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ADDITION OF FUZZY QUANTITIES: 
DISJUNCTION-CONJUNCTION APPROACH 

MILAN MARES 

This paper is subjected to the problem of algebraical operations over fuzzy quantities with 
rational values. The concept of the fuzzy quantity was introduced in [3] and [4] and applied 
e.g. in [5] and [6]. It represents one of possible models of uncertainty connected with rational 
numerical data. The elementary properties of the addition of fuzzy quantities were shown in [3] 
and further developed in [8]. It is also shown there that such conception of addition leads to 
some unconsistency with the usual notion of fuzzy sets. Another definition of the addition of fuzzy 
quantities, avoiding the mentioned discrepancies, is suggested and investigated below. It is shown 
there that the main properties of the addition of fuzzy quantities are analogous for both con
cepts of the operation. Namely, the fundamental group properties can be guaranteed only up 
to an equivalence relation. 

0. INTRODUCTION 

The concept of fuzzy quantities suggested in [3] is applicable in the branches 
in which vague numerical data appear. As it is often necessary not only to describe 
but also algebraically handle such vague numerical data, it is useful to know their 
algebraical properties. 

This problem was investigated, besides [3] and [4], namely in [8]. Nevertheless 
the addition operation defined and investigated there is connected with some serious 
discrepancies. Namely, it could lead to some fuzzy quantities with unlimited values 
of their membership functions. This fact is an unavoidable consequence of the 
convolutionary approach to the addition operation. 

The addition of fuzzy quantities suggested below is based on a completely different 
principle of conjunction and disjunction of the possible values of the considered 
fuzzy quantities. This approach, even if it is analytically less convenient than the 
previous one, much more respects the specific philosophy and interpretation of the 
fuzziness. In the following sections we verify that its fundamental algebraic properties 
are comparable with the algebraic properties of the convolutionary method. 
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1. FUZZY QUANTITIES AND THEIR SUMS 

Due to [3] and [8] the fuzzy quantity represents the numerical data with vague 
values. In this paper we consider the fuzzy quantities the possible values of which 
are rational numbers. 

If we denote by Q the set of all rational numbers then each fuzzy quantity a 
with rational values is fully described by a membership function 

fa- Q - [0, 1] 

with the usual fuzzy-theoretical interpretation. By Q we denote the set of all fuzzy 
quantities with rational values for which the set 

{ieQ:/ f l(0>0} 

is non-empty and bounded. This assumption is realistic if we consider the fact that 
each fuzzy quantity achieves some value and that the set of its possible values does 
not extend some acceptable finite limits. 

If a e Q and b e Q are fuzzy quantities then we say that a = b iff fa(i) -= fb(i) 
for all ieQ. 

In this paper we are interested in the addition operation over the set Q. The sum 
of two fuzzy quantities is also a fuzzy quantity represented by a membership function. 
One of possible approaches to its definition, based on the convolution of the member
ship functions, was investigated in [8]. Another one, better reflecting the typical 
character and interpretation of the fuzzy sets and fuzzy quantities, is suggested and 
investigated here. 

Definition 1. If aeQ, beQ a n d / a , / 6 are their membership functions then the fuzzy 
quantity a + b represented by the membership function fa+b: Q -> [0,1] is called 
the sum of a and b iff 

(1) f.+b(k) = sup (min (fa(i),fb(k - i))) , keQ, 
i 

where the supremum is considered over the whole set Q. 

Remark 1. If a, b e Q then also 

fa+b(k) = sup (mm (fa(k-j), fb(j))), keQ, 
j 

where the supremum is considered over the set Q. 

The definition can be interpreted as follows. The fuzzy quantity a achieves the 
value i e Q and the fuzzy quantity b achieves the value k — ieQ simultaneously. 
The coincidence of both values can be understood as the fuzzy logical conjunction 

min ( / a ( t ) , / 6 ( / c - i ) ) 

of both events. The possibility that the fuzzy quantity a + b achieves the value 
k e Q is then a fuzzy logical disjunction of the existences of all such pairs i e Q, 
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j = k — i G Q fulfilling the mentioned condition. This disjunction is represented by 
the supremum in (l). 

