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THE UNCERTAINTY PROBLEM IN CONTROL THEORY 
Part II. The Internally Robust Procedures 

JAROMÍR ŠTĚPÁN 

The problems connected with the stability of numerical processes are analyzed in the second 
part. The Internally Robust (IR) procedures are proposed on the basis of the concept of the theory 
models derived in Part I. This approach is demonstrated on the Damped Nonlinear Least Squares 
(DNLS) estimator derived in the literature ([16, 17]). The use of the proposed concept is illustrated 
by the delimitation of the applicable models of the DNLS estimator for the class of the second 
order systems. 

6. T H E I N T E R N A L L Y ROBUST P R O C E D U R E S 

As we have shown in Section 4 only the problems, which start from measured 
data given with the low precision, are interesting for the applications of the control 
theories. So we shall try to show in this section that the low accuracy of initial data 
may be in certain sense an advantage. But in this case one condition must be assured: 
It is possible to separate the data and computation precision levels. Then Hypothesis 
(iii) of Definition 5.2 can be fulfilled. We must distinguish in this connection at least 
two parts of the robustness problem. The internal robustness is connected with the 
stability of numerical processes. It must be first assured and then the external robust
ness, i.e. the robustness to errors of measured data, makes sense. In this section we 
shall analyze the internal robustness of control algorithms — the Internally Robust 
(IR) procedures. 

6.1 The definition of the IR procedure 

First let us introduce the intermediate result Z(('), C, dd,dc) computed for some 
problem from the subspace R(('), C, aL) with the algorithm pertinent to the theory 
model T((*), C, dd,dc). This intermediate result Z(('), C, dd, dc) is the numerical 
result of some part of the considered algorithm. If the intermediate results do not 
depend on, the precision of input data then it must hold for the given problem and 
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for two different precision levels of input data, e.g. for dd and dd + 1, and for the 
given computation precision, e.g. dc = dcg, the following equality 

Z((-), C, dd, dcg) = Z((«), C, ^ + 1, dcg). (6.1) 

This condition is not sufficient for the internal robustness of the CR theories 
because there can exist some problems for which the intermediate result cannot be 
computed with the computation precision dcg. So the limit computation precision 
dcm must exist for each problem from the subspace R((*), C, oL). The question arises 
how to bypass the problems with dcm > dcg. Here the backwards analysis may be 
useful. We are interested on the demarcation of the reliable results, i.e. on the demarca
tion of the subspace of results R(("), C, oL, dc) for the best possible precision of 
initial data ddM(qL) resp. oLM. We can choose for control problems the value 
ddM(qL) = 2 resp. oLM — 2, 4 . 10 - 3 (cf. Table 2). Now if the difference Ad = 
= dcg — ddM(qL) is sufficiently large then it holds for oL ^ oLM and the given com
putation precision dc = dcg 

R((-), C, oL, dcg) £ R((-), C, oLM, dcg) (6.2) 

resp. for the given oLM and dcm > dcg 

R((-), C, oLM, dcg) = R((-), C, oLM, dcm) . 

The limiting factor for the demarcation of the subspace R(('), C, oL, dc) is here given 
by measured data, i.e. by the limit deviation oLM. The difference to numerical mathe
matics, i.e. for dd = dc and for dcm > dcg, is given by the inclusion 

R((-), C, dd = dc = dcg) £ R((«), C, dd = dc = dcm) . 

Now we can define the IR procedure: 

Definition 6.1. The numerical procedure, i.e. the part of the algorithm pertinent 
to the model T((*), C, dd, dc) of the formal theory Tf, is internally robust with respect 
to the subspace of problems R(('), C, oL) if the following conditions are fulfilled 

(i) initial data are not included in this procedure, 
(ii) relation (6.1) holds for the intermediate results of all problems for the subspace 

R((*), C, oL) for the given computation precision, e.g. dc = dcg = 16, 
(iii) the difference Ad = dc — ddM(qL) is so large that the delimination of the sub-

space R(( •), C, oL) is given backwards by relation (6.2) for the data precision oL ^ oLM. 

