CONFIDENCE INTERVALS
 FOR RELIABILITY FUNCTIONS OF AN EXPONENTIAL DISTRIBUTION UNDER RANDOM CENSORSHIP

JOSÉ VILLÉN - ALTAMIRANO

The asymptotic normality of Bayes estimators of the reliability function of an exponential distribution based on randomly censored data is studied. A Monte-Carlo simulation is used to examine how well two large-sample confidence bands for Bayes estimators do in small and moderate samples. The results are compared with the confidence intervals for the maximum likelihood estimator.

1. INTRODUCTION

Arbitrarily right censored data arise commonly in industrial life testing and medical follow-up studies. In reliability testing some objects are removed from the experiment before they fail. In medical research we find there are some individuals who die by reasons which are desirable to exclude from consideration, or may themselves decide to leave and move elsewhere. The model of random censorship is useful for analysing these data. Let X_{1}, \ldots, X_{n} be independent identically distributed (i.i.d.) random variables with the distribution function F, and let T_{1}, \ldots, T_{n} be i.i.d. random variables which are independent of X_{j} 's and possess the distribution function G. In our model X_{j} 's represent times to failure, while T_{j} 's are times censors, G being a nuisance distribution. Under random censorship we can only observe the pairs

$$
\left(W_{1}, I_{1}\right), \ldots,\left(W_{n}, I_{n}\right)
$$

where

$$
\begin{aligned}
& W_{j}=\min \left(X_{j}, T_{j}\right), \\
& \begin{aligned}
I_{j}=I\left(X_{j} \leqq T_{j}\right) & =1 \quad \text { if } \quad X_{j} \leqq T_{j}, \\
=0 & \text { if } \quad X_{j}>T_{j},
\end{aligned} \text { that is, } \quad X_{j} \text { is is censored. }
\end{aligned}
$$

Let X_{1} and T_{1} have the Lebesgue densities f and g, respectively. Then $\left(W_{1}, I_{1}\right)$ has
the density

$$
h(w, i)=\left\{(f(w)[1-G(w)]\}^{i}\{g(w)[1-F(w)]\}^{1-i}, w \in \mathbb{R}, \quad i=0,1,\right.
$$

with respect to Lebesgue times counting product measure.
The unknown parameters are often estimated by the method of maximum likelihood. If there is no functional dependence between parameters of F and G, it is sufficient, to obtain estimators of the parameters of F, to maximize the sub-likelihood functions

$$
L_{F}=\prod_{j \in U} f\left(X_{j}\right) \prod_{j \in C}\left[1-F\left(T_{j}\right)\right]
$$

where $U=\left\{j: I_{j}=1\right\}$ is the set of the indices of uncensored observations, while $C=\left\{j: I_{j}=0\right\}$ is the set of indices of censored observations.

Here we deal with the case of exponentially distributed X_{j} 's. Suppose that

$$
\begin{align*}
F(x) & =1-\exp (-x / \theta), \quad x>0 \\
& =0 \text { otherwise } . \tag{1.1}
\end{align*}
$$

We assume that the censoring distribution is a Weilbull one with parameters $k \theta$ and β, i.e.,

$$
\begin{aligned}
G(t) & =1-\exp \left\{-[t / k \theta]^{\beta}\right\}, \quad t>0 \\
& =0 \text { otherwise }
\end{aligned}
$$

This assumption is a slight extension of the usual Koziol-Green model under which the times censors are also exponentially distributed. In that case, $\beta=1$.

The reliability corresponding to (1.1) taken at mission time $x \geqq 0$ is

$$
R(x)=\exp (-x / \theta)
$$

Without any loss of generality, after a proper change of the time scale, we can restrict ourselves to $x=1$ so that we shall study

$$
R=\exp (-1 / \theta)
$$

We shall use the following notation:

$$
\begin{aligned}
& W=W_{1}+\ldots+W_{n}, \quad I=I_{1}+\ldots+I_{n}, \quad Y=I / W, \quad \bar{W}=W / n \\
& \bar{I}=I / n
\end{aligned}
$$

Since engineering designs are rather evolutionary than revolutionary processes it is often useful to utilize a priori information on reliability of the current design to get more reasonable conclusions on the future device. Bayes approach is a simple way how to impose a priori knowledge of the subject. The results of the present paper are directly applicable in various engineering problems as well as in biometrical research.

