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ON THE BEHAVIOUR OF LEARNING ALGORITHMS 
IN A CHANGING ENVIRONMENT WITH APPLICATION 
TO DATA NETWORK ROUTING PROBLEM 

ATHANASIOS V. VASILAKOS 

In data networks the message has peak and slack periods and the topology may change. 
A learning automation is situated at each node of the network where a routing decision must be 
made and directs traffic entering the node onto one of the outgoing links. Using network feedback, 
an automaton modifies its routing strategy to improve its link selections. This approach has the 
advantage over existing routing schemes of offering a simple and extremely practical feedback 
and updating policy. A new model of a nonstationary automaton environment is proposed and 
the limiting behaviour of this model is analysed. Simulation studies of automata operating in 
simple networks verify the analytical results. 

1. INTRODUCTION 

Learning algorithms has been suggested in the past in circuit switched telephone 
networks. In this paper, we focus on the packet-switched routing problem, with 
learning automata proposed for virtual and datagram networks. The virtual network 
function is similar to a circuit-switched network: the routing mechanism establish 
a virtual connection between source and destination, which can then be used to 
transfer the data packets. Datagram networks on the other hand, treat the data 
packets as individual entities and the routing algorithm selects any allowable path, 
spreading the traffic efficiently over the available capacity of the network. . 

In this paper we develop an abstract model of the network that is functionally 
dependent on the automaton's strategies in order to study the equilibrium and 
transient behaviour of the system. A dynamic model in which the environment is 
characterized by a set of state variables is needed to correctly represent the network's 
operation. The state of the system converges in distribution and the equilibrium 
behaviour of the system can be characterized. 

The learning algorithms are compared against existing techniques and has been 
shown to provide a superior strategy when non-stationary network conditions 
prevail. 
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2. LEARNING AUTOMATA IN NON-STATIONARY ENVIRONMENTS 

A learning automaton operates in such a manner as to choose an optimal action 
1 from an allowable set and to apply the selected action to a non-stationary environ
ment. In turn, the environment responds with a feedback signal, which initiates 
an updating of the internal state vector responsible for the future action selection 
process. A learning automaton environment configuration is shown in Figure 1. 

ß Automaton 

PJ (>;.),..., p r ( n ) 

a Automaton 

PJ (>;.),..., p r ( n ) 

Enviroment 

ci(n), ...,cr(n) 

Enviroment 

ci(n), ...,cr(n) 

Fig. 1. Automaton/Environments interaction. 

The automaton is defined by a quadruple {a, /i, p, T) for which a and /? are the 
output and input sets, p is the action probability vector, and Tthe learning algorithm. 

The output set a is the action set of the automaton (a^ . , the input set ß 
is a continuous random variable in the interval [0, 1] (S-model). By normalizing 
the queue delay feedback in the network, the input space of an S-automaton and the 
network feedback can be made to correspond. 

The environment is defined by the set 

c = (c l5 ..., cr) where 

ci = ?\fi(n) = /3f | oc(n) = a,} , j3t a random variable in [0, 1] 

n is the time of the automaton action 

ct is called the i penalty probability of the environment. 

The reinforcement algorithm T(a, /?, p) provides the necessary means to modify 
the action probability vector in relation to the performed action and received response. 

p(n + 1) = T(a, /J, p(n)) 

The learning algorithm with r-actions takes place as follows: 

Reward on cc{ 

p.(n + 1) = Pi(n) + a(\ - fi(n)) Pi(n) 
p.(n + 1) = Pj(n) - a(\ - P(n))Pj(n) 

Penalty on ctt 

Pi(n + 1) = Pi(n) - b p(n) Pi(n) , (_ ^ 

Pj(n + 1) = Pj(n) + b fi(n) [l/(r - 1) - Pj(n)] ?"> 

ß(n) = 0 

(I) 
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The constants a and b are the reward and penalty parameters, 0 < a, b < 1. 
The reward to the selection of the action a,- is largest when /? is close to 0, and the 
converse is true for /i close to 1. 

We shall refer to the case when a = b as the SLRP algorithm (linear reward-
penalty). 

The linear reward-inaction, SLRI, algorithm is given by (l) when b = 0. 
The linear reward-s-penalty, SLREP , algorithm is given by (l) when b = 0(a) 

0(a) is such that 0(a)ja —> 0 as a -» 0. 
A non-stationary environment model with a continuous functional dependence 

on the action probabilities of the automaton is presented for the real network re
presentation. The parameters of the environment correspond to normalized per
formance variables that are monitored in a network. To account for both equilibrium 
and transient behaviour in the environment, a fully dynamic model is introduced. 

cfn + 1) = ki ct(n) + (1 - kt) $i(Pi(n)) (2) 

Each of the environment parameters is now a state variable so the system state 
consists of the automaton strategy augmented with the r-vector of the environment. 
We assume 0 < k < 1. So the environment model is stable. 

