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The essence of presumed approach towards reasoning in cases of uncertainty consists in 
assuming the knowledge base as a fuzzy axiomatic theory, i.e. a set of formulae in which each 
formula is equipped with a weight specifying the degree of membership to the fuzzy set of axioms 
of the theory. The task of the inference mechanism in such a case is to determine the degree 
to which each goal logically follows from this theory, and also other presumptions (the user's 
answers during the consultation). As a result of these reflections a logical inference mechanism 
has been designed which was implemented and tested in the System of Automatic Consultations 
(SAK). One of the advantages of this approach is the possibility of a natural insertion of contexts 
into knowledge base which has been used for improvement of the work of the SAK- OPTIMALI 
expert system. 

1. THE ESSENCE OF LOGICAL INFERENCE MECHANISM 

The task of an inference mechanism in an MYCIN-like expert system is to de
termine weights of goals both from the weights of user's answers to system's questions 
and the weights of rules in a knowledge base. For weights the interval of reals 
<—1, 1> is usually used. Best known methods of evaluation of the weights are based 
on the Bayesian probabilities (PROSPECTOR, see [4]) or on considerations about 
measures of belief and disbelief (MYCIN, see [8]). 

The essence of our approach to the choice of an inference mechanism consists 
in understanding the knowledge base as a fuzzy axiomatic theory, which is deter
mined by a set of formulae, each of them provided with a weight specifying the 
degree of its membership to the fuzzy set of axioms of the theory. In that case the 
task of an inference mechanism is to determine the degree to which each goal logically 
follows from this theory and other premises (i.e. user's answers in consultation). 

The degree of logical consequence is determined by the semantic of the used 
multivalued logic (in propositional calculus by the truth functions for calculation 
truth values of composed propositions). 

The activity of any inference mechanism consists in syntactical deduction by 
means of a sequence of elementary inference steps. Thus the inference mechanism 
is able only (in a better case — being an automated proving procedure) to determine 
the degree in which the goal is provable from the theory and the disposition of 
consultation. If the used multivalued logic is complete, then for any formula <p and 
axiomatic theory X it holds generally 

the degree to which <p follows from X (semantically) = 

= the degree to which <p is provable from X (syntactically) . 
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For knowledge bases generally represented as arbitrary fuzzy axiomatic theories 
it is then necessary to construct an inference mechanism as an automated proving 
procedure in complete multivalued logic. 

J. Pavelka in [7] proved that among many isomorphic variants of semantics 
(which can be reasonably defined as the so called residuated lattices) only the multi
valued logic with Lukasiewicz semantics (and its isomorphic variants) has the 
property of completeness. For the truth values from interval <0, 1> the Lukasiewicz 
semantics of logical connectives is given by the following truth functions: 
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b = max (0, a + b — 1) 
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Each logical consequence of a theory is in the Lukasiewicz logic deducible by using 
axioms of the theory (provided with degrees) and the inference rules (provided with 
an instruction for calculation of a degree, in which is deduced the goal of the rule, 
from degrees, in which premises of rules were deduced). 

The basic inference rule is modus ponens 
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ę,ę x,У 
\j/ max (0, x + y — 1) 

(If formulae cp, cp => i/t are proved in degrees x, y respectively then formula \\J may 
be proved in degree max (0, x + y — 1).) 

2. ILLUSTRATING EXAMPLE 

The logical inference mechanism was designed in 1983 and ever since tested for 
the case of usual propositional rule based knowledge bases. 

We shall illustrate on a simple example the method of formal representation 
of such knowledge bases and the results of deduction in the Lukasiewicz logic. 

Knowledge base: 

26 



Corresponding fuzzy axiomatic theory: 

axiom degree 

Ap =>F\p (0-4) 
Bp v Cp =>F2p (0-8) 
FípY F2p => Fp (1) 
Fp => Gìp (0-7) 
Cm л Ďp => G2m (0-5) 
Em => GЗm (0-7) 
Gìp& ~](G2m Y GЗm) => Gp 0) 
-]Gíp&(G2m YGЗÌ n) => Gm (0 

Using of weights from the interval < —1, + 1> is here formally substituted by the 
"decomposition" of every proposition X in the knowledge base to its "positive 
part" Xp and "negative part" Xm with truth degrees from <0, 1>. (We can notice 
an analogy with the measures of belief and disbelief in the MYCIN expert system.) 
Further "decomposition" of propositions (indicated by digits) serves for expressing 
a composition of rule's contributions by a composed proposition. 

