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WEAK CONDITIONS FOR THE EXISTENCE 
OF OPTIMAL STATIONARY POLICIES 
IN AVERAGE MARKOV DECISION CHAINS 
WITH UNBOUNDED COSTS 

ROLANDO CAVAZOS-CADENA 

Average cost Markov decision chains with discrete time parameter are considered. The cost 
function is unbounded and satisfies an additional condition which frequently holds in applications. 
Also, we assume that there exists a single stationary policy for which the corresponding Markov 
chain is irreducible and ergodic with finite average cost. Within this framework, the existence 
of an average cost optimal stationary policy is proved. 

1. INTRODUCTION 

We are concerned with average cost Markov decision processes (MDP's) with 
denumerable state space and discrete time parameter. For these models, the problem 
of determining an optimal (stationary) policy has received considerable attention 
in the MDP literature; see, for instance, Thomas [4] and the references therein. 
Usually, searching for optimal policies is based on a bounded solution to the (average 
cost) optimality equation (OE). Indeed, under standard continuity-compactness 
conditions such a solution to the OE yields immediately an optimal stationary policy. 
Many sufficient conditions for the existence of a bounded solution to the OE have 
been given [4]. However, they impose strong restrictions on the model since (typically) 
the state space must be an irreducible ergodic class under any stationary policy, 
a restriction that is not satisfied in most interesting queuing/inventory problems; 
such is the case in Nain and Ross [9] and the inner references. Moreover, it was proved 
in Cavazos-Cadena [10, 11] that those restrictive conditions are necessary for the 
existence of a bounded solution of the OE. Thus, an approach to obtain optimal 
stationary policies relying on a bounded solution to the OE has, naturally, a limited 
scope. 

On the other hand, most interesting models with infinite state space arising in 
applications have an unbounded (nonnegative) cost function. At this point, the so-
called Lyapounov function condition could be used to obtain optimal stationary 
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policies (Hordijk [1]). However, under this condition, the Markov chain associated 
with any stationary policy must be ergodic, and again this is too restrictive for 
practical cases. 

Recently, Sennott [5, 6, 7] has obtained optimal stationary policies under very 
general conditions. To obtain her results, she follows the usual approach of examin
ing the average case as limit of discounted cases, but she does it more efficiently. This 
note goes on the way traced by Sennott. 

Our main result can be (roughly) described as follows; We prove the existence 
of an average cost optimal stationary policy under the following assumptions: (i) 
The cost function is nonnegative and, for each r j _ 0, the cost function is greater 
than r outside a finite set; see Assumption 1.2 below, and (ii) There exists a single 
stationary policy inducing an irreducible Markov chain with finite average cost. 

Now, we describe formally the model we will be dealing with. 

The Model. Let (S, A, C, p) be the usual MDP where the state space S is an 
infinite denumerable set, while the metric space A is the action set. With each x e S, 
a nonempty set A(x) a A is associated; A(x) is the set of admissible actions at state x. 

We assume that each A(x) is a compact subspace of A. On the other hand, C is 
the cost function and p is the transition law. The system evolves as follows: At each 
time t e N : = {0, 1, 2, . . .} the state of the system is observed, say x e S, and an 
action a e A(x) is selected. Then, a cost C(x, a) is incurred and the state of the 
system at time t + 1 will be y e S with probability pxy(a). 

Assumption 1.1 For each x, y e S, the mappings a -> pxy(a), a e A(x), and a -*• 
—> C(x, a), a G A(x) are lower semicontinuous. 

A policy n is a rule for choosing actions which may be randomized and may 
depend on the current state as well as on the past history. The class of all policies 
is denoted by P. A stationary policy is characterized by the following: For each xeS, 
when the system is at x, the policy chooses the same action regardless the past history. 
Thus, the class of stationary policies is naturally identified with E : = X A(x), which 

xeS 

the class of all functions f:S-*A satisfying f(x) e A(x), x e S. Notice that E is 
is a compact metric space in the product topology; Dugundji [3, p. 224]. The state 
and action processes are denoted by {Xn} and {An} respectively. Given the initial 
state x and the policy n that is being employed the distribution of the joint process 
{Xn, An} is uniquely determined (Ash [12, p. 109]) and is denoted by Prt[.|X0 = x] , 
while E^.IXo = x] is the corresponding expectation operator. Also, under the 
action of any stationary policy the state process is a Markov chain with stationary 
transition mechanism. 