Let us add that these conditions can be simply tested as we shall show later. At first 
sight this concept may see unrealistic. But if we take into account that the difference 
Ad in Hypothesis (iii) of Definition 6.1 for dcg = 16 and ddM(qL) = 2 is Ad = 14 and 
these precision levels are realistic for the great part of practical control tasks then 
this concept is at least promising. 

The best way, how to explain the idea of the IR procedures, is the demonstration 
on some identification method. Therefore we shall illustrate the proposed concept 
with the Damped Nonlinear Least Squares (DNLS) estimator as it was derived 
in the literature ([16], [17]). 
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6.2 The internal robustness of the DNLS estimator 

First let us sketch the derivation of the Newton method to get the insight in the 
problems connected with the internal robustness of the DNLS estimator. The error 
function starting from the response of the model with the transfer function (2.3) 
and the measured points y is given by the relation 

Q(a)=f(a)f(a), (6.3) 

where f(k, a) = y(k) — y(k, a) (k = 1,2, ..., q). 
This nonlinear error function can be approximated with the first three members 

of the Taylor expansion 

Q(a + Aa) = Q(a) + Q'(a) Aa + W(a) Aa2 + ... 

The solution must be iterative and so the notation J + 1a = Ja + A Ja will be used. 
Superscripts on the left indicate the iteration steps. Then the solution is given by the 
derivative of the error function 

Q(J + la) = Q(Ja) + Q'(Ja) A Ja + \Q"(Ja) A Ja2 

at A Ja, i.e. from the condition 

Q'(Ja) + Q"(Ja) A ja = 0 (6.4) 

we obtain the known result 

AJa= -[Q^a^'Q^a). (6.5) 

The elements of the matrices in relation (6.5) can be computed for the first partial 
derivatives denoted by dty(Ja) = dy(Ja)jdJai (i = 0, 1, ..., n) resp. for the second 
derivatives denoted by dtdey(Ja) = d2y(Ja)jdJaid

Jae (i, e = 0. 1, ..., n) from the 
relations 

dtQ(Ja)= -2tdi
Jy(k,Ja)f(k,Ja) (i = 0, 1, ..., n) (k = 1, 2, ..., q) 

(6.6) 
resp. 

dtdeQ(Ja) = 2 t dt
 Jy(k, Ja) de

 Jy(k, Ja) 
k=l 

-2tdide
Jy(k,Ja)f(k,Ja) (i, e = 0, 1, ..., n) (k = 1, 2, ..., q) . (6.1) 

fe=i 

The estimator based on the Newton method cannot be robust. It is shown by the 
analysis of the internal robustness which can be essentially simplified. Only the 
inversion of the Hessian matrix given by the elements according relations (6.7) 
must be tested. These elements are given by measured data too, i.e. f(k, Ja) in the 
second part of relation (6.7) is given with the precision dd(qL) = 2. Therefore the 
estimators derived from the Newton method are practically useless in spite of the 
fact that the pertinent formal theory is correct. Here the viewpoints of the numerical 
mathematics resp. the error analysis are decisive (cf. Section 3). 
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Similarly the main line of the computation by the great part of estimators is given 
by the inversion of the information matrix. Now if the elements of this matrix are 
given by measured data then we cannot expect that the pertinent inversion will be 
internally robust. The explanation is simple: we mostly lose in nontrivial cases during 
the computation more than two decimal places. Therefore we can formulate more 
general statement (cf. [16], [17]): All methods, which are based on the inversion 
of matrices given by measured data, cannot be in nontrivial cases internally robust, 
e.g. the Kalman-Bucy filter or EE estimators are not internally robust (see Para
graph 6.3). 

