ON THE DIRECTABILITY OF AUTOMATA

LASSI NIEMELÄ

We present some partial results on the hypothesis due to Černý [1] and a necessary and sufficient condition for the directability of an automaton.

1. THE DIRECTABILITY OF AUTOMATA

Let $\mathscr{A} = (A, \Sigma, \delta)$ be a finite automaton, where A is the finite set of states, Σ is the finite set of input signals and $\delta: A \times \Sigma \to A$ is the transition function. This function can be extended to the set $A \times \Sigma^*$, where Σ^* is the set of all words over Σ , and it defines for every $s \in \Sigma^*$ a mapping

$$s^{\mathscr{A}}: A \to A$$
, $a \mapsto as^{\mathscr{A}} = \delta(a, s)$

For every $B \subseteq A$, |B| will designate the number of elements in B and $B\Sigma^*$ is the set $\{bw^{\mathscr{A}} \mid b \in B, w \in \Sigma^*\}$. An automaton $\mathscr{A} = (A, \Sigma, \delta)$ is strongly connected if for every state $a \in A, a\Sigma^* = A$.

An automaton \mathscr{A} is directable if there exists a word $s \in \Sigma^*$, called a directing word, and a state $c \in A$ such that $As^{\mathscr{A}} = \{c\}$. Then $\cap (a\Sigma^* \mid a \in A) \neq \emptyset$. This is the smallest subautomaton of \mathscr{A} and also the unique strongly connected subautomaton of \mathscr{A} . $C(\mathscr{A})$ or $(C(A), \Sigma, \delta)$ will designate this subautomaton and we shall call $C(\mathscr{A})$, and also C(A), the centre of \mathscr{A} . If there exists a word $t \in \Sigma^*$ such that $At^{\mathscr{A}} \subseteq C(A)$, we shall call \mathscr{A} semidirectable and t a semidirecting word of \mathscr{A} . Let \mathscr{S} be the class of all semidirectable automata and \mathscr{D} the class of all directable automata.

Theorem 1.1. $\mathscr{A} \in \mathscr{D} \Leftrightarrow \mathscr{A} \in \mathscr{S}$ and $C(\mathscr{A}) \in \mathscr{D}$.

Proof. If $As^{\mathscr{A}} = \{c\}$ for some $s \in \Sigma^*$, $c \in A$, then $c \in \cap(a\Sigma^* \mid a \in A) = C(A)$ and $\mathscr{A} \in \mathscr{S}$. Naturally $C(\mathscr{A}) \in \mathscr{D}$.

If $At^{\mathscr{A}} \subseteq C(A)$ and $C(A)s^{\mathscr{A}} = \{c\}$ for some $t, s \in \Sigma^*$, then $Ats^{\mathscr{A}} = \{c\}$ and $\mathscr{A} \in \mathcal{D}$. \Box

Remark 1.1. When $\mathscr{A} \in \mathscr{D}$ then for every state $c \in C(A)$ there exists a word $s_c \in \Sigma^*$ such that $As_c^{\mathscr{A}} = \{c\}$ and for every directing word s of \mathscr{A} , $As^{\mathscr{A}} \in C(A)$.

419

Let $\mathscr{A} = (A, \Sigma, \delta)$ be a semidirectable automaton with *n* states. Then $C(A) = \cap (a\Sigma^* \mid a \in A)$ and for every $a \in A$ there exists $s_a \in \Sigma^*$ such that $as_a^{\mathscr{A}} \in C(A)$. From these words s_a we construct a semidirecting word of \mathscr{A} .

If C(A) = A, then every word is semidirecting.

Let
$$C(A) \neq A$$
, $a \in A \setminus C(A)$ and $s_a \in \Sigma^*$ such that $as_a^{\mathcal{A}} \in C(A)$. Then

$$\left|As_a^{\mathscr{A}} \cap (A \smallsetminus C(A))\right| < \left|A \smallsetminus C(A)\right|.$$

If $As_a^{\mathscr{A}} \cap (A \setminus C(A)) \neq \emptyset$, we repeat this procedure until we get such words s_a, s_b, \ldots ..., $s_w, s \in \Sigma^*$ that $s = s_a s_b \ldots s_w$ and $As^{\mathscr{A}} \subseteq C(A)$.

Therefore Theorem 1.1 has

Corollary 1.1. A finite automaton \mathscr{A} is directable iff it has the smallest subautomaton, the centre, which is directable.

