
KYBERNETIKA- VOLUME 24 (1988), NUMBER 6

A SIMPLE DETAILED PROOF
FOR GOEDEL'S INCOMPLETENESS THEOREM

ALEXEI L. SEMENOV

The paper brings a simple detailed proof of Goedel's Incompleteness Theorem exposed
in the language of informatics.

Goedel's Incompleteness Theorem is one of the central theorems of mathematical
logic and many attempts at explanation have been done to make it accessible to
a wide circle of mathematiciens and to the uses in applications, in computer science,
e.g., see [1], [4] and [5]. These attempts are partially motivated by the importance
of this result, negative in nature, for practical programming. It helps the program
mer like other negative results from logic and algorithm theory, to make reasonable
plans and not to desire the impossible. (See [2].) On the other hand, informatics
give a proper context, formulation and explanation to the theorem. The present
version of the proof is the clearest from the point of view of contemporary computer
science. I used it successfully in my lectures at Moscow University, namely for the
students of structural and applied linguistics.

As it is well known, the Liar's Paradox (see Fig. l) can be considered as an origin
of Goedel's Incompleteness Theorem.

Liar's Paradox

THIS SENTENCE IS FALSE

Is this sentence true?

Fig. 1.

The root of the paradox is in the presumption that each sentence must be true
or false, which is not the case for the considered sentence. But for formal systems

447

studied by mathematical logic, each sentence is true or false. So if we imagine that
there exists a sentence which expresses its own invalidity, we will get the same contra
diction. So this sentence is impossible. (This is a sketch of Tarski's Theorem.) But
let us substitute unprovable for false. Then we get Goedel's sentence (Fig. 2).

GoedeVs sentence

THIS SENTENCE IS UNPROVABLE

Fig. 2.

If this sentence is true, it is unprovable. If it is false, it is provable. In both cases,
the notion of validity does not coincide with the notion of provability. But this is
a formulation of Goedel's Incompleteness Theorem.

GoedeVs Incompleteness Theorem. The notion of 'truthness' does not coincide
with the notion of provability.

To prove Goedel's Theorem, we have to choose a language and a notion of prova
bility. (Note that we have a standard notion of truth for our languages.) Goedel
chose the language of elementary arithmetic and some notion of provability based
on Peano's axioms.

Next, we must find a way to express the notion of provability, by means of our
language. Then we must write down Goedel's sentence. Goedel's choice was very
natural in the 30's, when the natural numbers were the main mathematical object.
In fact, Goedel had to invent arithmetization — the method of coding formulae
(which are in fact words) and sequences of formulae by natural numbers. But it was
clear to Goedel that the language can be chosen in different ways. Today, words
are commonly used in mathematics and in computer science, all information includ
ing quantitative is coded by zeros and ones. So we can choose some set of words
(with natural operations on them) as the basic set of our theory, instead of natural
numbers. On the other hand, there is no need to formulate any particular notion
of provability - we can prove Goedel's Theorem simultaneously for all possible
notions of provability.

In our proof, we shall also use coding for words over an arbitrary alphabet by
words over a standard alphabet. For example, for digits we can choose the following
codings:

0 010
1 0110
2 01110
3 011110

9 011111111110

448

The code of a word is the concatenation of its letters' codes:

020 01001110010

Assuredly we can code some sequence of 0's and l's as well as another sequence
of digits.

Now we shall introduce some artificial operation, S, on words over an (ordered)
alphabet with our coding. Operation S does not change any word containing some
letter different from 0 or 1. To perform the operation on word, say, vv over {0, 1},
we must:

1. code vv, get some word vv;
2. find a first occurrence of 010 (code of the first letter of the alphabet) in vv:

vv = ... OlOu
substitute vv for 010:
... wu
then find a first occurrence of 010 in u and substitute vv, etc.

The word obtained by this sequential substitution is the result of S applied to vv.
We choose the following alphabet for our language:

x 0 1 A S = () n v & - > - V Byzpqstuv

The list is finite, but it is irrelevant for our needs how to fix it; x, y, z are variables,
S — unary functional symbol, x is in the first place for some technical reason.
The terms of the theory are constructed in the following way:

0, 1, A - terms
x, y,z, . . . — terms

a, P - terms

aft, S(a) - terms

Atomic formulae have the form a = /?, where a and /? are terms. Arbitrary formulae
are constructed in the ordinary way.

The interpretation of our language is simple. The domain is the set of all words
over {0, 1, A}, afi is the ordinary concatenation of words, S(a) is the operation
described above.