Now if we neglect the second part of relation (6.7) then we get the Gauss-Newton 
method and relation (6.5) has the form 

A Ja = \HT(Ja) H(Ja)]_1 HT(Ja)f(Ja) (6.8) 

where H(Ja) is the Jacobian matrix with elements Jhki = Jv^\k) (k = 1, 2, ..., q; 
i = 0, 1, ..., h). All estimators based on this method are internally robust. It follows 
from the fact that the matrix (HT (Ja) H(Ja)) is given with the double precision 
and so the pertinent inversion is numerically robust for the practically important 
cases (see Section 7). Let us remark that measured input signals included in sensitivity 
functions (2.5) do not influence the internal robustness. It follows from the fact that 
the Jacobian matrix can be computed with double precision for an arbitrary input 
signal. The pertinent resulting error must be respected in the limit deviation aL 

of the noise (cf. Paragraph 4.2 and Section 7). 

Let us remark that the internal robustness of the individual iteration step does 
not lead automatically to the convergence of the sequence of iterations. So we must 
pay for the mentioned advantage, i.e. the internal robustness, by the transition 
to the next step. The Gauss-Newton method can be effectively used if the following 
condition holds (see [17]) 

(HT(J +1 a) H(J + 1a))n (HT(Ja) H(Ja)) . (6.9) 

At the present time there is no procedure how to predict H(J+1a) from the parameters 
of the jth iteration step. This is the main reason why the applicability of the Gauss-
Newton method is so small and why different modifications are used. This problem 
was solved by deriving the DNLS method resp. the DNLS estimator in the literature 
[16] resp. [17]. Here we can conclude that the internal robustness is the necessary 
but not sufficient condition for the applicability of numerical procedures. The internal 
robustness is connected above all with the Lipschitz condition as it was formulated 
in Paragraph 3.2. But according to this paragraph two other requirements must be 
fulfilled. Firstly the solution must exist, i.e. the reliable result can be estimated 
from the given input data. Therefore the external robustness must be tested. Secondly 
the solution must be unique, i.e. the sequence {Ja) must converge to the global 
minimum. These two requirements must be analyzed to show the robustness of the 
DNLS estimator. 

125 



Let us set out from the resulting relations of the DNLS estimator (see [17]) 
J+1a = Ja + J\xA Ja = Ja + Jn\HT(Ja) H(Ja)]_1 HT(Ja) (y - Jy) (6.10) 

and 
J + 1a = Ja - JnA Ja = Ja + Jn\HT

L(Ja) H^a)]'1 HT
L(Ja) (y - Jy) , (6.11) 

where n e (0, 1) is a damping factor. The Jacobian matrix HL(Ja) = — H(Ja) corre
sponds to the linear case, i.e. to the case with known sensitivity functions V l )(t) 
(i = 0, 1, ..., n) in relation (2.6). This linear case — this linear Gauss estimator --
allows to demarcate the region in which the linearization of the pertinent nonlinear 
function can be used and so the right damping factor Jpi can be calculated. 

To be able to test the external robustness we must know that some simple method 
if possible linear can be used. So the following proposition will be useful: 

Proposition 6.1. The DNLS estimator is quasi-linear, i.e. the sequence {Ja} of the 
estimates is governed near the global minimum by the linear solution given by relation 
(6.11). 

Proof. We start from the functions which are given by relations (6.10) and (6.11) 
multiplied from the left with the matrix HL(Ja) 

Jy(Ja, J+1a, Jfi) = HL(Ja) J + 1a = Jy(Ja) - JfiA Jy (6.12) 
and 

Jz(Ja, J + 1a, Jn) = HL(Ja) J + 1a = Jy(Ja) + Jy,A jy , (6.13) 

where Jy(Ja) = HL(Ja) Ja, A Jy = HL(Ja) A JaL and A JaL = — A Ja = Ja — J + 1a. 
The linear solution is given by relation (6.13). It follows from relation (6.11) which 
can be written for jfi = 1 and with respect to the relation 

Ja = \HT
L(Ja) HL(Jaj\ " 1 HT(Ja) Jy (6.14) 

in the known form 
J + 1a = \HT

L(Ja) H^a)]-1 HT
L(Ja) y . (6.15) 