2. THE HYPOTHESIS OF ČERNÝ

Let $l(\mathscr{A})$ be the length of the shortest directing word of $\mathscr{A} = (A, \Sigma, \delta) \in \mathscr{D}$ and D(n, m) the class

$$\left\{\mathscr{A}\in\mathscr{D}\mid |A|=n\,, |C(A)|=m\right\}.$$

$$l(n) = \max(l(\mathscr{A}) \mid \mathscr{A} \in D(n, m), \quad 1 \leq m \leq n).$$

In [1] Černý has presented the following hypothesis.

Černý's hypothesis. $l(n) = (n - 1)^2, n \in \mathbb{N}$.

In [2] Černý, Pirická and Rosenauerová have proved the hypothesis for $n \leq 5$. By Corollary 1.1. we sharpen this hypothesis.

If m = n, then $l(\mathscr{A}) = l(C(\mathscr{A}))$.

Let m < n, s be the semidirecting word that we can get by repeating the procedure presented in the proof of Corollary 1.1. by choosing every state c and every word s_c such that the word s_c is so short than possible, and lg(s) be the length of the word s.

Since $|A \setminus C(A)| = n - m$, we find that $lg(s) \leq \sum_{i=0}^{n-m} i$.

Theorem 2.1. Let $\mathscr{A} \in D(n, m)$, $m, n \in \mathbb{N}$. Then

$$l(\mathscr{A}) \leq \sum_{i=0}^{n-m} i + l(C(\mathscr{A})).$$

The sum $\sum_{i=0}^{\infty} i$ is better upper bound than $(n-m)^2$ that one can get from the conjecture presented by Pin [5].

Corollary 2.1. If an automaton $\mathscr{A} \in D(n, m)$, $m, n \in \mathbb{N}$, fulfils the condition $l(C(\mathscr{A})) \leq (m - 1)^2,$ then

$$l(\mathscr{A}) \leq (n-1)^2$$

Especially

$$l(\mathscr{A}) < (n-1)^2$$
 for all $n > 2$, $n \neq m$.

Proof. When $m \neq n, n > 2$, then $l(\mathscr{A}) \leq \sum_{i=0}^{n-m} i + (m-1)^2 < (n-m)(n-1) + (m-1)(n-1) = (n-1)^2$.

Now also the first claim is obvious.

Since Černý's hypothesis was proved in [2] for automata $\mathscr{A} \in D(n, m)$, $n \leq 5$, we get

Corollary 2.2. For all automata $\mathscr{A} \in D(n, m), m \leq 5$,

$$l(\mathscr{A}) \leq (n-1)^2 \, .$$

Remark 2.1. If Černý's hypothesis is valid for strongly connected directable automata, then the upper bound $(n - 1)^2$ presented by Černý can be sharpened for all directable automata with centre $C(A) \neq A$, where |A| > 2.

(Received May 11, 1988.)

REFERENCES

- J. Černý: Poznámka k homogénnym experimentom s konečnými automatmi. Mat. fyz. čas. SAV 14 (1964), 208-215.
- [2] J. Černý, A. Pirická and B. Rosenauerová: On directable automata. Kybernetika 7 (1971), 289-297.
- [3] J. E. Pin: Le problème de la synchronisation, Contribution à l'étude de la conjecture de Černý. Thèse, 3e cycle, Paris 1978.
- [4] J. E. Pin: Le problème de la synchronisation et la conjecture de Černý. In: Non Commutative Structures in Algebra and Geometric Combinatorics (A. De Luca, ed.), CNR (1978), pp. 46-58.
- [5] J. E. Pin: On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17 (1983), 535-548.
- [6] J. E. Pin: Sur les mots synchronisants dans un automate fini, Elektron. Informationsverarb. Kybernet. 14 (1978), 283-289.
- [7] J. E. Pin: Sur un cas particulier de la conjecture de Černý. In: Automata, Languages and Programming – Proceedings 5th International Conference (G. Ausiello, C. Böhm, eds.), (Lecture Notes in Computer Science 62), Springer-Verlag, Berlin-Heidelberg-New York 1978, pp. 345-352.
- [8] P. H. Starke: Eine Bemerkung über homogene Experimente. Elektron. Informationsverarb. Kybernet. 2 (1966), 257-259.

Lassi M. Niemelä, Department of Mathematics, University of Turku, Turku. Finland.