The addition operation defined above possesses some of the group properties. 

Lemma 1. If a, b, c e Q are fuzzy quantities then a + b = b + a and (a + b) + 
+ c = a + (b + c). 

Proof. The first equality follows from Definition 1 immediately. The asso
ciativity property follows from the relations 

f(a+b)+c(m) = sup(rnm(/a+0(fc),/c(m - k))) = 
k 

= sup (min (sup (min (fa(i),fb(k - i)))),fc(m - k)) = 
k i 

= sup(sup(min(min(/a(i),/0(fe - i)),fc(m - fc)))) = 
k i 

= sup (sup (min (min (fb(k - i),fc(m - k)),fa(i)))) = 
i k 

= sup (min (fa(i), sup (min (fb(k - i),fc(m - k))))) = 
i k 

= sup (min (/a(i), sup(min/0(;'),/c(m - i - j))))) = 
i J 

= sup (min (fa(i),fb + c(m - i))) = fa + (b + c)(m) . • 
i 

Theorem 1. The set Q of fuzzy quantities with rational values is a commutative 
semigroup with respect to the addition operation (l). 

Proof. The statement is an immediate consequence of Lemma 1. • 

2. OTHER GROUP PROPERTIES 

Analogously to [8] we define the concepts of the zero element and inverse elements 
in the set Q. 

Definition 2. The fuzzy quantity oeQ such that /o(0) = i, f0(i) = 0 for i e Q , 
i 4= 0, is called the zero element of the set Q. 

Definition 3. If ae Q then the fuzzy quantity ~ae Q such that /_„(i) = /«(—0 
for all i e Q is called the opposite element to a. 

Lemma 2. If a, be Q then for all keQ 

fa + (~b)(k) = sup (min (fa(k + j),fb(j))) = sup (min (fa(i),fb(i - k))) . 
j » 

Proof. For all keQ 

fa+(-b)(k) = sup(min(/a(i),/_0(/c - i))) = 
i 

= sup (min (fa(i),fb(i - k))) = sup (min (/„(/< + j)Jb(j))), 
i j 

where j = i — k was substituted, and the suprenia are considered over the set Q. • 
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Lemma 3. If a, b e Q then -(a + b) = (-a) + (-b) and -(-a) = a. 

Proof. For all keQ 

f-(a+t)(k) =fa+b(k) = sup (min (fa(i),fb(-k - i))) = 
i 

= sup (min (fa(-j),fb(-k + j))) = sup (min (f-a(j),f-b(k - j))) = / (_s)+(_ f t )(&) . 
J J 

The equality —(—a) = « follows from Definition 3 immediately. • 

As the equality a + (— a) = o does not generally hold, the group properties are 
not generally fulfilled for the addition operation (1) on Q and with o as the zero 
element. However, it is possible to guarantee, analogously to [8], the group proper
ties up to certain equivalence relation. 

3. EQUIVALENCE OF FUZZY QUANTITIES 

There exists a similarity between some fuzzy quantities. This similarity will be specified 
here, and its importance for the group properties of the set Q will be shown. 

Definition 4. A fuzzy quantity s e Q is said to be symmetric iff s = —s. The class 
of all symmetric fuzzy quantities from Q will be denoted by S cr Q. 

Remark 2. It is obvious that the zero element is symmetric, oe S. 

Lemma 4. If s e S and t e S then also s + t e S. 

Proof. For all ke Q 

fs+t(k) = sup (min (fs(i),ft(k - /))) = 
i 

= sup (min (fs(-i),ft(-k + i))) = sup (min(fs(j),ft(-k - j))) =fs+t(-k), 
i J 

where/ = —i was substituted, and the suprema are considered over the set Q. • 

Lemma 5. For any aeQ the relation a + (—a)eS holds. 