2. ESTIMATION

The maximum likelihood estimator of R is

$$
R_{1}=\exp (-Y)
$$

To obtain the Bayes estimator we suppose that the hazard rate $\lambda=1 / \theta$ is a random variable distributed according to the Gamma a priori distribution with the density function

$$
\begin{aligned}
q(\lambda) & =\frac{a^{p}}{\Gamma(p)} \mathrm{e}^{-a \lambda} \lambda^{p-1} \quad \lambda>0 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Then the prior density function of R is

$$
\begin{aligned}
s(r) & =\frac{a^{p}}{\Gamma(p)} r^{a-1}(-\ln r)^{p-1} \quad 0<r<1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

and the posterior distribution of R given $\left(W_{1}, I_{1}\right), \ldots,\left(W_{n}, I_{n}\right)$ has now the density function

$$
\varphi\left(r, W_{1}, I_{1}, \ldots, W_{n}, I_{n}\right)=\frac{(a+W)^{I+p}}{\Gamma(I+p)} r^{a+W-1}(-\ln r)^{I+p-1}, \quad 0<r<1
$$

Taking the expectation of R with respect to the posterior distribution we get the Bayes estimator optimal with respect to the quadratic loss function

$$
R_{2}(a, p)=\left(\frac{W+a}{W+a+1}\right)^{I+p}
$$

In case $p \geqq 1$ an alternative Bayes estimator may be obtained by maximizing the posterior density function:

$$
\begin{aligned}
R_{3}(a, p) & =\exp \left(-\frac{I+p-1}{W+a-1}\right) \text { if } \quad W+a-1>0 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

3. ASYMPTOTIC DISTRIBUTION

The maximum likelihood estimator for the hazard rate $\lambda=1 / \theta$ is $Y=I / W$. For the convergence of this estimator we can use the result from Miller:

$$
\begin{align*}
& Y \sim N\left(\lambda, \lambda^{2} / I\right), \quad \text { i.e.: } \\
& n^{1 / 2}(Y-\lambda) \rightarrow N\left(0, \lambda^{2} / E I_{1}\right) \tag{3.1}
\end{align*}
$$

where $I=$ No. of uncensored observations, may be replaced by $E I$ if the latter is available. (The notation \sim denotes "is asymptotically distributed as".) In our model:

$$
\begin{aligned}
& \mathrm{E} I=n \mathrm{E} I_{1}=\theta^{-1} n \int_{0}^{\infty} \exp (-x / \theta) \exp \left(-(x / k \theta)^{\beta}\right) \mathrm{d} x= \\
& =n \int_{0}^{\infty}\left(\exp (-y) \exp (-y / k)^{\beta}\right) \mathrm{d} y .
\end{aligned}
$$

For $\beta=1$, we have the result obtained in [3]:

$$
n^{1 / 2}(Y-\lambda) \rightarrow N\left(0,(\theta \delta)^{-1}\right) \quad \text { with } \quad 1 / \delta=1 / \theta+1 / k \theta
$$

For $\beta \neq 1$, EI must be calculated by numerical integration. For each value of β we can choose k to achieve the desired expected proportion of uncensored observations.

Theorem 1. For $n \rightarrow \infty$ we have:

$$
\begin{align*}
& n^{1 / 2}\left(R_{1}-R\right) \rightarrow N\left(0, \lambda^{2} R^{2} / E I_{1}\right) \tag{3.2}\\
& n^{1 / 2}\left(R_{2}-R\right) \rightarrow N\left(0, \lambda^{2} R^{2} / E I_{1}\right) \tag{3.3}\\
& n^{1 / 2}\left(R_{3}-R\right) \rightarrow N\left(0, \lambda^{2} R^{2} / E I_{1}\right) . \tag{3.4}
\end{align*}
$$

Proof. Let $g(t)=\exp (-t) ; g^{\prime}(t)=-\exp (-t)$. Using (3.1) and (6a.2.1) in [6] we have (3.2). In the case that the censoring distribution is also exponential $(\beta=1)$, this formula coincides with that one in [2].