Throughout the remainder we adopt the (lim sup) average cost criterion: For x e S 
and n e P, the average cost at state x under policy n is defined by 

(1) J(x, n) : = lim sup E„[ £ C(Xt, At) | X0 = x]/(n + 1), 
n t = 0 

146 



while 
J(x) : = inf J(x, it) 

XЄP 

is the optimal average cost at state x. A policy it is (average cost) optimal if J(x, it) = 

= J(x) for all x e S. 

Assumption 1.2. (i) The cost function is nonnegative. Moreover, (ii) For each 

r _̂  0, there exists a finite set G(r) c S such that 

C(x, a) ^ r whenever a eA(x) and xe S — G(r) . 

Under this restriction the expectation in (l) is well defined (its value may be oo). 
This assumption is satisfied, for instance, in queuing models with K _• 1 classes 
of customers, where the state space is NK and the cost function depends polynomially 
on the state; usually C is a linear or quadratic function [9]. Finally, to obtain optimal 
stationary policies we need the following communicating/recurrence condition. 

Assumption 1.3. (cf. [5, 6, 7]). There exists / * e E such that the corresponding 

Markov chain is irreducible and ergodic. Moreover, 

(2) g*:=Ylnr(x)C(x,f*(x))<cQ, 
X 

where {itf*(x) I x e S} is the unique invariant distribution of the Markov chain 

determined by/*; Loeve [8, p. 39 —42]. 

In (2), Y indicates summation over x e S. This convention will be used consistently. 
X 

The main result of this note is Theorem 3.1 which can be summarized as follows: 
Under Assumptions 1.1 — 1.3 there exists an average cost optimal stationary policy. 
To prove this we parallel the development in [5, 6, 7], that is, we examine the average 
cost case as limit of discounted cases. In doing so, we obtain an inequality that 
yields our existence result; see Theorem 3.1 below. Also, under an additional condi
tion we obtain a solution to the average cost OE. 

The organization of the paper is as follows: Section 2 contains all the preliminaries 
we need from the discounted case, with Theorem 2.2 being the backbone of the 
argumentation, while our main result is presented in Section 3. We conclude in 
Section 4 with additional results on the optimality equation and some brief comments. 

Remark 1.1 Even without explicit reference we suppose that Assumptions 1.1 — 1.3 

hold true. For an event W, its indicator function is denoted by I[W]. Finally, the 

notation in Assumptions 1.2 and 1.3 will be maintained. 
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2. PRELIMINARIES FROM THE DISCOUNTED CASE 

For each xeS,neP and ae[0 , 1), the a-discounted cost at state x under policy n 
is defined by w 

Va(x, n) : = E,[ £ af C(X„ A,) | X0 = x] , and 
f = 0 

Va(x):=infVa(x,7r) 
7teP 

is the optimal a-discounted cost at state x. A policy n is a-discounted optimal if 
Va(x) = Va(x, n) for all x e S. 

The results we need from the discounted cost case are given in Theorems 2.1 and 
2.2 below. First, we introduce some useful notation together with a Lemma. 

Definition 2.1. (i) For each G a S, the stopping time TG is defined by 

TG := min {n = 1 \ X„ e G} , 

where, by convention, the minimum of the empty set is oo. When G = {x} is a sing
leton, the simpler notation Tx is used, 
(ii) For each x, z e S, h(x, z) is defined by 

T — 1 

h(x, z) : = Ef.[ £ C(Xt, At) | Z 0 = *] J 
t = o 

see Assumption 1.3. 

Lemma 2.1. (i) For each x, z e S we have that h(x, z) < oo, and 

(3) lim E,.[ £ C(X„ A,) | X0 = x]/(n + 1) = g* 
n t = 0 

(ii) For each x e S, lim (l — a) Va(x,/*) = g*. 
a->l 

The first part is a (well known) consequence of Assumption 1.3 and can be proved, 
for instance, using the results on (delayed) renewal processes in Ross [13, ch. 3]. 
Part (ii) follows from (3) together with Proposition 4 —7 in Heyman and Sobel 
[2, p. 173]. 

We begin with the following basic results. 

Theorem 2.1. (i) Fpr each xe S and a e [0, 1) we have that 0 ^ Va(x) < oo. 
Moreover, 
(a) lim sup (1 — a) Va(x) = g* for all x e S , and 

a-»l 

(b) The a-discounted optimality equation holds: 

(4) Va(x) = M\C(x,a) + *YJpxy(a)Va(y)'\, xeS. 
aeA(x) y 

(ii) For each XE S and a e [0, 1), the mapping 

(5) a -+ C(x, a) + a ^Pxyi") K(y), « e A(x) 

148 



is lower semicontinuous. Then, this mapping has a minimizer fa(x) e A(x), and the 
policy fa e E is a-discounted optimal. 
(iii) For all x,zeS, and a e [0,1), Va(x) - Va(z) = h(x, z). 