Proof. For all keQ 

/«+(-„>(!<) = sup (min (fa(i), f-a(k - i))) = 
i 

= sup (min (f-a(-i),fa(-k + i))) = 
i 

= sup (min (f-a(j),fa(-k - j))) = fa+(-a)(-k) . • 
j 

Definition 5. If a e Q then the fuzzy quantity aeQ such that 

(2) Mi) =fa(i). (sup CO/)) )" 1 , I ' e Q , 
J 

where the supremum is considered over the set Q, is called the normalized form 
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of a. Any fuzzy quantity a e Q such that 

suP( / a( ;)) = l 
j 

is called normalized. 

Remark 3. If » e S is symmetric then its normalized form « is also symmetric. 

Remark 4. If a e Q is a fuzzy quantity and — a is its opposite element then the 
normalized form of —a is the opposite element to the normalized form of a; in 
symbols ( — a) = —(a). 

Lemma 6. If a, be Q are fuzzy quantities and a, b are their normalized forms 
then the sum a + B is also normalized. 

Proof . If a + b~ is not normalized then there exists s > 0 such that 

(3) SU P ( / 5 + 5 ( i ) ) = l - 8 . 
i 

On the other hand, 
sup (/-(»)) = 1 = sup (/-,(»)) 

i i 

and there exist i,y e Q such that 

/5(i) > 1 - 8 , fbQ) > 1 - 8 . 

It means that for k = i + j 

/ 5 + B ( / c )>min ( / 5 ( i ) , / j ( 1 ) ) > l - 8 

which is a contradiction to (3). • 

Lemma 7. If ae Q, be Q and if a is the normalized form of a then a + b = a 
ift b = o. 

Proof. If b = o then a + o = a as follows from (1) immediately. Let A #= 0. 
Then either there exists j + 0 such that fbQ) > 0, or/6(0) < 1. If fb(j) > 0 for some 
7 + 0 and a + b = a then for all k e Q 

h{k) = /5+»(fc) - sup (min (/s(fc - i) , /6(i))). 
i 

As the set (i e Q: /5(i) > 0} is bounded, there exists k0 e Q such that /5(fc0) = 0 
but /5(fc0 - j ) > 0 and also fb(j) > 0. It means that for k0, /5(fc0) 4. fa+b(k0). If 
/6(0) < 1 then fa+b(j) < 1 for all j e Q and consequently a + b cannot be equal 
to «. • 

Definition 6. If a, be Q are fuzzy quantities then we say that a is equivalent to A 
and write « ~ b, iff there exist «._, u2e S such that a + u1 = b + u2, where a, 5,1.4, 
«2 are normalized forms of a, b, uu u2, respectively. 

Theorem 2. The equivalence relation defined above is reflexive, symmetric and 
transitive. 
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Proof. If a<= Q then a + o = a + o and consequently a ~ a as OE S is normalized. 
If a E Q, A e Q then a ~ b iff b ~ a as follows from the symmetry of Definition 6. 
Let a, b, c E Q, and let a ~ A and b ~ c. Then there exist M1? M2, M3, M4 e S such that 

a + ux = b + u2 and b + u3 = c + M4 . 
It means that also 

a + ux + u3 = B + u2 + u3 and b + u2 + u3 = c + u2 + M4 , 

and consequently a + ux + u3 = c + u2 + M4. Lemma 6 and Lemma 4 imply 
a ~ c. • 

Remark 5. If »«., u2e S then MX ~ M2 as M-! + ii2 = i72 + .7^ 

Lemma 8. If «, A e Q then a ~ b iff ( — a) ~ ( — b). 

Proof. Let a + ux = b + u2 for some ux, u2 e S. By Lemma 4 and Definition 4 

— (a + Kj) = —a + u1 and — (15 + M2) = — b + u2 . 

As by Definition 3 —(a + u1) = (b + u2) iff if + ux = B + u2, the statement is 
proved. • 

Theorem 3. If a, b e Q are fuzzy quantities such that a + (—B)eS then a and b 
are equivalent; a ~ b. 