The formula (6a.2.1) is not generally applicable if instead of g, we have a function g_{n} depending on n explicitly. This is the case for R_{2} and R_{3}. After some algebra R_{2} and R_{3} can be written in the following forms:

$$
\begin{aligned}
R_{2} & =[1+1 /(W+a)]^{-(I+p)}=\left[1+n^{-1}(\bar{W}+a / n)^{-1}\right]^{-(I n+p)}= \\
& =\mathrm{e}^{-Y}\left[1+\frac{1}{2 n \bar{W}}(Y(1+2 a)-2 p)+O_{p}\left(n^{-2}\right)\right] \\
R_{3} & \left.=\mathrm{e}^{-Y}\left[1+\frac{1}{n \bar{W}}(Y(a-1)-p+1)+O_{p}\left(n^{-2}\right)\right)\right]
\end{aligned}
$$

Now we want to find the asymptotic distribution of R_{2} and R_{3}. We have $R_{2} \approx$ $=g(Y, n) ; \partial g / \partial Y$ exists and converges to $\exp (-\lambda)$ as $n \rightarrow \infty, Y \rightarrow \lambda$. With this condition, we can use (6a.2.5) in [6] which together with (3.1) gives

$$
\sqrt{ }(n)\left(R_{2}-g(\lambda, n)\right) \rightarrow N\left(0, \lambda^{2} R^{2} / E I_{1}\right) .
$$

Furthermore, $g(\lambda, n)$ can be replaced by $R=\exp (-\lambda)$ because

$$
\sqrt{ }(n)(g(\lambda, n)-R) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

and so we have (3.3).
The proof of (3.4) is similar to that of (3.3).

4. CONFIDENCE INTERVALS

We study two classes of confidence intervals for R with each of R_{1}, R_{2}, R_{3} estimators. The first ones are constructed using the $\log (-\log)$ transformation that usually improves the convergence to normality because the asymptotic variance does not depend on the unknown parameter. Consider

$$
Y \sim N\left(\lambda, \lambda^{2} / E I\right)
$$

and put $g(t)=\log t$ in (6a.2.1), [6]. Thus we have

$$
\log Y \sim N(\log \lambda, 1 / E I) .
$$

Hence, the confidence interval for $R=\exp (-\lambda)$ is

$$
\exp \left(-\exp \left(\log Y \pm Z_{\alpha / 2} 1 / \sqrt{ } E I\right)\right)
$$

where $Z_{\alpha / 2}$ is the $(1-\alpha / 2)$ th quantile of the standard normal distribution.
Note that $E I=n . E I_{1}=n$. expected proportion of uncensored observations.
For R_{2}, we first apply (6a.2.1) with $g(t)=-\log t$ to the formula (3.3), and we have:

$$
n^{1 / 2}\left(-\log R_{2}-\lambda\right) \rightarrow N\left(0, \lambda^{2} / E I_{1}\right) .
$$

Applying now (6a.2.1) with $g(t)=\log t$ we have

$$
\log \left(-\log R_{2}\right) \sim N\left(\log \lambda, 1 /\left(n E I_{1}\right)\right) .
$$

Hence, the confidence interval for $R=\exp (-\lambda)$ is

$$
\exp \left(-\left(\exp \left(\log \left(-\log R_{2}\right) \pm Z_{\alpha / 2}\left(1 / n E I_{1}\right)^{1 / 2}\right)\right)\right)
$$

With R_{3} we obtain a similar interval. We shall denote these intervals as R_{1}, R_{2}, and R_{3}.