If we are sufficiently near to the linear case then it holds (see [17]) 
J + 1y(J + 1a, jn) = HL(J + 1a) J + 1a = Jy(Ja, J + 1a, > ) + 2 JiiA Jy = 

= HL(Ja) J + 1a + 2 J)i HL(Ja) A JaL , (6.16) 

where the change HL(Ja) into HL(J+1a) is approximately given with the term 2 J\xA Jy. 
Now the nonlinear solution in the jth iteration step is given by the linear etalon, 
i.e. it holds with respect to relations (6.12), (6.13) and (6.16) 

J+1y(J + 1a, Jp) = Jy(Ja) + JfiA Jy = Jz(Ja, J + 1a, Iu) . (6.17) 

If the difference A Jy is small then the linear etalon Jz(Ja, J+1d, Jn) well approximates 
the resulting nonlinear function J + 1y(J + 1a, Jfi). rj 

The sequence {Ja} is governed jn the endsteps, i.e. for A Ja => 0, by the linear case. 
From this fact the important conclusion can be drawn: The linear estimation theory 
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can be used by testing the external robustness in all situations in which Ja is suf
ficiently near to the global minimum. 

Now let us prove the uniqueness of the solution. The asterisk on the left indicates 
the coefficients and functions pertinent to the global minimum. 

Proposition 6.2. The DNLS estimator has the global minimum *a for A Ja = 0, 
i.e. forj —> oo we obtain *y = *z. Local minima cannot exist. 

Proof. Let us sketch the proof according to the literature [17]. We shall start 
from the linear regression function Jz e R(Jy, Jz, aL, dc) and the fact that the spaces Lp 

are for 1 < p < oo strict convex. Then only the unique best solution Jz e R(Jy, Jz, 
aL, dc) can exist for the measured points y, i.e. according to relation (5.1) for y(oL) e 
e R(y, aL)(R cz R c l2). Now it holds with respect to Proposition 6.1 *y — *z 
for j => GO. So only one minimum can exist. • 

The DNLS estimator associates the numerical robustness with the advantages 
of the linear theory. The details connected with the convergence resp. the practical 
use of this estimator can be found in the literature ([16], [17]). 

6.3 Robust models of identification theories 

Let us complete the discussion of the robust theory models from Section 5. It follows 
from the previous discussion that only the demarcated subspaces R((*), C, aL) 
of problems with reliable results given by the subspace R((*), C, aL, dc) can be 
practically used, and this demarcation must be ascertained by the experimentation. 
Therefore testing algorithms resp. procedures with respect to uncertainties is an 
unseparable part of the error analysis. First let us demonstrate this testing on a simple 
case — on the quadratic equation from Paragraph 3.1. 

The numerical procedure for the computation of the root x2 from equation (3.1) 
is based on the theory — on the relation 

x2= -b + V(b2 - c). (6.18) 

So the models of this "theory" T((comp. x2), dd, dc) generate the results with the 
different errors according to Table 1. One can obtain for different dd and dc results 
with different reliability, e.g. 0k < 100% for a < 7, or decide that the problem is 
unsolvable on the given precision levels, e.g. 0k ^ 100% for a ^ 7 (cf. Table 1) 
by the computation according to the theory model T((comp. x2), dd = dc= 13). 

The error analysis of the estimators is more complicated. Here we must solve this 
problem at least in two steps. First the internal robustness must be assured. So we 
have shown in Paragraph 6.2 that the main computation line of the DNLS estimator 
is the IR procedure (cf. Definition 6.1), i.e. the matrix inversion \HL(Ja) H^aj]'1 

resp. the term [Hl(Ja) HL(Ja)~\~l HT(Ja) is the IR procedure. Therefore relation 
(6.1) must hold for this intermediate result, e.g. for the given computation precision 
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dc = dcg = 16 and for the arbitrary data precision ddM(qL) < 3 resp. oL > oLM = 
= 2-4.10" 4 

Z((comp. [H^a) HL(j<*)] ~ *), C, <7L, J J = const. (6.19) 

So the internal robustness of the main computation line can be very simply tested 
(see Section 7). 

