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MODEL-REFERENCE INTELLIGENT CONTROL SYSTEM 

JAN T. BIALASIEWICZ, JULЮ C. PROANO 

This paper presents an intelligent controller based on a new type of model-reference adaptive 
control. The system state estimator of this controller is described by the differential equation 
of the reference model with the feedback speeding-up the estimator action during the tuning-up 
of the controller parameters and vanishing when the system performance approaches that of 
the reference model. The presented results of a simulation study demonstrate high effectiveness 
of the approach considered. The model dynamics, representing the required system performance, 
can be chosen within a wide range of speed with respect to the plant dynamics. 

1. INTRODUCTION 

This paper is concerned with model-reference intelligent control system shown 

in Fig. 1. In the analysis of the system performance the time-invariance of an un

known linear plant is assumed. However, due to the time-varying adaptive character-

Fig. 1. Model-reference intelligent control system. 

istics the controller compensates very well for the changes of the plant parameters. 

It was shown by the simulation study that the application of the proposed intel

ligent controller results in a system robust under extreme plant parameter variations, 

even if those variations lead to plant instability. 
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The intelligent controller considered contains a properly designed estimator 
to obtain the state vector estimate of a system which consists of an adaptive controller 
and an unknown plant. It is assumed that the system state estimator is described 
by the differential equation of the reference model with the proper feedback added. 
Due to this, during the tuning process of the controller, the estimator response 
is faster than that of the reference model. On the other hand, when as a result of the 
tuning process, the system dynamics approach that of the reference model, the feed
back signal in the estimator approaches zero. In other words, both the system and 
its estimator approach the required dynamics of the reference model. 

In the papers on adaptive observers [1 — 3], to mention just a few, a state vector 
which represents the dynamics of an unknown plant is produced by the observers 
that are required to be asymptotically stable and controllable. These very general 
specifications do not give any design guidelines to make a proper choice. On the 
contrary, a class of estimators, proposed in this paper, is well defined and well 
justified. 

2. PERFORMANCE ANALYSIS OF AN INTELLIGENT 
CONTROLLER FOR A nTH-ORDER PLANT 

Consider the system shown in Fig. 1 in which the plant is described by 

(1) xp = ApXp + Bpu , xpeU", ueU 

yp = Cpxp , ) ' p eK 

the reference model is described by 

(2) xm = Amxm + Bmr , xmeUn, reU 

J;
m = Cmxm , ymeU 

the state estimator is described by 

(3) xc = Amxe + Bmr + Ke2 , xe e W 

ye = Cexc , yc e U 

with e2 = yp — ve, and the adaptive control law given by 

(4) uc = 0Txc , uceU 

(5) 6 = etxe, OeU" 

with ei = ym — yp and 

(6) u = uc + r = 9Txc + r . 

It is assumed that yp = xpl, ym = yml, and yc = ,xel, or equivalently Cp = Cm = 
= ce = c = [i,o,...o]. 

The model-reference intelligent controller, used to control an unknown plant 
(shown in Fig. 1), can be decomposed into the linear part shown in Fig. 2 and the 
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the nonlinear (adaptive) part shown in Fig. 3. The adaptive loop generates, con

stantly updated, parameter vector 9, which remains constant after ex = 0 is reached 

and the system from Fig. 1 reduces to the system from Fig. 2. 
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Fig. 2. Linear part of the controller. 
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Fig. 3. Nonlinear part of the controller. 

Consider now the system shown in Fig. 2. The estimator equation (3) can be 
written as follows: 

KC) xe + Bmr + KCxp (?) * e 

Уe 

(Am 

Cxe 

where 

(8) K 
к. 

к„ 
The estimator poles are defined by the equation 

(9) det [si - Am + KC] = 0 . 

Since the estimator is implemented as a computer program or an electronic device, 
the increase of the feedback gain K, in order to increase the speed of response, is 
practically not limited. However, the bandwidth of the estimator becomes higher. 
This will cause the sensor noise to pass on to the control actuator. Therefore, the 
designer should try to get an acceptable transient response with a low enough band
width. 