The other class of intervals with confidence coefficient $1-\alpha$ is based on the asymptotic normality of $R_{i}(i=1,2,3)$. They are given by

$$
R_{i} \pm Z_{\alpha / 2} R_{i} Y /\left(n E I_{1}\right)^{1 / 2}, \quad i=1,2,3,
$$

where instead of R and λ we use their estimators R_{i} and Y. We shall denote these intervals as $R_{1}(b), R_{2}(b)$, and $R_{3}(b)$.

5. A SIMULATION STUDY

To examine how well the intervals based on asymptotic distributions do in finite sample situations, a Monte Carlo simulation was performed to determine the achieved levels of the bands under several situations.

We consider mission times corresponding to some chosen percentiles. We performed simulation for percentiles of order $q=0.05,0.5$ and 0.95 , which cover the part of the distribution with high reliability $(R=0.95)$ as well as the tail $(R=0.05)$. We use four values for the shape parameters of the censoring Weilbull distribution:
$\beta=0 \cdot 5,1,1 \cdot 5,2$. For each value of β, we take the corresponding scale parameter k to achieve an expected proportion of uncensored observation of $E I_{1}=0.2,0.5$, $\frac{2}{3}$, and $0 \cdot 8$. The sample sizes were $n=30$ and 50 , and the confidence coefficient 0.95 . The prior parameters in $R_{2}(a, p)$ and $R_{3}(a, p)$ were chosen $a=4 \theta, a=8 \theta, a=2 \theta$, $p=4$, according to two principles: (i) the standard error of the a priori distribution should be half of the prior expected value; (ii) the first prior distribution has the expectation equal to the hazard rate $\lambda=1 / 0$, the second one equal to half of it, and the third one equal to double of it.

For each combination of the various specifications, 400 data sets and their corresponding confidence intervals were generated. The observed coverage probability was calculated as the fraction of 400 confidence bands containing the true reliability $R=\exp (-1 / \theta)$. This number of replicas provides a standard deviation in the estimated coverage probability of about $0 \cdot 01$. All of the simulation results were computed on the IBM-AT computer using the uniform random number generator which is in the Turbo Pascal library. The numerical results are given in Tables 1-4.

6. CONCLUSIONS

First, R_{1} and R_{2} behave better than $R_{1}(b)$ and $R_{2}(b)$, respectively. They have a superior performance because the asymptotic variance of the $\log (-\log)$ transformation of R_{1} and R_{2} does not depend on the unknown parameter θ. It is an empirical fact, confirmed in this study, that transforming an estimate to remove the dependence of the variance on the unknown parameter tends to improve the convergence to normality by reducing the skewness.
R_{3} and $R_{3}(b)$ are rather sensitive to the choice of the prior parameters and above all to the chosen percentile. Furthermore as q increases, the effects on R_{3} and $R_{3}(b)$ are opposite. So for $a=2 \theta$ and $a=4 \theta, R_{3}$ is better if $q=0.95$ and $R_{3}(b)$ is better if $q=0.05$ or 0.5 . For $a=8 \theta$, they behave almost equally, however.

The R_{1} interval appears slightly anticonservative giving less than the desired coverage. However, R_{2} is conservative giving more than the desired coverage except for $a=80$. Hence R_{2} has a superior performance to R_{1} except for $a=80$, that it's similar. We can conclude, too, that we obtain excellent results if the choice of the prior parameters is perfect $(a=40)$, good results if we underestimate the hazard rate $(a=20)$, and worse results (but not too bad) if we overestimate it ($a=80$).

Under almost all circumstances (except for $q=0.95$ and $a=80$) R_{2} behave quite better than R_{3} and $R_{3}(b)$. In some cases R_{3} and $R_{3}(b)$ give very poor coverage probabilities, and so they are not recommended.

The level of censoring has not a clear effect on the coverage. On one hand, as the proportion of uncensored observations $\left(I_{1}\right)$ increases the estimators are more reliable and the coverage should increase. On the other hand when I_{1} increases the size

Table 1. Observed coverage for Weilbull censoring distribution with $\beta=0.5$.