Now let us show the opposite situation. The difference equation of the linear 
Equation Error (EE) methods (cf. [5], [17], [19]) is given by the relation 

y(k) = 0T r(k) + w(k) , (6.20) 

where 0 = [ax, a2,..., d„, bx, ..., Fm]T and 

r(k) = [ — y(k — 1 , . . . , — y(k — n), u(k — 1), ..., u(k — m)]T . 

The parameter vector 9 is to be estimated from the measured points y(k) and r(k). 
The "equation error" is then given by 

QE(0) = - i [P(k) - *T r(k)f . (6.21) 
q k= I 

The numerical solution is given by the relation 

0(q) = [ir(k)r\k)Y'ir(k)~y(k) . (6.22) 
k=l k=l 

The elements of the matrices on the right side of relation (6.22) are the measured 
data given with the precision dd(qL) = 2, i.e. oL = 2-4 . 10~3. Therefore the main 

i 
computation line, i.e. the computation of the inverse [ ]£ r(k) »*T(fe)]-1, cannot be 
in nontrivial cases the IR procedure. k= 1 

We have discussed till now only the internal robustness of estimators. But the 
ultimate demarcation of solvable problems by all theories is connected with the exter
nal robustness (cf. relation (5.2)). So the following definition of the robust theory 
models will be useful: 

Definition 6.2. The model of the theory is robust with respect to the subspace 
of results R((#), C, oL, dc) if the following conditions are fulfilled 

(i) the theory model was derived from the CR theory, 

(ii) the main computation line is the IR procedure (cf. Definition 6.1), 

(iii) the solution exists on the precision level of initial data in some sense, e.g. 
in sense of the null-hypothesis (cf. relation (5.4)). 

The external robustness of the DNLS estimator from Paragraph 6.2 is given only 
by the error difference y — jy in relation (6.11). If we assume the normal noise 
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(cf. Paragraph 4.3) then we can compute the standard deviations of the estimates 
at (i = 0 , 1 , . . . , n) in a simple way. The pertinent variances are given by the diagonal 
elements Jyss (s = i + 1) of the inverse [Hl(Ja) H^a)]'1 

D(Ia.) = < T 2 Y S , (6.23) 

where the estimate of the data mean error resp. the limit standard deviation aL 

must be approximately known. We see that the external robustness is here closely 
connected with the internal robustness. We obtain with respect to relation (6.19) 

D(la;)/a
2 = Jyss = const. (6.24) 

The practical situations are more complicated (cf. relation (4.1)). Let us remark 
in this connection that the considered approach is mostly sufficient to get the insight 
in the considered problem as we shall show in the next section. 

Let us emphasize that the reliability of the derived end-results is the matter of 
agreement. E.g. the identified model of the system must be appropriate for the 
solution of the subsequent synthesis problem (see [15]). The discussion of this topic 
is beyond the scope of this paper. 

7. THE APPLICABLE MODELS OF THE DNLS ESTIMATOR 

Let us illustrate the proposed concept of the theory models with some examples. 
Let us show how it is possible to demarcate the regions in which the DNLS estimator 
models T((DNLS estim.), C, aL, dc) can be used. We shall analyze the class of the 
second order systems of the type (2.3) Rx(y(x), x e (0; 0-25)) (Rx <= R), i.e. with 
real roots s; (i = 1, 2), given by the transfer function 

Fx(s) = 1/(1 + 10s + lOOxs2) . (7.1) 

The subspace of pertinent results R(y(a, x), C, aL, dc), i.e. the models of the con
sidered system identified from the measured points y e R resp. y(x, aL) e R(y(x), C, 
aL) (cf. relation (5.1)), is given by the class of the transfer functions 

Fx(s) = l/(a0 + «i« + xa\s2) . (7.2) 

where x = a2\a\. So the coefficient vector a should be estimated according to 
relation (5.2). 

