
K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 6

SEMANTIC ANALYSIS OF TOPIC AND FOCUS

TOMAS VLK

The paper deals with a logical (semantic) interpretation of disambiguated linguistic meanings
of natural language sentences. A semantic analysis of topic and focus as two parts of underlying
representations (meanings) by means of the transparent intensional logic (TIL) is presented.
An informal short description of an algorithm handling the topic/focus articulation in the trans
lation of underlying representations into the constructions of TIL is added.

1. UNDERLYING REPRESENTATIONS

The disambiguated underlying representation in the style of Sgall and Hajicova [9]
is basically a dependency tree, where the left-to-right ordering of the nodes corre
sponds to the scale of dynamism rather than immediately to the surface word order.
Informally, the topic of a sentence is what the sentence talks about ("given in
formation"), and the focus is what the sentence says about the topic ("new informa
tion"). A formal definition of topic and focus as two parts of the disambiguated
or tectogrammatical representation (TR) can be found in Sgall et al. [9]. The lexical
tokens belong either to the topic or to the focus of the sentence. The boundary between
topic and focus is always placed in such a way that there is a borderline such that every
item of,the underlying representation which is less (more) dynamic belongs to the
topic (focus).

The topic/focus articulation (TFA) plays a crucial role in the analysis of pre
suppositions, of the scope of negation and also of the so called exhaustive listing
[1, 2, 9].

Let us remark that A is a presupposition of B if B entails A and not-B also entails
A, see Hajicova [1, 2]. Propositions are understood as (oco)-objects in TIL. Let A, B
be (cxw)-objects. We say that A is a presupposition of B if for all possible worlds vv
it holds that if [B w] is defined then [A w] is true (and if [A w] is not true then [B w]

523

is undefined). The presupposition A determines all possible worlds where B is defined
(has a truth-value). To ensure the presence of the desired presupposition means to
restrict the set of possible worlds where B is defined.

2. TRANSPARENT INTENSIONAL LOGIC

Sufficient means for the semantic analysis of natural language are given by Tichy's
Transparent intensional logic (TIL). Referring as for exact definitions to Tichy
[10] and Materna [3] we reproduce here only a brief characterization of TIL.

Let o — {T, F] be a set of truth-values, let i be a set of individuals (the universe
of discourse) and let © be a set of possible worlds (the logical space). Then B =
= {o, L, to} is an epistemic basis. Then
(i) any member of B is a type over B,
(ii) if 17, £]_.... £„ are types over B, then

(r\£x ...£„) is a type over B, where
(r\£x ...£„) is ^ e set of (total and partial) functions from ^ x ... x £„ to r\.

(iii) the types over B are just those introduced in (i), (ii).
Any member of type n is called an object of type r\, or an ^-object. An object is an
>7-object for any n. For every type a denumerably infinite set of 77-variables is at our
disposal.

The constructions are the ways in which objects can be given. They are defined
inductively:

(i) any ^-objects, and also any ^/-variable, is an r\-construction (called the atomic
construction),

(ii) let E be a (r\£x ... ^-construction, Xt a ^-construction for i= l,...,n.
Then the application [FXXX2 ... X„] of E to Xx, X2, ...,Xn is an n-construc-
tion.

(iii) let Ybe an ^-construction and xt,x2, ...,xn distinct variables of types £l3 ..., £„.
respectively. Then the abstraction [Xxx x2 ... x„ Y] of Y on xx, x2, ...,x„ is
a (n^ ... ^-construction.

(iv) there are no constructions except those defined in (i) —(iii).

Let us characterize some important objects of TIL. For every type £ we have
_5{, n4 of the type (o(o£)), such that (i) and (ii) hold:
(i) [2^ x] = if X is the empty class then E

else T
(ii) [n'X-]-[~[lHy[~[Xyl\J\
For every type £ we have the £-singularizer I* of the type (£(o£j), which is defined
on single-element ^-classes only and returns the single element of the respective
class. Propositions are objects of the type (OOJ).

The following notation will be used throughout the paper. The outermost parenthe
ses and brackets will be sometimes omitted. Furthermore, a dot will represent

524

a left bracket whose corresponding right bracket is to be imagined as far to the right
as is compatible with other pairs of brackets. The notation with an apostrophe will
be used in the following meaning:

_ ([X w] if X is of type (rjco) for any r\
]X otherwise

where X is a construction and w is a particular co-variable. We write 3x . Yin place
of [& Xx Y] and Vx . Y in place of [H* Xx Y], ix . Y in place of [/* Xx Y], Xjr\
in place of "X is of the type rj". Logical connectives and identity will be written
in the standard way, e.g. a & b, a = b in place of [& a b], [= ab\ respectively.