Table 2. Observed coverage for Weilbull censoring distribution with $\beta=1$.

Table 3. Observed coverage for Weilbull censoring distribution with $\beta=1 \cdot 5$.

9	0.05				$0 \cdot 5$				0.95			
	$0 \cdot 2$	$0 \cdot 5$	$\frac{2}{3}$	$0 \cdot 8$	$0 \cdot 2$	0.4	$\frac{2}{3}$	$0 \cdot 8$	$0 \cdot 2$	$0 \cdot 5$	$\frac{2}{3}$	$0 \cdot 8$
				$n=30$		$a=4 \theta$		$p=4$				
\boldsymbol{R}_{1}	. 960	. 937	. 970	. 950	. 965	. 925	. 945	. 932	. 960	. 937	. 970	.950
$R_{1}(b)$. 902	. 912	. 972	. 940	-927	. 907	. 930	. 922	. 905	-897	. 905	. 910
\boldsymbol{R}_{2}	-999	. 970	. 987	. 980	. 999	. 975	. 985	. 967	. 997	. 972	. 990	. 977
$\boldsymbol{R}_{2}($ b $)$. 957	. 952	. 980	. 967	. 965	. 950	-972	. 962	. 995	- 967	. 990	. 980
\boldsymbol{R}_{3}	. 772	. 725	. 692	. 717	-895	. 897	. 937	. 930	. 957	. 972	. 999	. 990
$R_{3}($ b $)$. 935	. 932	. 975	. 952	. 960	. 942	. 962	. 955	$\cdot 760$. 777	. 767	. 835
				$n=30$		$a=2 \theta$		$p=4$				
R_{2}	. 997	. 967	. 965	. 965	. 997	. 962	- 970	. 965	-999	. 970	. 987	. 982
$R_{2}($ b $)$. 977	. 977	. 967	. 992	. 985	. 950	. 957	. 960	. 960	. 910	. 922	. 925
\boldsymbol{R}_{3}	. 440	- 500	. 512	. 570	-647	$\cdot 770$	-860	. 890	$\cdot 730$. 912	. 980	. 987
$R_{3}($ b $)$. 965	. 962	. 962	. 987	-970	. 935	. 937	. 952	$\cdot 327$. 495	$\cdot 577$. 632
				$n=30$		$a=8 \theta$		$p=4$				
\boldsymbol{R}_{2}	. 975	. 920	. 950	. 940	-982	. 917	. 955	. 965	. 940	. 890	. 915	. 917
$R_{2}($ b $)$	- 887	- 892	. 920	. 925	. 920	. 910	. 955	. 962	. 980	. 985	. 992	. 992
\boldsymbol{R}_{3}	. 902	. 822	. 867	. 870	. 952	. 895	. 942	. 955	-977	. 962	. 977	965
$R_{3}(b)$	-857	-847	-897	. 900	-905	. 902	- 947	-957	$\cdot 980$. 982	. 982	. 992
				$n=50$		$a=4 \theta$		$p=4$				
	. 962	. 950	. 940	. 955	-962	. 950	. 940	$\cdot 955$	$\cdot 965$	- 932	. 952	. 960
$\boldsymbol{R}_{1}(b)$. 942	. 940	. 925	. 962	-957	. 950	$\cdot 935$. 957	-917	. 910	. 950	. 942
\boldsymbol{R}_{2}	. 995	- 977	. 965	. 982	-992	. 972	. 962	-982	-987	. 965	-975	. 970
$R \mathrm{a}$ (b)	. 985	. 975	. 955	. 972	. 986	. 980	. 964	. 975	. 937	. 907	. 947	. 940
\boldsymbol{R}_{3}	$\cdot 730$. 672	. 755	. 692	-877	. 885	. 895	- 942	. 937	. 967	. 997	. 985
$R_{3}(b)$. 942	. 937	. 968	. 958	-954	. 952	. 971	. 956	. 789	. 796	. 785	-842
				$n=50$		$a=2 \theta$		$p=4$				
\boldsymbol{R}_{2}	. 985	. 960	. 942	. 945	. 999	. 955	. 970	. 955	. 990	. 960	. 972	. 957
R_{2} (b)	. 947	. 935	. 922	. 905	. 995	. 952	. 967	. 955	. 972	. 942	. 977	. 960
R_{3}	- 482	. 535	. 587	. 525	-677	-822	. 872	. 860	. 777	. 945	. 982	. 987
$R_{3}($ b $)$. 960	. 952	. 937	. 932	. 967	. 950	. 962	. 947	. 960	. 970	. 970	. 985
					$n=50$	$a=$	8θ	$p=4$				
R_{2}	-957	. 932	. 930	. 937	. 947	$\cdot 905$. 972	. 957	. 930	. 915	. 902	. 932
$R_{2}($ b $)$. 997	. 975	.967	. 967	. 987	. 947	. 955	. 967	. 765	-822	. 762	. 852
R_{3}	- 862	- 810	. 800	. 817	. 920	-870	. 930	. 940	. 980	. 965	. 952	. 967
$\boldsymbol{R}_{3}($ b $)$. 967	. 952	. 955	. 957	. 960	. 920	$\cdot 950$. 930	. 910	. 917	. 900	. 930

