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ON DIAGONALIZATION 
BY DYNAMIC OUTPUT FEEDBACK 

A. BULENT OZGULER, VASFI ELDEM 

The purpose of this paper is to draw attention to a causality degree-dominance property in 
diagonalization problems by dynamic output feedback and constant precompensator. Even 
in the well-investigated special case of square transfer matrices, the property of degree-dominance 
yields new insight into the structure of diagonalizable transfer matrices. 

1. INTRODUCTION 

Transfer matrix diagonalization (decoupling) problems have been receiving a re
newed attention for the last few years. The reason is the desire to apply the powerful 
tools developed in the last decades for dealing with such difficult problems [1] as 
well as a new stimulant introduced by the successful resolution of the much con
sidered Morgan's problem [2, 3]. 

It has been noted that the introduction of a dynamic precompensator brings an 
extra degree of freedom into decoupling problems and that very general versions 
of the problem can quite successfully be solved [4]. However, the interest in the 
classical dynamic output feedback problem with constant precompensator still 
persists due to its simplicity of implementation and because these harder problems 
gave way to the development of many interesting structural system theory concepts 
[5,6] . 

The problems considered in this paper are the following: 

(P): Given a strictly proper p x m transfer matrix Z determine the conditions 
under which a constant m x p matrix L (precompensator) and a proper p x p 
rational matrix Zc (feedback compensator) exist such that 

(1) Z : = ZL(I + ZCZL)~X 

is diagonal and nonsingular. 

(GP): Given Z as in (P), determine the conditions for the existence of an m x p 
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constant L and m x p proper rational Zc such that 

(2) 1\=Z(I + ZCZ)~X L 
is diagonal and nonsingular. 

The usual assumption "Z is strictly proper" assures that the inverses in (l) and 
(2) exist and are proper. It can actually be discarded at the cost of a more refined 
analysis. 

The main result of this section indicates that all the transfer matrices Z for which 
(P) or (GP) is solvable share a certain "causality degree dominance" property. This 
observation allows us to reduce both of these feedback problems to open-loop, 
constant precompensation problems. These problems are in turn expected to be 
easier to tackle; an expectation which has been fulfilled by the resolution of (P) 
in [7]. 

In the special case of square Z, i.e., in the case p = m, the causality degree dom
inance property yields a new solvability condition to the problems as an alternative 
to the existing condition in terms of Z - 1 of [8] and [9]. The new condition allows 
one to more clearly see into the structure of diagonalizable transfer matrices. 

Note that if the pair (Zc, L) is a solution to (P), then (LZC, L) is a solution to (GP). 
Thus, the solvability of (P) implies the solvability of (GP). On the other hand, it can 
be shown that the reverse implication does not hold. A counterexample to (GP) 
implies (P) is 

_ rv 2 z~6 z-n 
~[_z-5 z"4 z'3}' 

Clearly, the two problems are equivalent in the case of a square transfer matrix. 
Due to the analogy between the restricted state feedback problem, general state 
feedback problem and (P), (GP), respectively, one may call (P) the "restricted" 
and (GP) the "general" dynamic output feedback problem of diagonalization. 

A short description of the terminology and notation used in the paper is as follows. 
We define the (causality) degree of a rational function of z with real coefficients 

[i.e., an element of the field of real rational functions ^?(z)] to be the difference between 
the degrees of its numerator and denominator polynomials. Thus, if a is in 0t(z)y 

then a = pfq for (coprime) polynomials p and q in &(z) and deg a : — deg p — deg q. 
The degree of 0 is assigned to be — oo for convenience. An element a in 0t(z) is called 
proper iff deg a —^ 0 and strictly proper iff deg a < 0. The set of proper elements 
of 0t(z) forms the ring of transfer functions, denoted by 0!pI(z). A degree 0 element 
(unit) of this ring is said to be biproper. 