The design of the state feedback gain 9 is performed automatically by the adaptive 
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loop and according to the equation (5), assuming zero initial conditions, 

(10) 9T = ft elX] dx = [ft elXel dx ft etxc2 d r . . . ft elXe„ dx]. 

As illustrated in Fig. 3 the state feedback gain vector 6 is adjusted to get e1 = 0, i.e. 
to make the plant output yp = x p l to follow the model generated signal ym = x m l . 
In other words, the pole placement problem is continuously being solved by the 
adaptive loop. 

Referring still to the system of Fig. 2 consider the closed-loop system zeros. 
The intelligent controller with the inputs yp = Xpl and r, and with the output u 
is described by the state equation (7) and by the output equation (6). One can see 
from (7) that Bm is not involved in the controller characteristic equation. Therefore, 
speaking in transfer function terms, Bm affects only the zeros of the transfer function 
from r to yp. Before obtaining the equation for the closed-loop zeros, find out if there 
is any effect on closed-loop system zeros other than that of the reference model. 
Therefore, consider the system from Fig. 2 assuming that there is a state feedback 
and no estimation is involved. Then the equations of the closed-loop system are 

(11) Xp = {Ap + Bp6
T)Xp + Bpr 

yP = Cxp 

and the system zeros are the roots of the following equation: 

(12) det 

which is equivalent to 

(13) det 

sI-Ap-Bp6
T

 : p | = 0 

sl~A* вn = o 
-C 0 ' 

••] 

•] 

4 = 0 
) т 1 J 

and this matrix is independent of the feedback gains 9T. Therefore, the zeros of the 
closed-loop system are not affected by the state-variable feedback. Now, considering 
the controller equations (7) and (6), the equation for the zeros of the transfer func
tion from r to u (letting yp — xpl = 0) is 

(.4) dJSl-A"+KC B 

and this is equivalent to 

(15) det [si - Am + KC + Bm 0T] = 0 . 

This equation is in the form of equation (9) for the estimator poles which are placed 
at the desired locations by the proper selection of K. However, the closed-loop zeros 
due to the intelligent controller are additionally affected by the matrix Bm0T. 

Summarizing the above findings, one gets the following overall transfer function 
of the closed-loop system: 

(16) G(S) - 5M = ^ ' ) M ' ) 
R(s) ccs(s) ac(s) 
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where KT is the total system gain, bp(s) represents the plant zeros and 

(17) j](s) = det [si - Am + KC + Bm0T~\ 

(18) ae(s) = det [si - Am + KC] 

(19) ae(s) = det [si - Av - Bp0
T] 

3. ANALYSIS OF THE SECOND-ORDER SYSTEM 

Assuming, as in the nth-order case, the phase variable canonical form of state 
equations, the plant matrices are: 

<»> *-[-24*-EI 
that corresponds to the transfer function 

c Is + b +-

(21) T„(s) = \ C 

sz + bs + a 
The model matrices are: 

W A- = [-l-l} B»fc] 
that corresponds to the transfer function 

cm(s + bm + — 

(23) Tm(s) - - A - C? 
S + &m5 + Om 

The estimator matrices are Am, Bm and 

(24) ---[£] 
Then, ae(s), calculated from (18), is 

(25) ae(s) = V+ , * ~ . | = s2 + s(K! + bm) + Kxbm + am + K2 . 
I flm + I^2 S + °m I 

It can be expected that the estimator which, in each of the state equations, involves 
the feedback of the appropriate state variable error, instead of the output error, 
will perform much better. This idea, when the system state variables are approximated 
with appropriate output derivatives, leads to the following estimator equations 
in the second-order case: 

x e l = x2 + cmr + K[(xpl - xe l) , 

xe2 = — amxel — bmxe2 + dmr + K2\xpX — A"c2) 
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These equations can be represented in the following form: 

(26) xe = (Am - IK') xe + Bmr + K'Cx'pl 

where 

(27) K' = ПW-Ы 
This results in the characteristic polynomial 

(28) 

s + K[ - 1 

am s + bm + K'2 
Ф) = s2 + s(K'г + bm + K'2) + K\bm + am + K\K'2 

Comparing ae(s) and ae(s) one can see that the same damping ( and natural fre

quency co„ are achieved for ae(s) with smaller feedback gains K'. One can also say 

that if K\ 2 = Kl>2 then the poles of ae(s) will be faster. With this estimator the 

intelligent controller is described by the state equation (26) and the output equation 

(6). Therefore, the equation for the zeros of the transfer function from r to u (letting 

x'pl = 0) is 

(29) P'(s) = det [si - Am + IK' + Bm9T] = 0 . 