Table 3 contains important parameters computed with the double precision PL 1 
program based on the algorithm from the literature [16] by the following conditions 
Cx: 

The error of measured data was simulated by a round-off noise, i.e. the points 
of the unit impulse responses h(k) (k = 1,2, ..., q) for q = 25, Ax = 0-8 and At = 20, 
i.e. for the time scale t = [0-4, 1-2, ..., 19-6], were given on dd decimal places 
(dd = 1,2, 3). So we consider with respect to Paragraph 4.2 for qL = 25 the limit 
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Table 3. 

Z(xa2) a yjD(xa2)
 xs2 j ' D(*a2) 0(*a2) 

3 3-0. 10~ 4 6-0. 10~ 2 6-0. 10~ 3 6-1 . 10~ 2 0-61 

1 0 " 1 2 199-9 2 -8 . 10~ 3 5-6 . 1 0 " 1 5-6 . 10~ 2 6-1 . 1 0 _ 1 6-1 

1 3-1 . 10~ 2 1-8 1 - 8 . 1 0 - 1 1-9 19 

3 2-5 . 10~ 4 2 -2 . 10~ 2 2 -2 . 10~ 2 2-2 . 10~ 2 2-2 

10~ 2 2 88-2 2-9 . 10~ 3 2 -6 . 1 0 " 1 2-6 . 1 0 " 1 2-6 . 10~x 26 

1 3-1 . 10~ 2 2-7 2-7 1-5 150 

3 2-7 . 10~ 4 2 - 3 . 10~ 2 2 - 3 . 1 0 " 1 2-3 . 10~ 2 23 

10~ 3 2 83-4 2-9 . 10~ 3 2-5 . 1 0 " 1 2-5 div. div. 

1 3-2. 10~ 2 2-6 26 1-5 1500 

precision 
a2

L = a2qL = \0-2dl(2Kt).qL. (13) 

In this way the identification of the considered systems is tested for the use of the 
measurement instruments of the accuracy classes 1%, 0-1% and 0-01% (cf. Table 2). 

The starting transfer function was chosen in the form 

°Fx(s) = 1/(1-01 + 10s + lOOxs2). (7.4) 

The intermediate results Z(la2) = 1y33 in Table 3 corroborate the internal robust
ness of the DNLS estimator with respect to relation (6.1). The mean deviation 
s/D^a^ and the pertinent relative standard deviation xs2 show the influence of 
the different precisions of the input data for the same Z(xa2). 

The standard deviation a of the round-off noise can be here computed directly 
according to the relation 

a2 = llqtlRk) - h(k)]2 . (7.5) 
k=i 

So the standard deviation a calculated according to relation (4.3) gives here the lower 
boundary. 

The end-results are characterized by the mean deviation y/D(*a2). The pertinent 
error was calculated according to the relation 

G(*a2) = 1/x s/D(*a2) [%] . (7.6) 

These values start from the results of the jth iteration step with ja2 K *a2, i.e. for 
A ja2 < 10~3, and from the estimate of the standard deviation of the noise given 
by the known relation 

°2 = L - 7 t IHk) - 'h(k)Y • (7-7) 
q — n — 1 fc=i 
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We can summarize the results from Table 3 with the following proposition: 

Proposition 7.1. The applicable models of the DNLS estimator T((DNLS estim.), 
Cx, aL, dcg) are given for the class of systems Rx, for the conditions Cx and for three 
limit deviations aL = 4-8 . 10~~ (p — 3, 4, 5) of measured data with the following 
subspaces of problems 

Rxp = {(h(x,aL): xe (4-04. \0{1-p); 0-25), aL = 4-8 . 10"", dcg} . (7.8) 

Proof. Firstly we prove according to Definition 6.2 that the DNLS estimator 
is the CR theory (cf. Definition 5.2), i.e. the pertinent formal theory is consistent. 
The validity of Hypothesis (i) resp. (ii) of Definition 5.2 follows from Proposition 6.2. 
If the main line of computation is the IR procedure according to Definition 6.1 
then Hypothesis (iii) of Definition 5.2 is fulfilled. Now Hypothesis (i) resp. (ii) of 
Definition 6.1 are corroborated with the intermediate results Z(1a2) according to 
relation (6.19) (cf. Table 3). 