Proof. If a + ( — b) = u2e S then ( — b) + b = uieS and a" + ux = 5 + M2. 
Lemma 6 implies that »x and u2 are normalized and consequently a ~ b. • 

Theorem 4. If a, b e Q are fuzzy quantities and if there exists a normalized sym
metric fuzzy quantity UES such that a + u = b then a and A are equivalent; a ~ b. 

Proof. The validity of the theorem is obvious if we put ux = u and u2 = o in 
Definition 6. • 

Theorem 5. If a, b, ce Q are normalized fuzzy quantities then a + c ~ b + c 
if and only ifa~b. 

Proof. If a + c ~ b + c then a + c + ux = B + c + u2 for some MX, U2E S 
and 

a + c + ( — c) + iii = b + c + ( — c) + u2 . 

Lemma 5 and Lemma 6 imply that a + u3 = b + M4 where u3 = c + (—c) + M1 

and uA = c + (c) + u2 are normalized and symmetric. Hence a ~ b. If, on the other 
hand, a ~ b then there exist U1,U2E S such that a + ux = b + u2.\t means that 
also a + c + u1 = b + c + u2. • 

Similarly to [8], the equivalence relation presented above can be effectively used 
for the verification of some form of the group properties valid for the disjunction-
conjustion concept of the addition over the set Q. Comparing the next Theorem 6 
with its analogy (also Theorem 6) in [8], we can see that they are not completely 
analogous. The difference is caused by the different analytical properties of the two 
addition concepts defined in [8] and here. These different analytical properties 
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cause the necessity to define different concepts of the equivalence relation over the set 
Q and the consequent difference in the form of some group properties. 

Theorem 6. The addition operation defined by (1) is a group operation over the set 
Q of fuzzy quantities up to the equivalence relation introduced by Definition 5: 
namely 

a + b ~ b + a 

(a + b) + c ~ a + (b + c) 

a + o ~ a 

a + ( — a) ~ o 
for any a, b, c e Q,( — a) being the opposite element to a and o being the zero element 
from Q. 

Proof. The first two relations follow from Lemma 1 and Theorem 2 immediately. 
Relation a + o ~ a is an immediate consequence of Lemma 7, and relation a + 
+ ( — a) ~ o follows from Lemma 5 and Remark 5 as o e S. • 

4. DETERMINISTIC MULTIPLICATION 

It was shown in [8] already that the product of a fuzzy quantity ae Q and a ration
al number r e d has sense. Here we briefly remember its definition and show that 
its distributivity with the disjunction-conjunction type of addition of fuzzy quantities 
is valid analogously to the case mentioned in [8]. 

Definition 7. Let a e Q be a fuzzy quantity with rational values, let o e Q be the 
zero element of Q and let r e d be a rational number. Then the fuzzy quantity 
r . ae Q such that for all i e Q 

/r.«(0=/«0'W if r * 0 ' 
= /„(;) if r = 0 

is called the product by r of the fuzzy quantity a. 

Theorem 7. If a, b e Q are fuzzy quantities and if r e Q, then 

r . (a + b) = r . a + r . b . 

Proof. If r + 0 then for any ke Q 

fr.(a+b)(k) =fa+b(klr) = sup (min (/«(/), /*((fc/r) - . / ) ) ) = 
j 

= sup (mm (fa(iIr),fb((k - 0 / r ) ) ) = SUP (mm(fr.a(i),fr.b(k - 0)) = fr.a+r.b(k) . 
i i 

If r = 0 then r . ( a + £ ) = 0 = 0 + o = r.a+r.£. • 

Other properties of the rth product of fuzzy quantities from Q shown in [8] 
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do not depend on the type of addition and keep unchanged even in this case. It 
concerns namely also the fact that the conjugate distributivity law (r + s) . a = 
= r . a + s . a is not generally fulfilled for a e Q, r, s e Q. 

5. FUZZY QUANTITIES WITH FINITE SUPPORT 

The fuzzy quantities which can acquire only finite number of possible values 
represent a special but interesting type of fuzzy quantities. Their applicability in many 
practical situations deserves special interest. Here we shall see that, as well as in 
case of convolutionary addition in [8], it is possible to prove some significant pro
perties of those fuzzy quantities. 