If A is in 0t(z)p*m, then deg A := max (deg AtJ]; i = 1, . . . , p and j = 1, ..., m. 
A rational matrix is proper iff deg A ^ 0 and strictly proper iff deg A < 0. If A 
is a rational matrix, then it can uniquely be written as A = A~ + A+, where A~ 
is a proper matrix and A+ is a strictly polynomial matrix. A p x m rational matrix 
is called left biproper iff it is proper and admits a proper right inverse, i.e., there 
exists a proper m x p matrix B such that AB = I; it is called right biproper iff its 
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transpose A' is left biproper. If a square rational matrix is left (or right) biproper, 
then it is called biproper. If A0 denotes the coefficient of z° in the Laurent series 
expansion in z~1 of A, then a proper A is well known to be left biproper iff rank A0 = 
= p, or equivalently, A0 is left invertible. We now define the concept of row proper-
ness for a rational matrix. This is actually equivalent to the notion of the rows 
of a matrix being properly independent for transfer matrices, see [10]. Let A be 
in M(z)pXm with At denoting its ith row; a 1 x m matrix. Let fit := degA,- and 
define the row degree matrix D of A to be D := diag {2"'} which is a diagonal 
nonsingular matrix. Let B := D-1A. The rational matrix A is called row proper 
iff B is left biproper. The zero coefficient matrix B0 of the proper matrix B is called 
the highest row coefficient matrix of A and is denoted by Ah. We note that if A 
is a polynomial matrix, then our concept of row properness is precisely that of [6]. 
It is easy to see that any rational A (row proper or not) can uniquely be represented 
as A = F(Ah + Y) for some strictly proper rational matrix Y Given a square rational 
matrix A, it can uniquely be decomposed into its diagonal and off-diagonal parts 
as A = Ad + Aoff, where the ijth entry of Ad is equal to the corresponding entry 
of A if i = j and is equal to 0 for i =j= j . 

2. DIAGONALIZATION PROBLEM (P) 

We first prove the following preliminary result. 

Lemma 1. The problem (P) is solvable if and only if rank Z = p, there exists 
an m x p constant'matrix Lsuch that ZLis nonsingular, and for all i,j = 1, ..., p 
with i 4= j the inequality 

(3) deg (ZL\j = deg (ZL)U + deg (ZL)„ 

holds. 

Proof. [Only if] By nonsingularity of Z in (l), ZLis also nonsingular implying 
the necessity of rank Z = p. Equality (l) further implies that 

Z ^ Z L Z - 1 = Z " 1 + ZC(I - ZZC) - 1 , 

where I — ZZC is biproper by strict properness of Z. Then, 

z - ^ z L V z - 1 = [ZC(I - Z Z , ) " 1 ] ^ , 

yielding deg (ZL)tj — deg ZH + deg Zyy; i + j , as the right hand side is proper. 
Note, however, that Z_1(ZL)d — I is strictly proper by (l), or that 2~1(ZL)d is 
biproper. Thus, 

deg (ZL)it = deg ZH ; i = 1, ..., p 

yielding (3). [If] Let rank Z = p and suppose (3) holds for some L such that ZL 
is nonsingular. We first note that (3) implies that (ZL)d is nonsingular; since, other
wise, a whole row or column of ZL would be zero. Let us prove that Zc : = 
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: = - [ ( Z L ) _ 1 ] o f f is a solution to (P). Let E : = (ZL)d to simplify the notation and 

note by (3) that E_1(ZL)off E_1 is proper. Hence, I + E_1(ZL)0ff is biproper by 

strict properness of E and all off-diagonal entries of 

( Z L ) " 1 = E"1 - [I + E-^ZLU]-1 E-\ZL)QitE-x 

are proper. This establishes that Z c is proper. Further, Z := [ ( Z L ) - 1 + Z c ] _ 1 = 

= { [ ( Z L ) - 1 ] d ) - 1 is diagonal. Therefore, Z c is a solution to (P). • 

Definition. Let us call a nonsingular p x p rational matrix R degree-dominant iff 

(4) degR l 7 < degR ; / + deg R,7 ; i,j=l,...,p; i * j . 

Among the following matrices Z 1 is degree-dominant whereas Z 2 and Z 3 are 
not degree-dominant: 

Z 1 = 
z z ]• - P Я - - [ z z' 

-2 0 

It is clear that a strictly proper and degree-dominant R is row proper as the degree 
inequality above implies that deg Ru < deg Rn for all i + j since deg Rj7 < 0. 

Lemma 1 yields the following main result of this section. The second part is 
a trivial consequence of the first; it is stated separately as it yields a readily check
able sufficient condition for the solvability of problem (P). 

Theorem 1. (i) The problem (P) is solvable if and only if there exists an m x m 
constant matrix K such that a px p minor of ZK is nonsingular and degree-dominant, 
(ii) If any of the p x p minors of Z is nonsingular and degree-dominant, then (P) 
has a solution. 