Then we must test the limit deviation aLM with respect to the limit computation 
precision dcm according to Hypothesis (iii) of Definition 6.1. The simple test shows 
that the case with the parameter xM = 10 ~4 must be computed with the computation 
precision dc > dcg. Here the critical procedure is the computation of the exponentials 
to jh(k, a) resp jv{i)(k, a) (k = 1,2, ..., q) (cf. [6]). 

The last step is given by testing Hypothesis (iii) of Definition (6.2). Here we must 
tests the limit identifiability of the coefficient estimates at (i = 0, 1, 2) (see [12], [13]). 
It is mostly sufficient to test the last coefficient estimate a2. The pertinent element 
*733 = 7, 1 . 103 of the inverse \HL(Ja) HL(}a)\~x is practically constant for all 
considered cases. So we obtain for the condition *s2 ^ 0-5 and for the normed 
standard limit deviations aL = 4-8 . 10~p the boundaries x = 4-04 . 10 (1"_) in relation 
(7.9). Let us add that these boundaries fulfil Hypothesis (iii) of Definition 6.1, i.e. 
x = 4-04 . 10(1~_) > xM = \ . 10~4 for p ^ 5. Q 

If we repeat this test for the step responses then we obtain the insight on the 
applicability of the class of considered systems in the practically important region 
of input signals. 

This test can be simply extended on the high order systems (n > 2). The applica
bility region resp. the validity of the DNLS estimator model is here mostly given 
with the limit identifiability of the last coefficient estimate an (see [11], [12]). 

8. CONCLUSION 

In this paper it was shown that the present crisis of the control theory is closely 
connected with the incorporation of an uncertainty band in formal theories. Two 
kinds of the uncertainties or better two precision levels must be here distinguished. 
The stability of numerical processes is mostly connected with the simple resp. double 
precision of the computation (cf. Paragraph 4.2 and Table l). The low precision of 
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measured data, i.e. dd(qL) = 2, is given with the low accuracy of the operational 
measurements (cf. Table 2). The analysis of these problems in Sections 3 and 4 has 
shown that the Solution of control problems can be successful if we are able to separate 
these two so different precision levels. Therefore the concept of the theory models 
(cf. Definition 5.1 and 5.2) and the internally robust procedures (cf. Definition 6.1) 
was introduced in Section 5 and 6. The realizability of this concept was demonstrated 
on the DNLS estimator (see Paragraph 6.2) and by the examples in Section 7. 

Let us add two remarks: 

(i) The concept of the theory models can simply explain among others the success 
and the limitations of the classical simple controllers, i.e. the P, PI resp. PID con
trollers, in practical tasks. Here we must mostly control according to the small 
signal deviations, i.e. near the zero precision (cf. Table 2), and so the mathematical 
theory is useless in accordance with the analysis in Section 5. The pertinent subspace 
of results is empty (cf. relation (5.2)), i.e. R((#), C, oL, dc) — 0. The control is here 
robust because the signal is put down in the uncertainty band (cf. [11], [13]). 

(ii) The second remark concerns with the use of the artificial intelligence by the 
solution of control problems. The use of the artificial intelligence allows here to 
overcome the troubles with the uncertainties in sense of the theory models. The 
formal theories cannot generate the facts — they can generate only the forecasts 
and these forecasts can be verified by the use of the artificial intelligence (cf. [13]). 
Roughly speaking it holds in the modern control theory as a rule: one system — one 
strategy — one controller. On the other side the concept of the theory models uses 
the following scheme: one system — different strategies — different theory models 
according to the different amount of information in measured signals — the greater 
number of different controllers (cf. [13]). 

(Received May 4, 1989.) 
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