Table 4. Observed coverage for Weilbull censoring distribution with $\beta=2$.

${ }^{q}$	0.05				0.5				0.95			
	$0 \cdot 2$	$0 \cdot 5$	$\frac{2}{3}$	$0 \cdot 8$	$0 \cdot 2$	$0 \cdot 5$	$\frac{2}{3}$	0.8	0.2	$0 \cdot 5$	$\frac{2}{3}$	$0 \cdot 8$
				$n=30$		$a=4 \theta$		$p=4$				
R_{1}	. 967	. 907	. 965	. 945	. 952	. 950	. 937	. 960	. 967	. 907	. 965	. 945
$R_{1}($ b $)$	-922	. 905	. 960	. 932	. 935	. 925	. 935	. 957	. 922	. 872	. 895	-892
\boldsymbol{R}_{2}	. 999	. 970	. 992	. 975	. 992	. 987	. 975	. 982	. 999	. 950	. 987	. 977
$R_{2}($ b $)$. 970	. 937	. 980	. 962	. 960	. 975	. 967	. 980	. 977	. 967	. 992	. 977
R_{3}	. 785	$\cdot 720$	-705	. 725	. 905	. 915	. 910	. 945	. 962	-972	. 997	. 987
$R_{3}(b)$. 935	. 920	. 967	. 945	-957	. 972	. 962	. 975	. 795	. 775	$\cdot 790$. 830
				$n=30$		$a=2 \theta$		$p=4$				
R_{2}	. 990	. 962	. 957	. 975	. 997	. 962	. 962	. 970	. 999	. 987	. 977	. 980
$R_{2}($ b $)$. 990	. 972	. 972	. 970	. 997	. 937	. 957	. 955	. 957	. 922	.925	. 932
R_{3}	. 505	. 525	. 535	. 547	-690	. 795	-865	. 867	. 735	. 907	. 972	. 987
$R_{3}(b)$. 975	. 965	. 975	. 970	. 972	. 917	. 947	. 932	$\cdot 332$. 472	. 590	. 830
				$n=30$		$a=8 \theta$		$p=4$				
\boldsymbol{R}_{2}	. 990	. 897	. 952	. 962	. 982	. 887	. 935	. 957	. 957	-880	-880	. 940
$R_{2}(b)$. 915	. 842	-895	. 945	-947	. 877	-930	-957	. 972	. 987	. 995	. 992
R_{3}	. 947	. 782	. 822	- 895	. 960	. 855	. 922	. 950	-972	. 965	. 957	. 970
$R_{3}(b)$	- 887	$\cdot 790$. 857	. 927	-937	. 865	$\cdot 930$. 952	-972	-997	. 985	. 977
				$n=50$		$a=4 \theta$		$p=4$				
R_{1}	. 975	. 947	. 930	. 947	. 975	. 947	. 930	. 947	. 975	. 947	. 930	. 947
$R_{1}(b)$. 975	. 935	. 930	. 952	. 985	. 945	. 935	. 957	. 915	. 885	. 927	. 940
R_{2}	. 965	. 925	. 940	. 950	. 960	. 973	. 935	. 945	-895	-885	. 917	. 965
$R_{2}(b)$. 995	. 977	. 952	. 972	. 999	. 980	. 970	. 980	. 940	. 885	. 925	. 935
R_{3}	. 717	. 667	. 722	. 667	-887	. 875	. 910	. 937	. 960	. 980	. 982	. 987
$R_{3}($ b $)$. 942	. 930	. 970	- 592	. 963	. 972	. 962	. 978	-892	. 870	- 872	-897
				$n=50$		$a=2 \theta$		$p=4$				
R_{2}	. 992	. 955	. 960	. 955	. 990	. 962	- 967	. 957	.995	-962	. 985	. 967
$R_{2}($ b $)$. 970	. 940	. 940	. 922	. 982	. 955	. 965	. 957	. 975	. 937	. 970	. 965
R_{3}	-467	. 530	- 542	- 522	-692	- 822	-875	-860	-802	. 940	. 995	. 980
$R_{3}(b)$. 975	-952	. 965	. 942	-980	. 950	. 960	. 947	$\cdot 787$	-832	- 878	-892
				$n=50$		$a=8 \theta$		$p=4$				
	. 965	. 905	. 942	. 967	. 967	. 915	. 920	. 947	. 935	. 860	. 912	. 947
$R_{2}(b)$. 935	. 872	-890	. 923	. 957	. 915	. 945	. 962	. 977	. 982	. 967	. 958
\boldsymbol{R}_{3}	. 867	. 792	. 830	. 837	. 940	. 895	-902	. 937	. 977	. 947	. 960	. 980
$R_{3}(b)$	-892	. 865	-877	. 930	. 920	. 915	. 930	. 952	. 872	-883	-887	. 912