Definition 8. We say that a fuzzy quantity ae Q has a finite support iff there 
exists a finite set of rational numbers 

[iu i2,..., i„] , ik e Q , k = 1, 2 , . . . . n , 

such that {i e Q: fa(i) > 0} = {/,}"=, • 

Remark 6. If a e Q has a finite support and be Q then for all m e Q 

fa + b(m) = max (min (fa(i), fb(m - .'))) = 
i 

= max (min (fa(ik),fb(m - ik))), 
k=\ ,...,n 

where {/fc]"=i is the finite support of the fuzzy quantity a. 

Remark 7. If a, be Q have finite supports and r e d then also a + b, —a and r . a 
have finite supports as follows from the corresponding definitions. 

Lemma 9. Let ae Q have a finite support, let 

{ieQ:fa(i)> 0} = {ik'"k=i , i0eQ, i0*ik, k=l,...,n, 

and let a0 be a fuzzy quantity from Q such that 

/ao(0 = /«(0 f 0 r ieQ> '0 * l * - *0 , 

/ « o O ' o ) = / a o H o ) ^ / « ( 0 for all ieO. 

Then a e S iff a0 e S. If ue S then a + u e S iff a0 + u e S. 

Proof. The fir.it statement is evident. Concerning the second one, for every 
m e Q 

fao+u(™) = m a X ( m i n (/«o(0 > /ii(W - 0)) = 
i 

= max (min(/ao(j/c)?/5(m - ik))), 
k= 1, . . . ,» 

/«o + i ( - m ) = m a X (min (/«o(j) » / i ( - m ~ J))) = 
J 

= max (min (fao(j),f-n(m + j))) = max (min (fao{~i),fn(m - i))), 
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where the maxima are considered over the set Q if not specified otherwise. Let 
us choose m0 e Q such that 

/«o+«(mo) = min(/,0(/0), / i(m0 - i0)) - /ao(i0) . 

Such m0 exists according to Definition 5. The equation 

Ao(- 'o) =/«„('o) 
implies 

min ( / a o ( - i0),/5(m0 - i0)) = / . „ ( - f 0 ) » 
and as 

/«0('o) = /«o(0 = /•(*) f o r a11 ' * *o. - 'o » 
then also 

/ « 0 + i ( - m 0 ) = max(min( / a o ( - i 0 ) , / 5 (m 0 - i))) = fao(i0) = /« 0 + 5 (m 0 ) . 
i 

If m e Q is such that /fl0+5(m) -. /«0(i0) then the inequality / « 0 + 5 ( -m ) 4=/ao(i0) 
follows from the previous steps of this proof. Hence 

fao + u(m) = / a + s W a n d /«o + « ( - m ) = fa + u(-m) » 

and consequently a0 + « _ S iff a + S e S . • 

Lemma 10. Let the fuzzy quantity a e Q have finite support and let u e S be 
symmetric. If a + ii e S then also ae S. 

Proof. Let { i eQ: / - ( i ) > 0} = {fla..., /„}. Then 

/ i + i W = m a x (min(/a(/,),/5(m - /fe))), 
k=l,...,n 

h+u(-m) = max(min( / 5 ( j ) , / i ( -m - ; ) ) ) = 
j 

= max (min (/5(j),/5(m + ;'))) - max (min (fa(-i)Ju(m - /))), 
_ » 

where the maxima are considered over the set Q if not specified otherwise. Let us 
denote j t e {/l5..., /„} such that 

/«( j*i)_/ i(0 for all ieQ, 
and 

I/J > Ifcl for all feed such that f-(k) = max / - ( / ; ) . 
1 = 1 n 

If ji _? 0 then we choose m0 e Q such that 

/ i(m0 - ji) = i , fi(m0 - i) < fa(jt) for i > ~j\ 

which exists as the sets {/ e Q:/,(/) > 0} and {/e Q:/„(/) > 0} are bounded. 
Then 

