 -975 977
Ry(b) -880 -912 -932 930 ‘927 -935 -942 -955 -892 877 -867 -862




Table 2. Observed coverage for Weilbull censoring distribution with g = 1.

q 0-05 05 0-95
u 02 05 % 08 02 05 % 08 02 05 % 08
n= 30 a= 30 p==4
Ry ‘902 -955 -945 -957 ‘925 -935 -935 -940 ‘937 940 -940 -950
Ri(b) -860 -942 -927 -960 887 -925 942 -930 -865 -870 -902 -897
R, . 997 992 965 977 -997 -985 -987 -972 ‘990 -972 982 -977
R,(b) 927 962 -965 -985 ‘940 -960 -962 972 ‘980 -982 972 -980
R =740 702 700 727 ‘905 922 -935 -935 ‘937 -980 -990 997
Ry(b) -897 952 -947 970 932 -950 960 -970 ‘662 -192 777 -802
n= 30 a= 20 p=4
R, ‘987 -972 967 -965 999 972 970 967 ‘999 977 975 977
Ry(b) 970 -982 970 -992 ‘975 962 955 -967 ‘927 -940 ‘905 -945
R, ‘440 -477 -522 -572 ‘600 772 -842 -887 -557 -940 -965 985
Ri(by 937 975 -965 -990 ‘952 -947 945 960 252 -550 610 712
n== 30 a= 80 p=4
R, ‘965  -925 -945 -950 ‘955 :930 -945 -942 ‘937 <930 -925 922
R,(b) -862 -880 917 -932 ‘905 920 -932 -937 972 -992 992 -997
R, ‘890 -827 -862 -870 925 917 922 930 ‘975 +967 -967 -985
Ry(b) -825 -855 -887 -910 ‘897 -920 -925 932 ‘975 -992 -982 977
n= 50 a=40 p=4
R, ‘930 -950 -950 -957 ‘955 -945 942 -925 927 ‘950 -937 -950
Ry(B) 902 -935 -935 -942 ‘930 -942 932 -922 ‘870 925 935 -942
R, ‘997 -967 ‘970 -975 ‘997 980 ‘972 -960 ‘970 -967 -960 -980
R,(b) 962 -952 -957 -962 ‘982 980 970 955 ‘902 -925 927 960
R, 732 +690 -670 -720 -835 907 920 -912 ‘910 -980 -980 990
Ry(b) 906 -952 960 967 937  -947 954 950 -807 -852 -865 885
n= 50 a= 20 =4
R, ‘975 -980 ‘937 -947 ‘990 950 935 -970 ‘999 -965 -970 -967
Ry(b) 927 -940 -925 -932 ‘975 -950 930 -970 927 -915 932 915
R, 457 -540 572 -630 ‘622 -802 812 -907 ‘670 -942 -982 -987
Ri(b) 960 -972 -930 -945 ‘940 -937 925 -967 385 707 720 747
n=50 a=28 p=4
R, ‘935 922 -947 -957 ‘917 -932 922 -955 -867 922 -930 922
R,(&) 925 -910 -935 -947 ‘925 -927 915 -936 ‘890 915 917 925
R, ‘840 -792 -832 -847 895 -910 -905 -942 -950 -975 ‘980 -982
Ri(b) -830 -862 -885 -901 ‘903 -925 -928 -934 ‘976 -974 -983 -985
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Table 3. Observed coverage for Weilbull censoring distribution with g = 1-5.

? 0-05 0-5 095

¥ 02 05 % 08 02 04 3 08 02 05 % 08

n= 30 a= 40 rp=4

R, ‘960 -937 970 950 ‘965 -925 945 -932  -960 -937 -970 -950
Ry() 902 912 -972 -940  -927 -907 -930 922  -905 -897 -905 -910
R, 999 970 -987 -980  -999 -975 -985 967  -997 -972 -990 977
Ry(b) -957 -952 -980 -967 965 ‘950 -972 -962  -995 -967 -990 -980
R, <772 725 -692 717 895 897 937 930  -957 972 999 -990

Ry(b) 935 -932 -975 952 ‘960 942 -962 -955 <760 777 -761 -835

n= 30 a = 20 =4

R, ‘997 967 965 -965 ‘997 962 -970 -965 ‘999  -970 -987 -982
Ry(b) 977 977 -967 992 -985  -950 ‘957 -960 ‘960 910 922 -925
Ry ‘440 -500 -512 -570 ‘647 770 -860 -890 <730 -912 -980 -987:

Ry(b) -965 -962 962 987 ‘970 -935 937 -952 327 -495 -577 632

n= 30 a == 86 p~—...4

R, 975 920 -950 -940 ‘982 917 -955 -965 ‘940 -890 -915 917
Ry(b) -887 892 -920 -925 920 -910 -955 -962 ‘980 -985 992 -992
R, 902 -822 -867 870 952 -895 -942 955 977 962 ‘977 - 965