of the intervals decreases and so does the coverage. None of the two effects is dominant.
With respect to the shape parameter β of the Weilbull distribution, the results are very similar for the four values of β. It is logical because for each value of β, we obtain its corresponding confidence interval. The results would have been different if we had constructed an interval with exponential censoring and studied the robustness with respect to the assumed censoring distribution.
The achieved confidence level of R_{2} is very similar for $n=30$ and $n=50$. For R_{1} this level is slightly higher for $n=50$. Anyway we can conclude that the large sample band based on the $\log (-\log)$ transformation of the asymptotic distribution of R_{2} does very well with small and moderate samples.
(Received December 4, 1987.)

REFERENCES

[1] J. D. Emerson: Effects of censoring on the robustness of exponential-based confidence intervals for medial lifetime. Commun. Statist. B10 (1981), 6, 617-627.
[2] J. Hurt: On estimation in the exponential case under random censorship. In: Proc. Third Pannonian Symp. on Math. Statist., Visegrad, Hungary, Akademiai Kiadó, Budapest 1982.
[3] J. Hurt: Comparison of some reliability estimators in the exponential case under random censorship. In: Proc. Fifth Pannonian Symposium on Math. Statist., Visegrad, Hungary, Akademiai Kiado, Budapest 1986.
[4] J. A. Koziol and S. B. Green: A Cramer - von Mises statistic for randomly censored data. Biometrika 63 (1976), 465-474.
[5] R. G. Miller, Jr.: Survival Analysis. Wiley, New York 1981.
[6] C. R. Rao: Linear Statistical Inference and Its Applications. Wiley, New York 1973.
Dr. José Villen-Altamirano, Departamento de Matemática aplicada, Escuela Universitaria de Informática, Calle Arboleda s/n., Carretera de Valencia Km. 7, 28031 Madrid. Spain.