Proof, (i) Let xe S be fixed. Using Lemma 2.1 (ii), (l — a) Va(x) 51 (l — a) . 
. Va(x,f*) yields part (a). Then Va(x) is finite for a near to 1, and since C > 0, we 
see that a -> Va(x) _ 0 is nondecreasing in a e [0, 1). Thus, we conclude that 0 <. 
<I Va(x) < oo for all a e [0, 1). Now, part (b) follows in the usual way; cf. Theorem 
2.1 in Ross [14, p. 31]. 

(ii) Let a e [0, 1), x e S and a' e A(x) be arbitrary but fixed. Then, Assumption 
1.1 together with Fatou's Lemma yield that 

lim inf [C(x, a) + a ^pja) Va(y)] = C(x, a') + a %pja') Va(y) . 
a-*a' y y 

Thus, the mapping (5) is lower semicontinuous. Since A(x) is compact, this mapping 
has a minimizer fa(x) e A(x) [3, p. 227], and the a-discounted optimality of fa is 
obtained as in the proof of Theorem 1.2 in [14, p. 50]. 

(iii) Let zeS and ae[0 , 1) be fixed and define n e P as follows: In [0, Tz)n 
chooses same actions as /*, while n coincides with fa in [Tz, oo). For each x e S, 
it is clear that the distributions of Tz with respect to P ^ . ^ o = x] and P ^ . ^ o = x] 
are the same. Hence, PK[TZ < oo | X0 = x] -= 1. Also, using the definition of n 
together with the Markov property, it follows that, for each xe S 

Va(x) = Va(x, n) = En(t «' c(xt, A) + «Tx Va(z) \X0 = x] 
t=o 
Tz— 1 

= E/*[ £ a* C(Xt, At) + aT* Va(z) \X0 = x] 
t = o 

and, since Va(z) = 0, it implies that Va(x) = h(x, z) + Va(z). • 

The above Theorem yields an upper bound for Va(x) — Va(z). Now, we need 
a minimizer for Va(') when a is near to 1. This minimizer is obtained below. 

Theorem 2.2. There exist a finite set G and /?e[0, 1) with the following property: 
For each a e [/}, 1) we can find xa e G such that 

(6) Va(x)= Va(xa) for all xeS, 

that is, if 1 > a = P, Va(') attains its minimum in the set G. 
Proof. Define the finite set G by 

G:=G(#* + 1); 

see Assumption 1.2. Then, C(x, a) ^ g* + 1 for a e A(x) and xe S — G. Now, 
take tf e [0,1) such that 

(7) (1 - a) Va(x) S 9* + 1 for 1 > a = P and xeG; 

this is possible by the finiteness of G and Theorem 2.1 (ia). Finally, for 1 > a >. ft 
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select xa e G satisfying Va(x) ^ J^(xa), x e G where, again, we are using that G is 
finite. To complete the proof, we only need to show that xa satisfies (6) for x e S — G. 
Thus, let x e S — G and 1 > a _ /? be arbitrary but fixed. To simplify the notation 
the stopping time TG is simply denoted by T Now, observe that 

ZfMT = °°] I <*' C(X„ A,) I X0 = x] = (#* + 1) P / a [ T = ao | X0 = x]/(l - a) 
t=o 

and then, since xa e G, the above inequality and (7) imply 
CO 

(8) E / a[/[T = oo] £ a' C(X„ A,) | X0 = x] = Fa(xa) P / a [ T = oo | Z 0 = x] . 
t=o 

Also, the Markov property yields 

(9) E / a[/[T < oo] f a' C(Xt, At) \X0 = x] = 
t=o 

= E / a[/[T < oo] ( £ a ( C(A\, A.) + a r Va(xr)) | X0 = x] = 
t=o 

Т - l 

= E / a [/[T < a)] ( £ a'(l - a) Va(xa) + a r Fa(xa)) | Z 0 = x] = 
t=o 

= Va(xa)Pfa\T< oo | x o = x] 

where we have used that (i) for t e [0, T), C(Xt, A.) = g* + 1 = (1 - a) Va(xa), 
and (ii) Va(Xr) = Va(xa) (since XT e G). Then, (8) and (9) together imply 

F a ( x ) = V a ( x , L ) = F a ( x a ) . a 

3. THE MAIN THEOREM 

We are now ready to prove our existence result. For a e [/?, 1), define 

K(x) ' = P«(*) - ^a(^a) , ^ S ; 

observe that ha(-) ^ 0. We begin with the following. 