Generalized quantifiers So (some), Ev (every) are defined as follows:

So = Xx Xy[3z . [x z] & [y z]]

Ev = Xx Xy[Vz . [x z] => [y z]]

x,yj(o£) z\t,
So, Ev/(o(o£)) (oZ)

A class of objects is identified with its characteristic function. For example, the
function constructed by the (0 ̂ -construction Xx [x = A v x = B] can also be
viewed as the class {A, B}.

3. INNER PARTICIPANTS

In this section we discuss examples in which the dividing edges between topic
and focus are edges having inner participants as their functors, dependent on the
verb. We restrict ourselves in this paper to sentences having just one dividing edge.

In all the examples, that part of sentence which belongs to the focus (on the reading
discussed) is written in italics.

(1) Tom sells Jim a car.

(2) Tom sells a car to Jim.

(3) Tom sells Jim a car.

Case (l) brings no problem to the semantic analysis. It corresponds to the "normal"
(preferred, primary) reading of the sentence. We can formulate the constructions
corresponding to the topic and focus as follows:

Topic = Tom

Focus = Xw Xy . [So Car'] [Xx . Sell' y Jim x]

Now we can formulate the constructions (they are reduced step by step through
the lambda-reduction):

(1') 2w[Focus' Topic']

Xw[[Xy . [So Car'] [Xx . Sell' y Jim xj] Tom]

525

Xw. [So Car'] [Xx. Sell' Tom Jim x]

Aw. 3 x. [Car' X] & [Sell' Tom Jim x]

Sell/(ou«) co So J (0(01)) (01)

Tom, Jim, xjt wjco

Car/(ot) co

Case (2) is more complicated. Here, the verb belongs to the topic of the sentence.
The sentence can be paraphrased in the following way (with sentential stress on Jim):

The individual such that Tom sells a car to him is Jim.

The topic of the sentence determines a class of individuals such that Tom sells a car
to them. The sentence triggers a presupposition that Tom sells a car to somebody, i.e.
that this class is non-empty. The focus is an exhaustive listing of such individuals
whenever the verb belongs to the topic [5, 9].

To ensure the presence of the desired presupposition we define the function

Ne = Xc . iy[y = c & 3x[y x]]

Ne/(ot) (01) y, cj(oi) xjt

The function Ne is an identical function defined only on nonempty classes.
The following constructions reflect the desired properties:

Topic = Xw. Ne Xx. [So Car'] [Xy. Sell' Tom x y]

Focus = Xz.z = Xx.x = Jim

(2') Aw[Focus' Topic']

Xw. [Ne Xx. [So Car'] [Xy. Sell' Tom xy]] = Xx.x = Jim

The verb of sentence (3) again belongs to the topic. The topic of (3) determines
a class of individuals that Tom sells to Jim. Again, the presupposition of (3) is that
the class is non-empty. The focus of (3) is an exhaustive listing of such individuals
(because the verb belongs to the topic). We feel that (3) is not (fully) true if Tom sells
Jim a car and a house or if Tom sells Jim two cars. Focus of (3) says that the class
determined by the topic has only one element and this element is a car. We need
a function "One" dividing a class X into a set of single-element subclasses of X. It
should hold that

[[One X] Y] iff Yis single-element and Yn X * 0

For every type ^ we define

One'' = Xp. Xy. [So p] [Xz. y = [Xx. x = z]]

x, zfr p, yj(on) So I (o(ori)) (of/)

The constructions corresponding to the topic and the focus of (3) are

Topic == Aw[Ne Xx. Sell' Tom Jim x]

Focus = 2w[One Car']

526

and to sentence (3)

(3') Xw. [One Car'] [Ne Xx. Sell' Tom Jim x]

The proposition constructed by (3') is defined only in those possible worlds where
Tom sells something to Jim (because only in such possible worlds function Ne is
defined), and it is true in those possible worlds where Tom sells Jim just one thing
and this thing is a car. An alternative analysis of (3) can be found in Materna et al.

W-
The negative counterparts of (2), (3) have two readings each, in accordance with

the contextual boundness of the operator of negation, see Hajicova [1,2]) Let us
take the negative counterparts of (2) for illustration.

(4) Tom does not sell a car to Jim .

(5) Tom does not sell a car to Jim .

In (4), it is the focus which constitutes the scope of operator of negation. The topic
is the same as in (2):

Topic A = Aw.Ne Xx.\So Car'] [X y. Sell' Tom x y]

Focus A = Xz.z 4= Xx.x = Jim

(4') Aw[FocusA' TopicA']

Aw.[Ne /be.[So Car'] [/by.Sell' Tom x y]] 4= Xx.x = Jim

Construction (4') ensures the same presupposition as (2'), it is defined only in those
possible worlds where Tom sells a car to somebody, and it asserts that the class
containing just Jim is not an exhaustive listing of individuals whom Tom sells a car
to. (Tom may sell a car to John or to Jim, John and Mary, etc.)