Now we proceed to the notion of provability. First of all we introduce the standard
notion of grammar. A grammar is the tuple G = <T, N, A, FT), where Tis the (finite)
terminal alphabet, N — the (finite) nonterminal alphabet, AeN, A is the initial
symbol, Yl - the finite set of productions of the form <p -* \]/, where (p, \jj are words
over Tu N. The word w over T is generated by G if there is a sequence u0,..., un,
for which:

0) u0 = A;

1) for all (' = 0 , . . . , n - 1, there are some p, q, (<P -+$) e 17 for which

«j = pq>q , M i + i = p^q ;

2) un = w .

449

As we know, Church's thesis is important for the philosophy of mathematics and
mathematical practice, as well as for the philosophy of computer science. The same
can be stated for the following thesis (and it is an interesting question in what sense
it is equivalent to Church's thesis).

Post thesis. Each notion of provability (or enumerability or generability) is equi
valent to the notion of generability by some grammar.

So, to characterize the provability in our theory, we have to find a proper grammar.
We now try to express the notion of generated word for a particular grammar, G,
in our language. First of all, we shall consider not words, but their codes; so we have
to construct a formula P('), which means that its argument is a code of the generated
word. But now we must choose some method to code sequences of words (to say
"there is a sequence"...). The straightforward way is to code M0, ..., M„ by
AM0 AMJ A ... AM,, A. Then we write three technical formulae:

Atom(y) === "1 3p, q(y = pAq)

First(y, z) == Atom(y) & 3p(AyAp = z)

Last(y, z) ^ Atom(y) & 3p(pAyA = z)

Neib(s, t, z) =«= Atom(s) & Atom(t) & 3p, q(pAsAtAq = z) .

Let us try to formalise a part of point l) from the definition of generation in grammar
C:

Step(u, v) === V 3p, q(u = pcpq & v = ptj/q)
(M>-*<l>)ell

Now, we obtain the formula describing the notion of provability:

P(x) === 3z(First(A, z) & VM, v(Neib(u, v, z) -» Step(u, v)) & Last(x, z))

Evidently, P(x) means that x is the code of a provable word. And now, as in Goedel's
proof:

D(x)^lP(S(x)).

g is the code of D(x), in other words

g^f>
and

G == D(g)

is a Goedel's formula.

To prove that, we have only to analyse, what S(/7) means. Let us return to the
definition of S. We have:

Let h be the code of a formula cp with no bounded occurrences of variable x.
Then S(/i) is the code of the formula </>(/?) (that is, of the formula obtained from <p
by substituting h instead of each occurrence of x).

450

So G means that formula coded by S(g) is unprovable. But this formula is D(g) = G
itself.

Goedel's Theorem is proved.

Our proof can be presented in an even more structured manner in the style of step-
by-step development.

Operation S looks rather unnatural. In fact it can be easily expressed in our
language without S. The idea here is the same as in construction of predicate P.
The process of substitution is represented as a sequence of steps. But first of all we
have to express the notion of coding in our language. This can be done similarly
to the generation in a grammer also. Indeed; Z is the code of w if there exists a se
quence u0 ... u„ for which

0) M0 = AAw

1) H; = p AA Oq and ui+1 = p 010 AAq or

M,- = p AA \q and ui+1 = /lOllOAAg

2) un = z AA.

As for S, the sequence of steps also appears in a natural way from the definition.
Then our language becomes rather natural, as natural for the computer scientist and
programmer as + (addition) and * (multiplication) is.

ACKNOWLEDGEMENT

I would like to express my gratitude to my Czech colleagues and friends, namely Dr. J. Becvaf
and Dr. Z. Kratochvil, who helped me to formulate clearly my ideas.

(Received July 6, 1987.)

R E F E R E N C E S

[1] B. M. rjiyuiKOB: TeopeMa o HenojiHOTe (J)opMajibHbix Teopirii c no3HirHH nporpaMMHCTa.
KH6epneTHKa (1979), Me. 2, 1 -5 .

[2] A. JI. CeMeHOB, B. A. ycneHCKirii: MaTeMaTMnecKaa jiorHKa B BHiHCJiHTejibHbix HayKax a B
BbraHCJiHTejibHoft npaKTHKe. BecTmiK AKafleMHH navK CCCP (1986), Ka. 7, 93—103.

[3] R. M. Smullyan: Theory of Formal Systems. (Annals of Mathematical Studies No. 47.)
Princeton University Press, Princeton, N. J. 1962.

[4] B. A. ycnencKHH: TeopeMa Teflejw o HenojiHOTe. HayKa, MocKBa 1982.
[5] B. A. ycneHCKHii: TeopeMa Feflena H Teopra anropHTMOB. ycnexH MaTeMaTHnecioix HayK

5(1953), Nb. 56, 176-178.

Alexei L. Semenov, Council for Cybernetics — Academy of Sciences, Vavilova 40, Moscow,
U.S.S.R.

451