Lemma 3.1. Let {a„} _ [/j, 1) be a sequence converging to 1. There exists a sub
sequence, denoted by {/?fe}, such that 

(i) The following limits exist: 

(10) limfPk(x)=:f(x), xeS; 
k 

(11) lim hpjx) =: h(x) , x e S ; 
k 

(12) l i m ( l - ^ ) ^ ( x ) = : 6 f , 
t 

where this limit does not depend on x e S, and 

(ii) The sequence {xh} is constant. 

Proof. Let z e S be fixed. Without loss of generality we can assume — taking 
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a subsequence if necessary — that lim (1 — an) Van(z) exists. Now observe that, 

by Theorem 2.1 (iii), \Van(x) - VXn(z)\ ^ max {h(x, z), h(z,x)}, xeS and then 
lim (l — a„) Van(x) exists and is independent of x. On the other hand, for xe S 

n 

and neN, we have that 0 ^ Kn(x) = Van(x) — VaJxan) ^ h(x, xan) _̂  
^ max {h(x, y) | y e G} =: H(x). Then, for neN, 

*>„ : - (xan;fan(x), han(x) | x e S) e G x {X (A(x) X [0, H(x)])} . 
xeS 

Now, let G be endowed with the discrete topology and observe that the right hand 
side is a (sequentially) compact space in the product topology. Then, there exist 
a convergent subsequence {w„k} and it follows that {fik} = {a„k} satisfies the desired 
conclusion. • 

Using the notation of (10), (11) and (12) our main result follows. 

Theorem 3.1. Under Assumptions 1.1 — 1.3 there exists an average cost optimal 
stationary policy. More precisely, let {<xn} cr [/?, 1) be any sequence converging to 1, 
and take a subsequence {fik} as in Lemma 3.1. Then, 

(i) / i s average cost optimal and g — J(x,f) for all xeS. Also 

(13) g + h(x) = C(x,f(x)) + Zpxy(f(x)) h(y) , xeS. 
y 

Moreover, 
(ii) Any feF satisfying (13) is average cost optimal. 

Proof. Using Proposition 4-7 in [2, p. 173], we see that for x e S and ne P,g = 
= lim (1 — fin) VPn(x) ̂  lim sup (1 — fi„) VPn(x, n) ^ J(x, n), and then g S J(x), 

n n 

xeS. Now, from the definition offp and (4), we see that VPn(x) = C(x,fPn(x)) + 
+ Pn YtPxyifpnix)) Vpn(y)-> x e S and, since {xPn} is a constant sequence, this is equi-

y 

valent to 

(1 - fin) Ven(xPo) + hPn(x) = C(x,fPn(x)) + fi„ ZPMJX)) hPn(y), xeS. 
y 

Now, take lim inf as n -> oo in both sides of this equality. In this case, (10) —(12) 
together with Assumption 1.1 and Fatou's Lemma imply (13). To complete the proof 
l e t / e E be any policy satisfying (13). Then, by a simple induction argument we see 
that for x e S and neN, 

(n + l)g + h(x) = E,[ £ C(Xt, At) + h(X„ + 1) | X0 = x] . 
t = o 

Since h = 0, this inequality immediately yields that for all x e S, g ^ J(x,f), and 
since J(x,f) = J(x) ^ # , / i s average cost optimal with average cost g. • 

Corollary 3.1. lim (1 - a) Va(x) exists and is independent of xe S. Moreover, 
a - > l 

the common value is the optimal average cost. 