Proof. Let (P) be solvable for Z so that, by Lemma 1, there exists an m x p 
constant L such that ZL is nonsingular and degree-dominant. It follows that L is 
of full column rank and hence for some constant m x m matrix K, L = K[I: 0]'. 
Consequently, the p x p minor of ZK of column indexes j = 1, ...,p is degree-
dominant. Conversely, if for some K, a p x p minor of ZK is nonsingular and 
degree-dominant, let Lbe the m x p matrix of 0's and l's picking that minor, i.e., 
such that ZKLis equal to that minor. Since ZKLis nonsingular and degree-dominant, 
by Lemma 1 it follows that (P) is solvable. Statement (ii) follows trivially from (i) 
on setting K = I. • 

The merit of the result of Theorem 1 is that it reduces the solvability of (P) to 
an open loop problem, namely, the existence of a constant m x p matrix L such 
that ZLis degree-dominant. Theorem 1 is the starting point of Eldem and Ozguler 
[7] where a complete solution to (P) has been obtained. 

In the case of square Z, Theorem 1 yields a new solvability condition for (P) 
which sheds more light into the structure of diagonalizable transfer matrices than 
the already existing condition (see (ii) below) in terms of Z - 1 of [8] and [9]. 
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Corollary 1. Let Z be a strictly proper p x p transfer matrix. The following 
are equivalent: 

(i) (P) is solvable for Z. 
(ii) Z is nonsingular and (ZhZ"1)ij is proper for all i # j . 

(iii) Zh is nonsingular and ZZh
x is degree-dominant. 

Proof. Note that, A+ is diagonal iff Au is proper for all i =}= ;. The equivalence 
of (i) and (ii), then, follows by [8]. Let (P) be solvable for Z so that, by Theorem 1, 
there exists a constant p x p matrix L such that ZL is nonsingular and degree-
dominant. It follows in particular that ZL is row proper. This implies by nonsingularity 
of Lthat Zh is nonsingular. We now show that L = Zh

tCd for some constant diagonal 
nonsingular Cd. In fact, if ZL is degree-dominant, then 

X := (D-'ZLD-1)^ = D-\ZL)ot[ D~l 

is proper since deg (ZL)U = i-th row degree of Z. Using the representation Z = 
= D(Zh + Y) of Z, where Y is strictly proper, we can write (ZhL)off + (YL)off = 
= XD. Here, XD — (YL)off is strictly proper and (ZhL)0^ is constant. Hence, 
(ZhL)on = 0. By nonsingularity of ZhL, we then have ZhL = Cd for some constant 
diagonal nonsingular Cd as claimed above. It is easy to see that ZZh

l is degree-
dominant iff ZZh

1Cd is degree-dominant for any constant diagonal nonsingular 
Cd. Thus, (i) implies (iii). The converse is a straightforward consequence of Theorem 1. 

• 
Remark. The role of degree-dominance in (P) is best observed by considering 

the restricted problem: (P) with L=I. By Corollary 1, this problem is solvable 
iff Z is degree-dominant. 

3. GENERAL PROBLEM (GP) 

The second problem (GP) requires a closer attention and the reduction of the 
problem to an open loop one is not so straightforward. However, if the plant transfer 
matrix Z is row proper, then a version of the concept of degree-dominance is easily 
seen to be central to the solvability of (GP). 

Theorem 2. Let Z be row proper with row degrees {/̂ ; i = 1, . . . . p}. Then (GP) 
is solvable if and only if there exists a constant matrix Lsuch that ZL is nonsingular 
and 
(5) deg (ZL)0. = ^ + deg (ZL)}j, 

for all i, j = 1, . . . , p and i =f= j . 

Proof. Let us write Z = DZb for a diagonal proper D and a left biproper Zb. 
Note that pt = deg Du for i = 1, . . . , p. If (GP) is solvable, then by (2) 2 + ZZC2 = 
= ZL implying that deg (ZL)U = deg [(ZL)d]H = deg (2) „ for all i = l , . . . , p 
and that 

D (ZL ;offZ = (ZbZc)off 
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with the right hand side proper. Thus, (5) should hold. Conversely, if (5) holds, 
then D_1(ZL)off (ZL)^1 = : Y is proper. Letting Zc := YbY, where Yb is a proper 
right inverse of Zb, it is easy to verify that (2) holds with Z = (ZL)d. Q 

(Received April 12, 1988.) 
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