<£,(•) is defined to have the properties 
(i) <t>i(Pi) is defined everywhere on [0, 1] and 

<*V [0, 1] -> [0, 1] with <Pi(l) = 1 
(ii) <Pi(Pi) is analytic of every point of [0, 1] and 

(iii) <Pi(Pi) is monotonically increasing. (3) 

Let us denote the network's queue delay at trial n for the automaton's ith link 
choice by T-fn). The delay is positive and, in a stable situation, finite. For Tt(n) e 
e [jit, v] where /J, v e N define the normalized queue delay, corresponding to the 
outputs of the abstract environment models, by 

cfn) = Ti^ ~ " (4) 
v - tx 

ct(n) is a random variable in the interval [0, 1], and the normalized delay in the 
computer network corresponds to the input space of the S-automata described 
earlier. Hence the automaton in the network is updated with fi(n) = cfn) when 
a ;(link ;) is chosen. 

3. ANALYSIS OF THE DYNAMIC ENVIRONMENT 

The simple case of a two-action automaton is analyzed in detail and later the 
results are extended to the more general case in which the automaton has r > 2 
actions. Under the conditions specified, it is shown that a unique vector [p*T, c*T]T 

exists. 
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Let x be the state at the learning model whose state space is X. X is the r-dimension-
al simplex sr where 

r 

Sr = {P | P = (Pi,P2> ••;Pr), YaPi=X> ° = Pi = 1 } 
i = l 

Let $ be the space of all possible pairs of automaton actions and inputs to the 
automaton from the environment, and e(a, fi) be a particular event at a given trial. 
T is the transition function defined in the previous section and p(x, e) is the prob
ability distribution of e conditioned on x. 

Tacting in a stationary environment is said to be distance diminishing if, for any 
initial states x and x', d(T(x), Tyx')) < d(x, x') where d(', •) is a suitably chosen 
metric. The following criterion of Norman [6] is applied to prove the algorithm is 
distance diminishing. Define 

,{T) = 4rM), r (x»] (J) 
i(x, X') 

( \ P(A% e) - P(X • e)\ [s\ 
m(p) = SUp ^ L ry ; | ^ 

x*x' d[x, X ) 

where d is the metric 
r 

d(x,x') = X \xt - x'\ . 
i= 1 

The operation of the algorithm is distance diminishing if m(p) < co and l(T) ^ 1 
for all e E S and all x e X and if there is some eeS such that l(Tj < 1 and p(x, e) > 0. 

For the non-stationary dynamic environments of this paper, the state of the system 
has to be suitably defined to include the environment also. The state space in this 
case is the product space Y = sr x [0, l ] r . The state vector of dimension 2r is Y = 
= [pT, cT]T. We will demonstrate that the SLRP automaton is distance diminishing. 
Similar arguments can be applied for the SLR1 and SLR E P automata. It has been 
proven by Norman that if the process ((1), (2)) is distance diminishing, it is a compact 
Markov process and converges to one of its ergodic kernels. If there is a single 
ergodic kernel, the process converges uniquely from any initial state. Under the 
conditions specified, it is shown that a unique vector, [p*T, c*T]T exists. 

Existence and Uniqueness of p* 

The environment for the r-action case is given by (2) and (3): 

Ci(n + 1) = ki ct(n) + (1 - ki) $i(Pi(n)) , i = 1, 2, ..., r 

where <Pt is analytic and monotonically increasing on [0, 1] and <Pt: [0,1] ~> [0, 1] 
with $t(l) = 1. 

Brouwefs Fixed Point Theorem [8]: Every convex compact subspace of a Banach 
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space is a fixed point space. Using Brouwer's theorem, it is first shown that 2r con
stants p*, c*, i = 1, 2, ..., r exist such that p*c* = p*c* for i,j = 1, 2, ..., r. Using 
the properties of <Ph it is later shown that the constants c*, p*, i = 1,2,..., r are 
unique. 

We define the following functions 

1 £ • • 
wt = — piCf + X P/O , j * i 

r - 1 j = I 

Oi = - p , c , + p^,(/J,) (7) 

It is clear that the sums of all r components of the wt and a{ are 0. 