/«+i(m0) = / i ( j i ) , / i + 5 ( - m0) = max (min ( / 5 ( - /),/5(m0 - /))) • 
i 

For |/| > j i , / a ( — 0 <fa(ji) t>y assumption and consequently 

min ( / 5 ( - i ) , / 5 (m 0 - /)) < /5(ji) • 
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For i > -j, /5(m0 - 0 < fiih) a n d consequently 

m i n ( / 5 ( - 0 , / 5 ( m o - 0) </s(j ' i)-

As 
h+u(mo) =h+i(~mo) a n d /a+5(m0)) =/ 5 ( j ' i ) , 

then necessarily h+»(-m0) = h(j\), and 

(4) h(-h)=h(h)-
If j \ < 0 then we choose m 0 e Q such that 

h(m0 - ji) = 1 , h(m0 ~ 0 < hOi) f o r * < ji » 

and analogously to the previous procedure we prove that (4) holds. Let us suppose 
that 

/ s (0 = h(-i) f o r i = j'i> • • •> jm , m <n, 

jke{ih..., in} for k= l,...,m, 

and that there still exists i G Q> such that i #= j i , •••,j'„„ /fl(i) > 0. Let us construct 
am e Q such that 

faji) = / 5 (0 f ° r - 6 Q , i${jl,--; jm, ~h, • • •» ~jm} , 

= 0 for j = j l 5 .. .,;m, - j i , . . . , -jm . 

Lemma 9 implies that am e S iff a e S and aw + M G S iff a + u G S. It means that 
the proof procedure used above can be repeated. Let us choose j m + l e Q such that 

hjjm+i)^hji) for all ieQ 

\jm+i\ = \k\ for all fceQ such that /flm(fe) = max/ f lm(i). 

Applying the procedure used for j \ it is possible to prove that 

fa\Jm+l) = fam\Jm+l) = fam\—Jm+l) = hyJm+l) ' 

After a finite number of such steps the equality h(j) = h(—j) and consequently also 
h(j) = fa(~j) will be proved for all j e Q. • 

Theorem 8. If the fuzzy quantities aeQ and be Q have a finite support then 
a ~ b if and only if a + ( — b) is symmetric. 

Proof. The implication a + ( — b) e S => a ~ b was already proved in Theorem 3 
for more general case. On the other hand, if a ~ b then there exist ux,u2eS such 
that a + ux = b + u2- Then 

a + (-b) + ut = b + (-b) + u2 = u3 + u2 e S, 

where Lemma 6 was used. Lemma 10 implies that a + ( — b)e S. • 

Theorem 9. Let aeQ have a finite support. Then a ~ o iff a e S where o is the 
zero element of Q. 

Proof. The statement follows from Theorem 8 and Remarks 2 and 5. • 
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Corollary. Let us denote by Qo c Q the class of all fuzzy quantities from Q 
having finite supports. Then S rt Q0 is one of the equivalence classes generated 
by the relation ~ in the set Q0. 

6. CONCLUSIVE REMARKS 

The operation of addition considered over the set Q can be defined in more ways. 
One of them, based on the supremum and minimum operations, was suggested and 
investigated here. Another one, based on the convolution of the membership func
tions was suggested in [3] and investigated in [8], too. Let us remember its definition. 
If a, be Q then the membership function fa+b of their sum is defined by 

(5) fa+b(k) = Zfa(i)fb(k-i) = Ua(k-j)fb(j), ke Q , 
i J 

where the sums are considered over Q. If we take into consideration that both, the 
maximum (supremum) and the sum, can in some sense represent the disjunction 
of the existences of some values of the considered fuzzy quantities, and both, the 
minimum and the product, can analogously represent their conjunction, then we see 
that there exists an essential inner similarity between (l) and (5). However, the 
analytical difference of the formal tools applied in (1) and (5) demands rather diffe
rent formulation of some concepts connected with both definitions of fa+b. The 
main difference seems to be in the equivalence definition, and in the set of admissible 
values of the membership function fa, ae Q. The convolutionary approach can be 
applied without other problems only if we accept the assumption that fa: Q -> 
-> [0, oo), where the values of/a(z) > 1 are interpreted in the same way as/ a( i ) = 
= 1 (cf. [8]). Under this assumption the equivalence concept introduced by Definition 
6 of this paper implies, in case of the convolutionary approach, also the equivalence 
used in [8]. It follows from the next statement. 