Assuming that K' = K, one can easily find out that the zeros defined by j3'(s) are 

faster than those defined by /?(s). 

4. SIMULATION STUDY 

The simulation was performed for the model with 

ant with 

Tn(s) = or 4 = „ _ , Bn = \ A\ 
p U ( s - l + j 2 ) ( s - l - j 2 ) L-5 2J L4J 

and the plant with 

The results obtained for K1 = 100, K2 = 0 and the square wave input are shown 
in Fig. 4. The initial conditions at t = 0 were assumed to be zero. As a result of the 
controller action, certain values of the controller parameters 6t and 62 are reached 
during the first half of the square-wave period. Those values serve as the initial 
conditions for the second half-period of the input square-wave. It is clear from 
Fig. 4 that the control parameters 9t and 92 tend to stabilize and as a result of this 
the error et = x m l — xpl approaches zero. 

The simulation results for the same system but with the modified estimator, 
defined by (26), with K[ = 100 and K'2 = 10, are shown in Fig. 5. These results 
can be easily compared with the results from the previous simulation. The performace 
improvement is apparent. 
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Fig. 4. System transients for the estimator 
with K, = 100 and K-, = 0. 
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Fig. 5. System transients for a modified 
estimator with Kx = 100 and K2 = 10. 

The proposed model-reference intelligent control system with the estimator 

defined by (26) was applied in a simulation study of the control of a laser communica

tion mirror mounted on a space platform. The plant transfer function was 

T(s) = — — or Ap-
p W s2 + 0-57s + 800 

The step response of this system, shown in Fig. 6, is of course unacceptable. 

0 1 " 
, Bn = 

" 0 

-800 -0-57 ' p 2Ь 

5 ANGUUX ÍISPLACMJn OF TH£ KI1O0K (STEP RESPONSÍ) 

1 2 3 

Fig. 6. Step response of a laser communications mirror. 
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For the system with the intelligent controller the reference model transfer function 
was 

25 
Tjs) 

s2 + 405 + 400 
or Ar 

Г ° Ч в -Г °1 
[_-400 - 4 0 j ' m [_ —Юj 

and the estimator feedback gains were K\ = 100 and K'2 = 40. The step response 
of this system is given in Fig. 7. It is seen that due to the controller action the step 

S THE ИIRЯ0R UITK IЖtШCWT C0HTЯ0LШ (STEF ШP0NSC) 
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Fig. 7. Step response of a laser communication mirror controlled by the model-reference inteligent 
controller. 

response of the compensated system has no oscillations. In this simulation the 
stabilized state feedback gain vector 0T = [2-2269, -2-3334] was used as an initial 
condition. 

3 STEP RESPONSE OF THE NOBEL AND CLOSED-LOOP SVSTEN Kt=lM K2:35 

sTI 9A eTi B! I 

Fig. 8. Transients of the laser communication mirror control system. 

In Fig. 8 the step responses of the same reference model and the closed-loop 
compensated system with K\ = 100 and K'2 = 35 are shown to give the idea how 
well the system output follows the reference model. One can also see that the system 
response became slightly oscillatory as a result of decreasing K'2. 

5. CONCLUSION 

The model-reference intelligent control system considered in this paper can be 
used to obtain the requested dynamics of the closed-loop system which can be 
chosen within a wide range of speed with respect to the dynamics of the plant. 
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Some of the results of the simulation study presented here show that the proposed 
controller can be used to control an unstable plant as well as to get a fast and well 
damped response of a plant with a very small damping ratio and relatively high 
undamped natural frequency. The proposed new approach to the estimation of the 
system state results in very fast estimator performance during the tuning process 
of the controller and in an estimation error approaching zero. This is due to the fact 
that the estimated system performance and the estimator performance both approach 
that of the reference model. 

(Received March 17, 1988.) 
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