Proof. For an arbitrary sequence {a,,} <= [/?, 1) converging to 1, we have proved 
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the existence of a subsequence {/?„} satisfying the conclusions in Lemma 3.1. Moreover, 
Theorem 3.1 states that g given by (12) is the optimal average cost which is 
uniquely determined. The conclusion follows from the arbitrariness of {a„}. Q 

Under an additional restriction we can prove that the average cost OE holds: 

Assumption 3.1. For some state z e S the following holds: 

(14) YjPxy(a) h(y, z) < oo for all xe S and a e A(x) . 
y 

Theorem 3.2. For a sequence {a„} c= [/?, 1) select a subsequence {/?„} as in Lemma 
3.1. Then, under Assumptions 1.1 — 1.3 and 3.1, g and /.(•) satisfy the average cost 
OE: 
(15) g + h(x) = inf [C(x, a) + Zpxy(a) h(y)] , xeS. 

aeA(x) y 

Proof. We will prove that our assumptions imply that (14) holds if we replace z 
by any other element of S, that is, 

(16) T,Pxy(a) h(y, w) < oo for all x,weS and aeA(x). 
y 

The result follows immediately from this. Indeed, using that {xPn} is a constant sequen
ce, the a-discounted optimality equation (4) yields that for n e N, x e S and a e A(x), 

(1 - Pn) V,n{x,0) + hPn(x) = C(x, a) + %Pxy(a) hPn(y) . 
y 

Since 0 <, hPn(y) = VPn(y) — VPn(xPo) ^ h(y, xPo), the above inequality together with 
(16) and the dominated convergence theorem imply that g + h(x) < C(x, a) + 
+ lLPxy(a) h(x). Thus, 

g + h(x) = inf [C(x, a) + Y,Pxy(
a) h(y)] , 

aeA(x) y 

and then (15) follows using (13). Thus, we only need to prove (16). Let z be as in (14) 
and take weS arbitrary but fixed. Define Tw := min {n = 1 \XTz+n = vv} if Tz < oo 
and this set is nonempty; Tw := oo otherwise. Then Tz + Tw is the first time the 
system is at vv after a visit to z. It follows that T2 + Tw ^ Tw, and using that C — 0, 
we see that, for each x e S 

, h(x, w) = Ef.[
 Wf C(Xt, At) \X0 = x]< 

t = 0 

T- — 1 T +T ' —-1 

= -/*[ Z C(Xt, At) + Z f C(Xt, At) \X0 = x] = 
t = 0 t=Tz 

= h(x, z) + E /#[ £ C(Xt, At) \X0 = z], 
r = 0 

where we have used that R/*[TZ < oo | X0 = x] = 1 together with the Markov 
property. Thus, we conclude that h(x, vv) ^ h(x, z) + h(z, w), and then (14) implies 
(16) since h(z, vv) is a finite constant. • 
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4. CONCLUDING REMARKS AND RESULTS 

We have given sufficient conditions for the existence of average cost optimal 
stationary policies. Our approach parallels the one followed by Sennott in [5, 6, 7]. 
However, the main difference between Sennott's results and those in this note, is 
that we do not assume the existence of a fixed state for which the a-discounted cost 
is "minimal" for all a e [0,1). Rather, using our assumptions, we have "constructed" 
a minimizer of Va(*) for a near to 1, and the key point is that this minimizer can be 
selected in a finite set. As already mentioned, our conditions are satisfied in interest
ing queuing models. Also, it is clear that our results hold when the cost function is 
just bounded below and the other conditions remain valid. 

On the other hand, there are — at least — two interesting problems to be con
sidered: The first one refers to the optimality criterion. We have used the lim sup 
average cost criterion (l). Replacing lim sup by lim inf in (l) yields the lim inf average 
cost criterion. Now, the lim inf (lim sup) criterion represents the smallest (largest) 
limit point of the expected average costs over finite horizons, and then, since minimiz
ing the smallest average cost is "more appealing" than minimizing the largest one, 
it is natural to ask if results similar to Theorem 3.1 and Theorem 3.2 can be obtained 
with respect to the lim inf average cost criterion. The second problem refers to 
the OE: Is it possible to prove that g and /.(•) in (11) and (12) satisfy the average cost 
OE without Assumption 3.1? 

Presently, we just have a partial (affirmative) answer to the second problem which 
is stated in Theorem 4.1 below. Assume throughout the following that Assumptions 
1.1 — 1.3 hold true. Within this framework, we have proved that (13) holds, and we 
see that, for all xeS, 