Ry(b) -857 -847 -897 -900 ‘905 902 -947 -957 980 -982 982 992

n= 50 a=40 p=4

R, ‘962 950 -940 -955 962 -950 -940 -955 965 -932 -952 960

R(b) 942 -940 -925 -962 ‘957 -950 -935 -957 ‘917 910 -950 -942
R, 995 -977 965 -982 ‘992 -972 -962 -982 -987 965 -975 970
Rab) 985 975 955 -972 ‘986  -980 ‘964 -975 ‘937 907 -947 -940
R, »730 672 755 692 ‘877 -885 -895 -942 ‘937 :967 -997 -985
Ry(b) 942 -937 -968 -958 ‘954 :952 -971 956 *789 796 -785 -842
n= 50 a == 20 = 4
R, ‘985 960 -942 -945 ‘999 955 -970 -955 ‘990 960 972 957
R,(b) -947 935 922 -905 ‘995 -952 -967 -955 972 -942 977 -960
R, ‘482 -535 -587 525 677 -822 872 -860 <777 -945 -982 -987

Ry(b) 960 -952 937 -932 967 -950 -962 -947 ‘960 970 -970 -985

R, ‘957 -932 -930 -937 ‘947 -905 -972 957 ‘930 -915 902 -932
Ry(b) 997 -975 -967 -967 ‘987  -947 -955 967 +765 -822 -762 -852
Ry ‘862 -810 -800 817 -920 870 -930 940 ‘980 -965 952 -967

Riy(b) 967 -952 -955 957 ‘960 -920 -950 930 ‘910 917 900 -930




Table 4. Observed coverage for Weilbull censoring distribution with g = 2.

q 0-05 05 0-95
u 02 05 % 08 02 05 % 0-8 02 05 % 08
n=130 a=46 p=4
R, 967 -907 965 -945 952 :950 937 -960 967 907 965 -945
R,(b) 922 -905 ‘960 -932 935 925 -935 -957 922 872 -895 -892
R, <999  -970 -992 975 -992  -987 -975 -982 ‘999  -950 -987 977
Ry(b) 970 -937 -980 -962 960 -975 967 -980 977 967 -992 -977
R, 785 720 705 725 905 915 -910 -945 962 972 -997 -987
Ry(b) 935 -920 -967 -945 957 972 962 -975 <795 775 790 -830
n=30 a= 20 p=4
R, 990 -962 -957 975 -997 962 -962 -970 ‘999  -987 :977 -980
Ry(B) -990 972 972 -970 997  -937 957 -955 957 .922 925 -932
R, 505 -525 -535 -547 690 -795 -865 -867 735 907 972 987
Ryb)y 975 -965 -975 -970 972 917 947 -932 -332 472 -590 -830
n= 30 a=280 p=4
R, 990 -897 952 -962 982 -887 935 -957 957 -880 -880 -940
R,(b) -915 -842 -895 -945 -047 -877 930 -957 ‘972 <987 -995 -992
R, 947 782 822 895 960 -855 922 -950 972 965 957 -970
Ry(b) -887 790 -857 -927 937 865 930 -952 972 997 985 977
n=50 a= 46 p=
R, 975 947 930 -947 975 947 930 -947 975  -947 ‘930 -947
Ry 975 935 -930 -952 985 945 -935 -957 -915  -885 -927 -940
R, ‘965 925 940 -950 ‘960 -973 -935 -945 895 -885 -917 965
Ry(b) 995 977 -952 -972 ‘999 -980 ‘970 -980 ‘940 -885 -925 -935
R, “T17 667 722 <667 -887 875 910 -937 960 ‘980 982 -987
Ry(b) 942 -930 -970 -592 963 -972 -962 -978 892 -870 -872 -897
n=>50 a =20 p=
R, 992 <955 960 955 ‘990 962 -967 -957 995  +962 -985 -967
R,() 970 -940 -940 -922 982 -955 ‘965 957 ‘975 :937 970 -965
R, 467 -530 -542 522 692 822 -875 -860 802 940 995 -980
Ry(b) 975 952 965 -942 980 ‘950 ‘960 -947 <787 -832 -878 -892
n= 50 a= 86 p=4
R, 965 905 942 -967 ‘967 ‘915 -920 947 ‘935 -860 ‘912 -947
R,y(b) -935 -872 -890 -923 957 915 -945 -962 -977 982 967 -958
R, -867 -792 -830 -837 -940 -895 -902 -937 ‘977 947 -960 -980
Ry(b) -892 -865 -877 930 920 -915 -930 952 -872 -883 -887 -912
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of the intervals decreases and so does the coverage. None of the two effects is dominant.

With respect to the shape parameter f of the Weilbull distribution, the results are
very similar for the four values of . It is logical because for each value of f, we
obtain its corresponding confidence interval. The results would have been different
if we had constructed an interval with exponential censoring and studied the robust-
ness with respect to the assumed censoring distribution.

The achieved confidence level of R, is very similar for n = 30 and n = 50. For
R, this level is slightly higher for n = 50. Anyway we can conclude that the large
sample band based on the log (—log) transformation of the asymptotic distribution
of R, does very well with small and moderate samples.

(Received December 4, 1987.)
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