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ON THE DIRECTABILITY OF AUTOMATA

LASSI NIEMELA

We present some partial results on the hypothesis due to éern;’z [1] and a necessary and suffi-
cient condition for the directability of an automaton.

1. THE DIRECTABILITY OF AUTOMATA

Let o/ = (4, %,3) be a finite automaton, where A4 is the finite set of states, ¥
is the finite set of input signals and d: A x X — A is the transition function. This
function can be extended to the set 4 x 2*, where 2* is the set of all words over X,
and it defines for every s € * a mapping

sYA—> A, arsas”? = (a,s).

For every B < A, IBI will designate the number of elements in B and BX* is the set
{bw”| be B, we Z*}. An automaton o/ = (4, X, §) is strongly connected if for
every state a € 4, a2* = A.

An automaton . is directable if there exists a word s e Z*, called a directing
word, and a state ¢ € 4 such that As” = {c}. Then n (aZ* | a € A) + 0. This is the
smallest subautomaton of & and also the unique strongly connected subautomaton
of . C(o/) or (C(A), Z, §) will designate this subautomaton and we shall call C(.27),
and also C(A), the centre of 7. If there exists a word ¢ € X* such that At¥ = C(4),
we shall call o/ semidirectable and t a semidirecting word of <. Let ¥ be the class
of all semidirectable automata and 2 the class of all directable automata.

Theorem 1.1. o/ € Z <> o/ € & and C(#) € 9.

Proof. If As¥ = {c} for some seX*, ce A, then ce n(aZ*|ae 4) = C(4)
and o/ € &. Naturally C(/) € 2.

If At* = C(4) and C(A4)s¥ = {c} for some t,s€ 2*, then Ats”¥ = {c} and #e 2. O

Remark 1.1. When </ € 9 then for every state ¢ € C(A4) there exists a word s.€
€ 2* such that As? = {c} and for every directing word s of o7, As¥ € C(A).
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Let o = (4, Z, ) be a semidirectable automaton with n states. Then C(4) =
= n(aZ*|ae ) and for every ae A there exists s, € Z* such that as? e C(A).
From these words s, we construct a semidirecting word of ..

If C(4) = A, then every word is semidirecting.

Let C(A) + A4, ae ANC(A) and s, e Z* such that asy’ € C(A). Then

[4sy 0 (AN C(4))] < |4 C(4)]
If AsZ N (AN C(A)) #+ 0, we repeat this procedure until we get such words s,, s, ...
ces Sys SEZ* that s = 5,5, ... 5, and As¥ = C(4).
Therefore Theorem 1.1 has

Corollary 1.1. A finite automaton &/ is directable iff it has the smallest subauto-
maton, the centre, which is directable.

2. THE HYPOTHESIS OF CERNY

Let /(«/) be the length of the shortest directing word of o/ = (4, X, §) € 2 and
D(n, m) the class ‘
(s ea ||| =n. () = m).

Let
I(n) = max (I(#)| £ € D(n,m), 1 <m=n).
In [1] Cerny has presented the following hypothesis.
Cerny’s hypothesis. I(n) = (n — 1)%, ne N.

In [2] Cerny, Piricka and Rosenauerovd have proved the hypothesis for n < 5.

By Corollary 1.1. we sharpen this hypothesis.

If m = n, then I(/) = I(C()).

Let m < n, s be the semidirecting word that we can get by repeating the procedure
presented in the proof of Corollary 1.1. by choosing every state ¢ and every word s,
such that the word s, is so short than possible, and Ig(s) be the length of the word s.

Since |[A\ C(4)| = n — m, we find that Ig(s) < Y i.
i=o
Theorem 2.1. Let < € D(n, m), m,ne N. Then

()< Y i+ 1(C()).
i=0
The sum Y i is better upper bound than (n — m)?* that one can get from the
i=0
conjecture presented by Pin [5]
Corollary 2.1. If an avtomaton &/ € D(n, m), m, n € N, fulfils the condition

(C()) < (m ~ 1)2,
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then
' () < (n = 1)2.
Especially
(/) <(n—1)? forall n>2, n+m.

Proof. When m % n, n > 2, then I(o/) < Y i + (m — 1) < (n — m) (n — 1)
+(m=1){m-1)={n-1)>% =0

Now also the first claim is obvious.

Since Cerny’s hypothesis was proved in [2] for automata «/ € D(n, m), n < 5, .
we get

Corollary 2.2. For all automata < € D(n, m), m < 5,
I(s2) < (n — 1)2.
Remark 2.1. If Cerny’s hypothesis is valid for strongly connected directable

automata, then the upper bound (n — 1)? presented by Cerny can be sharpened for
all directable automata with centre C(4) + A, where |A| > 2.

(Received May 11, 1988.)
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