A consultation is given by the questionnaire collecting user's weighted answers 
which form additional axioms to our fuzzy axiomatic theory, e.g. 

question weight axiom degreţ 

A 1 Ap (1) 
B 0-4 Bp (0-4) 
C - 0 - 6 Cm (0-6) 
D 0-8 Dp (0-8) 
E - 1 Em (1) 

The degrees of provability ( = the degrees of logical consequence) from the whole 
fuzzy axiomatic theory representing the obtained uncertain knowledge are as follows: 

proposition degree 

F\p (0-4) 
F2p (0-2) 
Fp (0-6) 
Fm (0) 
G\p (0-3) 
G2m (0-1) 
GЪm (0-7) 
Gp (0) 
Gm (0-5) 

Thus the resulting weights of propositions E and G are 0-6 and —0-5 respectively. 
We were comfortably surprised that the fuzzy axiomatic theory representing 

the obtained uncertain information and inference rules of the used logic can be easy 
implemented as a "program" in PROLOG so that the axioms are "fact-clauses" 
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and the inference rules are "rule-clauses"; besides that it was necessary in the used 
micro-Prolog version to define only max and min operators. 

Cp tr 0 
Ap tr 1 
Bp tr 0-4 
Cm tr 0-6 
Dp tr 0-8 
Em tr 1 
(Ap impl F\p) tr 0-4 
((Bp vel Cp) impl E2p) tr 0-8 
((F\p komp F2p) impl Fp) tr 1 
((Fp impl G \p) tr 0-7 
((Cm et I>p impl G2m) tr 0-5 
(Em impl G3m) tr 0-7 
((G\p kont (neg (G2m komp G3m))) impl op) tr 1 
(((neg olp) kont (G2m komp G3m)) impl Gm) tr 1 
(neg X) tr Y if X tr Z and SUM (Z x 0) and SUM (1 x Y) 
(X et Y) tr Z if X tr x and Y tr y and Z min (x y) 
(X vel Y) tr Z if X tr x and F tr j and Z max (x j ) 
(X kont Y) tr Z if X tr x and Y tr y and SUM (y x z) and SUM (z - 1 XI) and Z max (0 X\) 
(X komp Y) tr Z if X tr x and y tr j and SUM (x y z) and Z min (1 z) 
X tr y if (Z impl X) tr x and Z tr y and SUM (x 7 z) and SUM (z - 1 XI) and Y max (0 XI) 
X max (X Y) if y LESS X 
X m a x ( y X ) i f yLESSX 
X max (X X) 
Xmin(yX)if X LESS y 
X min (X Y) if X LESS y 
X min (X X) 

As a matter of interest we mention a shortened trace of the deduction of the Gm 
goal's degree after starting this program with the* goal all-trace (z: Gm tr z). The 
trace is a backward chaining analogy of the logical proof of proposition Gm in the 
fuzzy axiomatic theory corresponding to the knowledge base. 

all-trace (z : Gm tr z) 
(1) : Gm tr Z trace? 7 
(1 1) solved : ((neg G\p) kont (G2m komp C3m)) impl Gm) tr 1 
( 1 1 1 2 1) solved : (Fp impl G \p) tr 0-7 
(12 1 1 2 1) solved : ((F\p komp E2p) impl Ep) tr 1 
( 1 1 2 2 1 1 2 1) solved : (Ap impl Elp) tr 0-4 
( 2 1 2 2 1 1 2 1 ) solved : Ap tr 1 
(12 2 1 1 2 1) solved : Elp tr 0-4 
(12 2 2 1 1 2 1) solved : ((Bp vel Cp) impl E2p) tr 0-8 
(12 2 2 2 1 12 1) solved : Bp tr 0-4 
( 2 2 2 2 2 1 121) solved : Cp tr 0 
( 2 2 2 2 1 1 2 1 ) solved : (Bp vel Cp) tr 0-4 
( 2 2 2 1 1 2 1 ) solved : E2p tr 0-2 
( 2 2 1 1 2 1 ) solved : (F\p komp F2p) tr 0-6 
( 2 1 1 2 1 ) solved : Ep tr 0-6 
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(112 1) solved : Gl/?tr0-3 
(1 2 1) solved :(negGrp)tr 0-7 
(112 2 1) solved : ((Cm et Dp) impl G 2m) tr 0-5 
(12 12 2 1) solved : Cm tr 0-6 
(221221) solved : Dp tr 0-8 
(21221) solved: (Cm et Dp) tr 0-6 
(12 2 1) solved : G2mtr 0-1 
(12 2 1) solved : (Em impl G3m) tr 0-8 
(22221) solved : Em tr 1 
(2 2 2 1) solved : G3m tr 0-7 
(2 2 1) solved : (G2m komp G3m) tr 0-8 
(2 1) solved : ((neg G\p) kont (C?2m komp (73m)) tr 0-5 
(1) solved : Gm tr 0-5 