Define a continuous map A taking sr x [0, l ] r into sr x [0, l ] r : A = I I where 
M and N are defined by ^ ' 

M-.p^lLt^-, W : e ; - _ 4 _ (8) 
i + i > ; i + i < 

J = l 7 = 1 

where wf
+ = max (w;, 0} and <r£

+ = max {cr;, 0}. It is clear that sr x [0, l ] r is convex. 

There must be some wt = 0, and by the fixed point theorem and (8), 
r 

Pi Z wl = ° and 

7 = 1 

Cii°; = o (9) 
7 = 1 

These equations imply p,- cf = P*c*, i + /. Uniqueness of the equilibrium follows 
by assuming the existence of two equilibrium points y* and y*' and proving a contra
diction using the continuity and monotonicity of <Pt. 

Distance Diminishing Property of the SLRP Automaton 

I. Two-ac t ion case 

For the two action case, the following equations describe the operation of the 
automaton into the environment: 

Pi(n + 1) = Pi(n) - a[l - Cj(n)] pt(n) + a Cj(n) [l - Pi(n)] , ct(n) = ccj 

Pi(n + 1) = Pi(n) + a[\ - ct(n)] [i - p;(n)] - a c{n) pt(n), a(n) = cct 

(10) 
The constant a is the learning parameter, 0 < a < 1 

Cl(n + 1) = fci c,(n) + (1 - fej *!(?!(»)) 

c2(n + 1) = k2 c2(n) + (1 - k2) #2(pa(n)) (11) 
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where i,j e {1, 2} and i + j . The minimal state description is given by (px, cx, c2)
T 

since p2 = 1 — px, kx, k2, <PX and <£2'are unknown and depend on the network. 
When an automaton operates in a random environment, distance diminishing 

behaviour must be established using the entire state y. However, because the depen
dence of cx(n + \) and c2(n + 1) on px(n) is deterministic and the randomness is 
introduced only in the equations for px we can focus on the convergence behaviour 
in the simplex S determined by the action probabilities of the automaton and show 
that px converges in distribution. Once this is proven, the convergence of ct follows. 

Let px(n + \), cx(n + 1) and t2(n + 1) be defined from (10) and (11) in terms 
of states (Pi(n), cx(n), c2(n))T and (p\(n), c\(n), c'2(n))T as 

px(n + 1) = px(n + 1) - p\(n + \) = (\ -a) px(n) — a cx(n), 

a(n) = ax 

px(n + 1) = px(n + 1) - P\(n + \) = (\ - a) Px(n) + a t2(n) , 

a(n) = cc2 (12) 

t{n + 1) = kt tt(n) + (\- kt) {*&&)) - #«(pi(»))} , i e {1, 2} (13) 

For the distance diminishing property the equation (5) must be upper bounded 
by 1. We also consider a lower bound m < l(T), 0 < m < 1. 

m < \Piin_+1)| = | ( 1 _ a ) pi{n) _ ^ ti{n _x)_ a ( l _ fcj 

\Pi(n)\ 

. [0(Pi(n - \)) - <P(p'l(n - 1)]| | ^ « ) | < 1 (14) 

To eliminate the dependence on tt(n) we make the following substitution 

tt(n) = kN tin -N) + (1 - kt) i {0(Pi(n - j)) - *(p't{n - j))} kj~l (15) 
J = I 

where kN ct(n — N) can be made less than any positive constant St by a suitable 
choice of N. 

Substituting in (14) and multiplying by \pt(n)\ we have: 

m\pt(n)\ < \pt(n + 1)| = |(l - a)pi(n) - akN tt(n - N)-

- a(\ - kt) i [0(Pi(n - j)) - 0(p[(n - j))] ^ l < |M")I 
y = i 

We assume N sufficiently large so the term kN is negligible. So 

£ \MMn - j)) - <P(Pi(n - j))] k{-^ < 1 - a - m ^ 

y = i p{n) a(\ - kt) 

If the maximum slope of <P( (i = \, 2) is £, it follows that 

4>(pt(n - h)) - $(p't(n - j)) < <P(Pi(n)) - <P(p't(n)) - Z Apt(n - j) (17) 

where 
&Pi(n - j) = Pi(n) - pt(n - j) . 
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From (15) we have 

< 4>(pi(n - jj) Ф(P'І(П - j)) ř Api^П ~ 1) < a — m 

~ ~ ~ 
(18) 

j = i &(n) pi(n) a(\ 

Applying t times the lower bound m < pt(n + l)/p^(n) we have p,(fl)/p;(n — f) > 
> mf and 