In the following example, where the negation is contextually bound, it is pre
supposed that there exists a non-empty class of persons to whom Tom does not sell
a car, and it is asserted that this class has Jim as its single element.

TopicB = Xw.Ne Xx. [So Car'] [Xy. ~[Sell' Tom x y]]

FocusB = Xz.z = Xx.x = Jim

(5') Aw[FocusB' TopicB']

^w.[Ne 2%. [So Car'] _Xy. ~[Sell' Tom x y]]] = Xx.x = Jim

4. CAUSE AND AIM

In this section we discuss examples in which the dividing edges between topic
and focus are edges having an adverbial complementation of 'Cause', 'Aim', or
'Condition' as their functors. They are analyzed rather as relation-in-intension
between propositions, as was pointed out by Materna and Sgall [6].

527

Let us take the following examples

(6) Because Mary was ill, Charles came.

(7) Charles came because Mary was ill.

Both the sentences have one dividing edge with the functor "Cause". The sentences
have come as their main verb (the root of the dependency tree). In these examples
"Cause" is the relation-in-intension between two propositions. The first proposition
is in the topic and the second one is in the focus of the sentence. The proposition
in the topic is a presupposition of the sentence. Thus (6) has the presupposition that
Mary was ill, (7) presupposes that Charles came. To ensure such presuppositions
we need a function Tr that would be a "filter" or a "sieve" for true propositions.
It should hold for every possible world W and proposition P that

r rTrPf lP l = I P i f L^] = r(PistrueinW)
-• J J [undefined otherwise

Tr/((oft>) (oco)) co P\(oco) W\co

This requirement is fulfilled by the definition:

Tr = Xw Xp[iq . q = p&[q w]]

Tr/((oft)) (oco)) co p, q\(oco) w\co

If Caus/(o(oft>) (oco)) co realizes the relationship "Cause", so that Aw[Caus' PI P2]
means that P2 causes PI, the constructions corresponding to (6) and (7) are as follows:

(6') Xw. Caus' [Xw. Come' Charles] [Tr' Xw. Ill' Mary]

(7') Xw. Caus' [Tr' Xw. Come' Charles] [Xw. Ill' Mary]

5. TFA ALGORITHM

In this section we describe an algorithm handling the TFA. For the sake of simpli
city, only examples with one dividing edge between the topic and focus were presented.
A general case (with more than one dividing edge) requires the introduction of addi
tional functions [11]. Here we present a simplified version of the algorithm, which
reflects only the phenomena discussed in this paper.

First we summarize the functions defined in the previous sections.

Tr = Xw.Xp[iy.y = p& [y w]]

Ne = Xp.iy[y = p&3xt ... xn[y xx ... xaJ]

One = Xp.Xy.[So p] [Xz.y = Xx.x = z]

Tr/((oft>) (oco)) co

ml(oZ1...Q(oZ1...Q

Or)e\(o(orj)) (orj)

528

The following functions are used in the description:

CB: DepTree -» Bool

NB: DepTree -> Bool

NBNeg: DepTree -> Bool

Tree: Edge -> DepTree

Fun: Edge -> Functor

M: Functor -> Construction

R-Edge: Edge -> Bool

A-Edge: Edge —> Bool

DivEdge: DepTree —> Edge

DelEdge: DepTree Edge —> DepTree

PutVar: DepTree Edge —> DepTree

Translate: DepTree -> Construction

GetTyp: Construction -> Type

The meanings of the functions are as follows:

CB(dt) returns true iff the root of dt is contextually bound. NB(Jt) returns true iff
CB(dt) returns false (NB(dt) = ~ CB(dt)). NBNeg(Jt) returns true iff the contextually
nonbound operator of negation is connected with the root of dt (contextually bound
operator of negation is handled by the function Translate, see [11]).

Tree(e) returns the dependency tree suspended on edge e. Fun(e) returns the
functor of edge e. M(f) returns the object of TIL realizing relationship / ('Cause',
'Aim'). R-Edge(e) returns true iff e is an R-Edge ('Cause', 'Aim', 'Condition').
A-Edge(e) returns true iff e is an A-Edge (an inner participant). DivEdge(dt) returns
the dividing edge between the topic and the focus of dt.

The functions DelEdge and PutVar realize dividing of the dependency tree.
DelEdge(dt, e) returns the dependency tree dt without edge e (edge e is removed
from dt). PutVar(c/t, e) replaces the tree suspended on edge e in tr by a variable and
returns the resulting dependency tree.

Translate(cit) returns the construction of TIL corresponding to the "primary

reading" of the underlying structure dt (i.e. without taking into account the topic/

focus articulation). The function Translate is described in [11]. GetTyp(c) returns

the type of construction c.