3. THE VERIFICATION OF THE LOGICAL INFERENCE 
MECHANISM IN THE SAK SYSTEM 

In [3] P. Hajek presented an algebraical discussion on several expert systems 
inference mechanism and exposed that their essence consists in the following combin
ing functions (defined on interval < — 1, 1>) necessary for a successful calculation 
of the weights. 

NEG (x) to assess the weight of negation of proposition the weight 
of which is x 

CONJ (x, y) to assess the weight of conjunction of two propositions with 
weights x, y 

CTR (a, w) to assess contribution of the rule with weight w, the antecedent 
of which has weight a 

GLOB (wlt •••,wk) to assess the weight of proposition which is the succedent of 
rules with contributions wu ...,wk 

Each inference mechanism for handling uncertain information in consulting 
expert systems is then determined by appropriate combining functions. Therefore 
the empty expert systems EQUANT [3] and SAK [2] offer a choice of combining 
functions suitable for the application from the repertoire containing e.g. EMYCIN 
or PROSPECTOR functions. 

The above described logical inference mechanism for the case of usual rule-based 
knowledge bases is determined by using the following set of combining functions: 

NEG(;c) = -x 
CONJ (x, y) = min (x, y) for x, y > 0 

= 0 otherwise 
CTR (a, w) = max (0, a + \w\ - 1) . sign (w) for a > 0 

= 0 otherwise 
GLOB (wu ..., wk) = min (1, £ (w.)) - m i n ti V (_w . ) ) 

w ' > 0 W ( < 0 
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This fact enabled us to implement logical inference mechanism in 1983 in the 
empty expert system SAK. 

Experiments with the same design as in [3] were performed. The results of con
sultations under logical inference mechanism were the same or better than the 
results of these consultations under standard inference mechanism. 

4. CONTEXTS IN LOGICAL INFERENCE MECHANISM 

The advantage of logical inference mechanism is the possibility to introduce 
contexts naturally into the knowledge base. 

The starting point is that the formula 

3C => (<p => \li) 

(expressing "metaknowledge" that the rule cp => \j/ is conditioned by validity of the 
context 9C) is logically equivalent (in the used logic) to the formula 

(9C & <p) => ii 

where & is the mentioned connective context. 
Then we can formulate a knowledge base as a loop-free set of rules of the follow

ing form: 
CONTEXT: 9£ (combination of propositions) 
IF: <p (combination of propositions) 
THEN: \j/ (proposition) 
WITH WEIGHT: w e < - l , +1> 

Let's note that this conceiving of context in the form of contextually conditioned 
rules is different from its conceiving in other expert systems, e.g. PROSPECTOR'S 
type where a set of control rules with different character from knowledge base 
rules is used. 

A rule evaluation according to the semantics of the complete Lukasiewicz logic 
is realized as follows: 

First of all the context part of the rule is evaluated. After that a weight of the 
inner part of the^rule is updated by using the CTR function. Only rules, the modified 
weight of which is positive, are examined further, which enables to reduce search 
space after the context evaluation. 

A contribution of the rule is on the whole equal to 

CTR (a, CTR (c, w)) 

where c is the weight of the context part 3C, a is the weight of the antecedent (p and 
w is the given initial weight of the rule. 

The above described approach was exploited for improving a performance 
of the SAK-OPTIMALI expert system which recommends mathematical decision 
methods adequate to a given decision situation (see [5]). 
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