ДЃ,(n - I) = p,{n) - p,(n - i) > - ( 1 

<-0 
m <) p{n -t), p > 0 

The inequality (17) can be written as 

N+X 

I/cГ1 

j=í 

„ 1 — mJ 

ç + C — 
m 

< 
1 - a 

a(l - fc,) 

'ř) ^(и 

j = 1,2, 

p < 0 

N + 1 

ç < 
1 
a(l 

a — m m — /cř 

" ~'kò І-ЃҺ 

We assume !<j < m and N sufficiently large so that (k^mf <^ 1. So 

J — a — m 
{ < (m - fe,) (19) 

(20) 

a(l - fc,) 

For the value of m, m = (1 + kt — a)J2, (18) is written 

{< I L Z ^TA^]2 

4a(l - ki) 

Hence our algorithm can be made distance diminishing for any c, if a is sufficiently 
small. The choice of a is seen to depend both on the maximum slope of <P-t as well 
as the parameter /c; which determines the dynamics of the environment. 

To examine the distribution of the learning model in the equilibrium, we consider 
the asymptotic mean learning behaviour. The distribution of p specifies the distribu

tion of c through (2). For the SLRP automaton, let p and c be given, and define 

APl(n) 

ІPi,c) = E 

Дc 

p(n) = p 

c(n) = c 

(21) 
c2(n) p2(n) - cx(n) px(n) 
(1 - kx) l<Px(Pl(n)) - c,(n)] 
(1 - k2) [<P2(p2(n)) - c2(n)) 

The solution of (21) (the zero of w) is at p*, c*. Using the results from Norman 
[6] we can show that p* and the mean of the distribution of p are within 0(a) of each 
other. {p(n)}n>0 changes by small steps, and p* is approached is the argument of vv 
is continuous. If T is the solution of the differential equation t = VV(T), then T = 
= (p*, c*) is a stable equilibrium. In general the zero of E[vv(p, c)] does not coincide 
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with the zero (p*T, c*T)r of \V(T). But it can be shown that the solution is within 
0(a) of p*. 
Define 

z(k) = **> ~ <V 
y/a 

If a —> 0, ka —> t < oo, then z(/c) converges in distribution to N[0, cr(f)], where 
a(r) = O(fl). Hence if a is small, the equilibrium strategy is approximated by p*. 

II. r-Action A u t o m a t o n 

The proof of convergence for the r-action automaton is parallel to that of two-
action automaton. To prove l(T) < 1, 

4 % M ) 5 ny(«))] _ 
4i>(n)> P ' M ] 

= i |(1 - A) [Pi(n) - p;(n)] - «[c;(n) - cJM]| + 

+ 1 (1 - fl) [Pj(n) - Pj(n)] + [Ci(n) - cЏ)] 

7 I \PÂn) ~ P'Ân)\ < [ 

7 = 1 

(22) 

As in the two-action case, applying equation (15) for large N we get the bound: 

7 - 1 

h "" " (Pi(n) - P[(n)) " " 2A(1 -ki) 

(23) is identical to (16) except for a factor of \. 
Following the same steps as in previous case we get as upper bound 

[1 - a - k^2 

c < 

(23) 

(24) 
8A(1 - fc£) 

So, the operation of the r-action algorithm is distance diminishing under the same 
conditions as given for the two-action case. 

If we consider w(ph c) as defined in (21) we have: 

E[Api(n) | p(n) = p] = -aptpt + (a - b) p3[\ - X Pj] + 
j*i r - 1 

• I PjPj + ia - b) PÍ Z pjPj 
j * i j * i 

In the SLRP algorithm a = b and p* is given by p'lct = PJCJ, /', j = 1, 2, ..., r. 
As previously p(n) converges to a normal distribution with variance 0(a). The 

mean of the distribution is within O(fl) of p* and consequently if a is small the 
routing strategy is approximated by p*. 
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4. SIMULATIONS 

The consistency of the simulated behaviour of automata operating in the network 
with the behaviour predicted by the models it is shown. The need for a fully dynamic 
environment is pointed out, and the use of this model to predict transient behaviour 
is demonstrated. The asymptotic behaviour of the SLRP, SLRI, SLR E P algorithms in (5) 
and (6) is verified, with the forcing function of the environment chosen to be <£,(/?,) = 
= pt. All the simulations are performed in the 4-node network of Figure 2. 