(17) g + h(x) = inf [C(x, a) + ^PM h(z)] . 
aeA(x) z 

Define the discrepancy function <Z>: S -* U by 

(18) $(x) := g + h(x) - inf [C(x, a) + Y.Pxy(a) h(z)] , xeS. 
aeA(x) z 

Clearly, $ i_ 0 and the equality holds in (17) exactly when <P(x) = 0. Now, for each 
xeS the term in brackets in (17) is a lower semicontinuous function of a e A(x), 
and then, it has a minimizer <f(x) e A(x); see the proof of Theorem 2.1 (ii). Thus, 
we can write 

inf [C(x, a) + 2>„(a) /x(z)] = c(x, /(*)) + ZP^(X)) KZ) > x e s 

aeA(x) z z 

and using (17) we see that (13) holds with/ = / . Then t is optimal by Theorem 3.1. 
Also (18) is equivalent to 

g + h(x) = C(x, t(x)) + <P(x) + Y.Pxz(S(x)) h(z), xeS, 
z 
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and, as in the proof of Theorem 3.1 (ii) we obtain, 

g = lim sup E,[ £ C(Xt, At) + <P(Xt) \ X0 = x]/(n + 1) = 
n t = 0 

= hm sup E,[ £ C(Xt, At) | X0 = x]/(n + 1) = <7 , 
n t = 0 

since / is optimal. We conclude that, for all x e S, 

(19) g = lim sup E,[ £ C(Xt, At) + <f>(xt) | X0 = x]/(n + 1) = 
n t = 0 

= lim sup E,[ £ C(Zt, At) | x0 = x]/(n + 1) . 
n t = 0 

In what follows, a state that is positive recurrent (null recurrent, transient) with 
respect to the Markov chain induced by / is referred, simply, as an /-positive re
current (-null recurrent, -transient) state. Also, for the properties of Markov chains 
used here see, for instance, Loeve [8, p. 39—42]. 

Theorem 4.1. (i) The class of /-positive recurrent states is nonempty. 

(ii) If y is an /-positive recurrent state we have 

(20) g + h(y) = inf [C(y, a) + J » ) h(z)] . 
aeA(y) z 

Proof. Let G := G(g + 1) (see Assumption 1.2) and assume that G does not 
contain any /-positive recurrent state. In this case we have (since G is finite) that, 
for x e S, 

n 

(21) £ P,[x t e G | Z0 = x]l(n + 1) -+ 0 as n -• oo . 
t = 0 

On the other hand, since C(xt, At) ^ g + 1 for Xt e S — G we see that 

E,[ £ C(Xt, At) \ X0 - x] = E,[ £ C(Xt, At) I[Xt e S - G] | X0 = x] = 
t=o t=o 

= (g + l) E,[£j[XtGS - G] |*o = *] = (g + l)£p,[Z tGS - G|X0 = x] = 
t = 0 t = 0 

= '(<? + l)[(n + 1) - £ p , [ X t e G | X 0 = x]] . 
t = o 

From this we get easily, using (21), that 

lim sup E,[ £ C(Zt, At) | X0 = x]l(n + 1) = g + 1 
n t = 0 

which contradicts the optimality of / . We conclude that G contains — at least — 
one /-positive recurrent state and (i) follows. To prove (ii) let y e S be /-positive 
recurrent and let R be the /-recurrence class containing y. In this case, for any 
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Q: S -> [0, oo) we have that, as n -> oo 

(22) E,[ £ Q(Xt) | x0 = y]/(„ + 1) - £>(*, z) Q(z); 
t = 0 z 

here, X R , z) | z e ;S} is the unique invariant distribution (of the Markov chain 
determined by /) which is concentrated on R. We recall that n(R, z) > 0 if and only 
if z e R. From (22) we obtain that, as n -> oo, 

E,[ f C(x„ A,) + $(Xt) | Z0 = y]l(n + 1) -> J>(.R, z) [C(z, /(z)) + 4>(z)] 
t = 0 z 

and 

E,[ £ C(Xt, A,) | Z0 = y]l(n + 1) -> J>(R, -0 C(*, /(z)) . 
t = 0 z 

Combining these two convergences with (19) we get 

g = 2>(R, z) [C(z, /(z)) + *(z)] = Z^(R, z) C(z, «f(z)) . 
z z 

This implies, since g is finite and <P is nonnegative, that 0 = ]>XR, z) <P(z) = 
z 

= 7r(R, y) <P(y) = 0. Since y e R, n(R, y) > 0 and we see that $(y) = 0 which 
is equivalent to (20). This completes the proof. • 

According to Theorem 4.1 the average cost OE holds at all /-positive recurrent 
states. However, our second question is still open for /-null recurrent or /-transient 
states. Also notice that if the state space S is irreducible when policy / is employed, 
all the states are /-positive recurrent and then, (20) holds for all y eS. Active 
research to provide a complete answer to both of the problems posed above is presently 
in progress. 

(Received August 30, 1988.) 
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