Theorem 10. Let a, be Q and let the addition operation (5) on the set Q be con
sidered. Then there exist st, s2 e S such that fSl: Q -> [0, oo),L2: Q -+ [0, oo) and 
a + sx = b + s2 if and only if there exist ut, u2e S such that fUi: Q -> [0, 1], 
fU2: Q -> [0, 1] and a + u^ = b + u2, where a, b, i*l5 u2 are the normalized forms 
of a, b, ut,u2, respectively. 

Proof. Let us denote for arbitrary x e Q 

(Tx = SUp ( /»( / ) ) • 
i 

If a, be Q, and if »«_, u2 e S are such that 

/ « : Q - [ 0 , 1 ] , /„: Q-* [°> i] ' 

then st, s2 e Q such that for all i e Q 

/..(«•) = /..(0 • (-. • O"1 - /•( ')= Ui) •(<r" • a » r ' 
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fulfil the following conditions: s1 e S, s2e S, 

/ „ . : Q - [ 0 , o o ) , fS2: Q - [0, oo). 
Moreover 

/i+iiW = S/sfO/i^* - 0 = 
i 

= K • O"11/.(0/..(fc - 0 = If«(i)U(k - 0 = /.+..(*)» 
» i 

/«,(*) = S/5(0/52(fe - 0 = 
i 

= (*• • O"11/»(0/.a(fc - 0 = S/*(0/.^ - 0 - W*)> 
i i 

for all fe e Q. It means that a + u1 = b + u2 iff a + st = b + s2. The inverse 
implication is evident. • 

The results presented in the previous sections and in [8] are applicable not only 
for single fuzzy quantities but also for their more-dimensional modifications. If 
we consider the vectors of fuzzy quantities (at,..., an), ate Q, i = 1, . . . , n, then 
the methods of addition (1) and (5) can be used even for the addition of such vectors, 

(au ..., an) + (bu ...,bn) = (at + bx,..., an + bn), 

multiplication by a deterministic rational number r e Q, 

r .(ax,..., an) = (r . ax, ...,r . an) , 

or scalar product with a deterministic rational vector (rx, ..., rn) e Qn, 

(ru ..., rn). (at,..., an) = rx . a1 + ... + rn. a„, 

and the usual algebraical properties of such operations hold in the sense shown here 
and in [8], i.e. up to the corresponding equivalence relation. The same conclusions 
keep true if we consider fuzzy quantities with more-dimensional values in Qn, i.e. 
such that fa: Qn -> [0, 1], respectively fa: Q" -> [0, oo). Then the methods and 
results presented above and in [8] are valid. For example, instead of (5) we can 
consider 

fa + b(K> •••> k/<) = £ fa(ii ,--;i»)- fh(K - ii, ..., K ~ Q . 
(h,...,in) 

instead of (l) we put 

fa+b(K> ••-. K) = sup (mm(fa(ii,..., in),fb(K - ih..., kn ~ »-))) , 
( > i , . . . , < • „ ) 

e.t.c. It is obvious that the results derived for the one-dimensional case can be proved 
even for such quantities with n-dimensional rational values. 

It can be also useful to note that, in spite of the essential difference between the 
formal tools, both the convolutionary and the disjunction-conjunction, approaches 
to the addition of rational fuzzy quantities, the results obtained in [8] and here 
are remarkably similar. This similarity is, at least partly, caused by the principal 
similarity between the motivation of both approaches mentioned in the first paragraph 
of these conclusive remarks. Nevertheless, it seems to indicate that the properties 
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of the addition of fuzzy quantities (including the approach to its definition) reflect 
some essential qualities of the rational fuzzy quantities invariant to the chosen 
manner of the formal manipulation with them. 

(Received May 30, 1988.) 
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