Fig. 2. cx = c2 = c3 = c4 8000 bits/sec; A1>4 variable in packets/byte-time; packet length = 
= 256 bits, byte = 8 bits. 

The transient behaviour of the SLRP automaton in the dynamic environment is 
shown in Figure 3. 

Pi(n)Џ 

0.5 
0.4 
0.3 
0.2 

0.1 

°лx 

ô ° "pxft-*" ^ * * * x ° ~° 

° / __ / 
<>X o K[ — h'-> 

0 

x ki- k2 = 0.95 

n network 

environmcnt 

20 40 60 80 100 120 140 160 180 200 n 

Fig. 3. SLRp algorithm in Dynamic environment and Network with initial values c^O) = 0-5, 
c2(0) = 0-5 learning constants a= b= 0-02 and traffic A1>4 = 0-2 packets/byte-time. 

By varying the time constants of the dynamic environment model (2) it is seen 
in Figure 3 that the transient behaviour of the automaton in the dynamic environ
ment and network nearly match each other when kx = k2 = 0-95. 

The load equalizing behaviour of the SLRP, SLRI, SLReP algorithms and their 
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comparison with other routing algorithms such as random routing and minimum 

delay routing is shown in Table 1. 

Table 1. Performance of the Learning Algorithms Compared to Random and Shortest Queue 

Algorithms. 1000 packets of length 256 bits have been transmitted in the network. Learning 

constants a = b — 0-02 for SL R P , a — 0-02 for S L R I and a = 0-02, b — 0-002 for S L R e p , are 

experimentally chosen. Perfect information (downchain queue delay) is available to all algorithms. 

Product of Delay-

Delay/path Probability Average 

Algorithm Load Xxл a. <*2 a j <X2 

Delay 

S L R P 0-2 1-137 1-063 0-545 0-552 1-097 

SLRJ 0-2 1-005 1-027 0-421 0-592 1-013 

SLR Ep 0-2 1-098 1-057 0-385 0-671 1-056 

Random 0-2 1-221 1-209 0-610 0-604 1-215 

Shortest Queue :0-2 0-993 1-008 0-993 1-008 1-005 

From Table 1 it is clear that learning routing is better than random routing and 

that minimum delay (shortest queue) is the lower bound on the packet delay. 

The effect of changes in the network parameters has been considered, by increasing 

the sampling interval and introducing a transportation lag in the feedback informa

tion available to the algorithms. 

Thus the performance of minimum delay routing deteriorates as the sampling 

interval increases and a transport lag is introduced. On the contrary learning algo

rithms can easily adapt to the changes in the network conditions as is shown in Table 2. 

Table 2. The effect of Sampling Interval and Transport Lag on the Performance of Minimum 

Delay and Learning Algorithms. The load A, 4 = 0-2 packets/byte-time and the sampling 

interval in increased from 0-02 sec to 1 sec. 

Average Delay 

Algorithm Before After 

S L R P 1-097 1-184 

Shortest Queue 1-005 1-521 

Now we illustrate the need of a fully dynamic environment. The instantaneous 

environment ct(n) = <Pt Pi(n), suggested in [9], is memoryless and consequently 

Pi(ni) — Pi(ni) a t trial nx, n2 implies that cx(nx) = cx(n2). 

Transient peaks of px(n) were generated with two different source rates in Figure 2. 

Equal values of px(n) have been observed and the corresponding values of cx(n) 
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were found to be significantly different. The numerical values at these points are given 
in Table 3. It is clear that the network is not memoryless. 

By varying the time constants of the dynamic environment model (2) it is seen 

Table 3. 

px{n) cx{ń) 

0-2 

0-4 

70 0-463 0-440 

120 0-461 0-531 

67 0-511 0-671 

100 0-512 0-823 

that the transient behaviour of the automaton in the dynamic environment and 
network nearly matching when k1 = k2 = 0-95. 

5. CONCLUSIONS 

The principal contribution of this paper is the introduction of a dynamical en
vironment model presenting the characteristics of a network and the applicability 
of learning methodology to the data network routing problem. Simulations have 
shown that the dynamic environment can be used to study the behaviour of learning 
algorithms in data networks. The superiority of learning algorithms over existing 
algorithms when network conditions are changed is shown. 

This work indicates that the use of learning automata is a realistic and useful 
approach to routing in data communication networks. 

The performance of learning algorithms with different updating methods, feedback 
policies and its advantages over other dynamic routing techniques is a problem 
for further investigation. 

(Received April 26, 1988.) 
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