Now we can describe the following procedures:

TFA — the main procedure (function)

FA — verb in the focus, dividing A-edge

TA — verb in the topic, dividing A-edge

FR — verb in the focus, dividing R-edge

TR — verb in the topic, dividing R-edge

529

TFA: DepTree -> Construction

TFA(cIt) =

let e — DivEdge(dt) in
(A-Edge(e) & NB(c/t) -+ FA(cft),
A-Edge(e) & CB(dt) -> TA(dt),
R-Edge(e) & NB(cft) -» FR(dt),
R-Edge(e) & CB(cft) -> TR(dt)

) ;

If the dividing edge is an A-edge and the verb belongs to the focus the tree is handled
by the function FA. The tree suspended on the dividing edge is replaced by a variable,
the topic and focus are translated separately and the resulting construction is put
together. E is the construction corresponding to the focus and Tis the construction
corresponding to the topic.

FA: DepTree -> Construction

FA(cft) =

let e = DivEdge(cZt) in
let E = Translate (PutVar(c/t, e)),

T = Translate (Tree(e))
in

if NBNeg(c/t) then [Xw.~ [E' T']]
else [Xw[F' T']]

If the dividing edge is an A-edge and the verb belongs to the topic the tree is handled
by the function TA. The tree is divided in the same manner as in FA. The resulting
construction is more complicated than in TA because it has to reflect presuppositions
and exhaustive listing.

TA: DepTree -> Construction

TA(cft)

let e = DivEdge(cZt) in
let T = Translate (PutVar(c/t, e)),

E = Translate (Tree(e))
in
let

Y= (ifGetTyp(E') = GetTyp(T')
then [[One E'] [Ne T']]
else [[Ay.y = E'] = [NeT ']])

in
if NBNeg(cit) then [Xw.~ Y]

else [Xw. Y] ;

530

If the dividing edge is an R-edge and the verb belongs to the focus the tree is translated
by the function FR. Here the dividing edge is removed from the tree and the functor
of the dividing edge determines a relationship between the topic and the focus.
The proposition in the focus is presupposed, the presupposition is ensured by the
function Tr. The relationship between the topic and the focus is not within the scope
of negation.

FR: DepTree -> Construction

FR(dt) =
let e = DivEdge(cit) in
let E = Translate (DelEdge (dt, e)) ,

T = Translate (Tree(e)),
P = M(Fun(e))

in
if NBNeg(dt) then [Xw.[P[Xw.~ F'] [Tr' T]]]

else [Xw[P' F[Tr' T]]] ;

If the dividing edge is an R-edge and the verb belongs to the topic, the tree is trans
lated by function TR. The tree is divided in the same manner as in FR. The relation
ship between the topic and focus is within the scope of negation here.

TR: DepTree —> Construction

TR(di) =
let e = DivEdge(tit) in
let T = Translate (DelEdge(c/t, e)),

E = Translate (Tree(e)),
P = M(Fun(e))

in
if NBNeg(dt) then [Aw. ~ [P'[Tr' T] E]]

else [Xw[P' [Tr' T] E]] ;

ACKNOWLEDGEMENT

The author wishes to thank Prof. Petr Sgali for his support of this work and valuable
discussions.

(Received October 13, 1988.)

R E F E R E N C E S

[1] E. Hajicova: Meaning, presupposition and allegation. Philologica Pragensia 17 (1974),
18-25.

[2] E. Hajicova: Presupposition and allegation revisited. Journal of Pragmatics 8 (1984),
155-167.

[3] P. Materna: "Linguistic constructions" in the transparent intensional logic. PBML 43 (1985),
5-24.

531

[4] P. Materna, E. Hajicova and P. Sgall: Redundant answers and topic/focus articulation.
Linguistics and Philosophy 10 (1987), 101—113.

[5] P. Materna and P. Sgall: Functional sentence perspective, the question test and intensional
semantics. SMIL 1 - 2 (1980), 1 4 1 - 160.

[6] P. Materna and P. Sgall: Optional participants in semantic interpretations (arity of predicates
and case frames of verbs). In: [8], 51 — 62.

[7] M. Platek, J. Sgall and P. Sgall: A dependency base for linguistic descriptions. In: [8],
6 3 - 9 7 .

[8] P. Sgall (ed.): Contributions to Functional Syntax, Semantics and Language Comprehension.
Prague, Academia 1984.

[9] P. Sgall, E. Hajicova and J. Panevova: The Meaning of the Sentence in Its Semantic and
Pragmatic Aspects. Academia, Prague 1986.

[10] P. Tichy: The logic of temporal discourse. Linguistics and Philosophy 3 (1980), 343 — 369.
[11] T. Vlk: Towards a transduction of underlying structures into intensional logic. PBML 50

(1988), 3 5 - 7 0 .

RNDr. Tomds Vlk, Vypocetni stfedisko Poldi—SONP, (Computer Center, Poldi — United
Steelworks) 27262 Kladno. Czechoslovakia.

532

